Skip to main content

Catalytic Transformation of Biomass in Ionic Liquids

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

This chapter focuses on a number of developing technologies based on catalytic transformations of biomass in ionic liquids. As an introduction, an overview of biomass and ionic liquids is given. The chapter continues with a description of catalysis of monosaccharides and polysaccharides in ionic liquids, covering saccharification, depolymerization, isomerization, dehydration into 5-hydroxymethylfurfural, and further processing. The derivatization of mono- and polysaccharides is also discussed. Because fermentation of biomass is an important technology that is widely used and continuing to grow, a section is devoted to the use of ionic liquids in pretreatment of biomass for saccharification and fermentation into ethanol. Extraction and depolymerization of lignin model compounds and the whole lignin polymer in ionic liquids are discussed both for pretreatment and use of lignin fragments as a source of fuel and chemicals. A discussion of deoxygenation and hydrogenation of lignin fragments is also given, followed by a concluding section outlining the advantages, challenges, and prospects for catalytic processing of biomass in ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perlack RD, Wright LL, Turhollow AF, et al. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Agriculture. 2005;1–78.

    Google Scholar 

  2. Parikka M. Global biomass fuel resources. Biomass Bioenergy. 2004;27:613–20.

    Google Scholar 

  3. United Nations. Maize production quantity. Rome: Food and Agriculture Organization of the United Nations; 2010. p. 1.

    Google Scholar 

  4. Graham RL, Nelson R, Sheehan J, et al. Current and potential U.S. corn stover supplies. Agron J. 2007;99:1.

    Google Scholar 

  5. Renewable Fuels Association. Accelerating industry innovations – 2012 ethanol industry outlook. Washington, DC: Renewable Fuels Association; 2012. p. 1–38.

    Google Scholar 

  6. Bang G. Energy security and climate change concerns: triggers for energy policy change in the United States? Energy Policy. 2010;38:1645–53.

    Google Scholar 

  7. Goldemberg J, Coelho ST, Nastari PM, Lucon O. Ethanol learning curve—the Brazilian experience. Biomass Bioenergy. 2004;26:301–4.

    Google Scholar 

  8. Solomon BD, Barnes JR, Halvorsen KE. Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy. 2007;31:416–25.

    Google Scholar 

  9. Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin. 2008;2(1):26–40.

    Google Scholar 

  10. Kaar WE, Gutierrez CV, Kinoshita CM. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy. 1998;14:277–87.

    Google Scholar 

  11. Kim TH, Kim JS, Sunwoo C, Lee Y. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol. 2003;90:39–47.

    Google Scholar 

  12. Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005;40:3693–700.

    Google Scholar 

  13. Hideno A, Inoue H, Tsukahara K, et al. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol. 2009;100:2706–11.

    Google Scholar 

  14. Li C, Knierim B, Manisseri C, et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol. 2010;101:4900–6.

    Google Scholar 

  15. Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev. 2010;14:2596–610.

    Google Scholar 

  16. Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomass gasification. Fuel Process Technol. 2001;73:155–73.

    Google Scholar 

  17. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel. 2006;20:848–89.

    Google Scholar 

  18. Elliott DC. Historical developments in hydroprocessing bio-oils. Energy Fuel. 2007;21:1792–815.

    Google Scholar 

  19. Demirbas MF. Biorefineries for biofuel upgrading: a critical review. Appl Energy. 2009;86:S151–61.

    Google Scholar 

  20. Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol. 2006;69:627–42.

    Google Scholar 

  21. Zhu S, Wu Y, Chen Q, et al. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 2006;8:325.

    MathSciNet  Google Scholar 

  22. Pinkert A, Marsh KN, Pang S, Staiger MP. Ionic liquids and their interaction with cellulose. Chem Rev. 2009;109:6712–28.

    Google Scholar 

  23. Foyle T, Jennings L, Mulcahy P. Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol. 2007;98:3026–36.

    Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory. Technical report NREL/TP-510-42618. 2011;1–18.

    Google Scholar 

  25. Brethauer S, Wyman CE. Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol. 2010;101:4862–74.

    Google Scholar 

  26. Ebringerová A. Structural diversity and application potential of hemicelluloses. Macromol Symp. 2006;232:1–12.

    Google Scholar 

  27. Whistler RL, Gaillard BDE. Comparison of xylans from several annual plants. Arch Biochem Biophys. 1961;93:332–4.

    Google Scholar 

  28. Holladay JE, White JF, Bozell JJ, Johnson D. Top value-added chemicals from biomass volume II—results of screening for potential candidates from biorefinery lignin. Richland: Pacific Northwest National Laboratory. Report PNNL-16983. 2007; II:1–79.

    Google Scholar 

  29. Weng J-K, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol. 2008;19:166–72.

    Google Scholar 

  30. Chakar FS, Ragauskas AJ. Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod. 2004;20:131–41.

    Google Scholar 

  31. Tien M, Kirk TK. Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1984;81:2280–4.

    Google Scholar 

  32. Martinez D, Challacombe J, Morgenstern I, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A. 2009;106:1954–9.

    Google Scholar 

  33. Gierer J. Chemical aspects of kraft pulping. Wood Sci Technol. 1980;266:241–66.

    Google Scholar 

  34. Pye EK, Lora JH. The Alcell process: a proven alternative to kraft pulping. Tappi J. 1991;74(3):113–7.

    Google Scholar 

  35. McDonough TJ. The chemistry of organosolv delignification. Atlanta: Institute for Paper Science and Technology. IPST technical paper series number 455; 1992.

    Google Scholar 

  36. Xu F, Sun J, Sun R, et al. Comparative study of organosolv lignins from wheat straw. Ind Crop Prod. 2006;23:180–93.

    Google Scholar 

  37. Adler E. Lignin chemistry-past, present and future. Wood Sci. 1977;8:169–218.

    Google Scholar 

  38. Yokoyama T, Matsumoto Y. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 1: kinetics of the formation of enol ether from non-phenolic C 6 -C 2 type model compounds. Holzforschung. 2008;62:164–8.

    Google Scholar 

  39. Pimentel D, Patzek TW. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res. 2005;14:65–76.

    Google Scholar 

  40. Saha BC, Cotta MA. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb Technol. 2007;41:528–32.

    Google Scholar 

  41. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–84.

    Google Scholar 

  42. Olivier-Bourbigou H. Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A Chem. 2002;182–183:419–37.

    Google Scholar 

  43. Earle MJ, Esperança JMSS, Gilea MA. The distillation and volatility of ionic liquids. Nature. 2006;439:831–4.

    Google Scholar 

  44. Wishart JF. Energy applications of ionic liquids. Energy Environ Sci. 2009;2:956.

    Google Scholar 

  45. Kulkarni PS, Branco LC, Crespo JG, et al. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem Eur J. 2007;13:8478–88.

    Google Scholar 

  46. Kosmulski M. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.

    Google Scholar 

  47. Zhao D, Wu M, Kou Y, Min E. Ionic liquids: applications in catalysis. Catal Today. 2002;74:157–89.

    Google Scholar 

  48. Miao W, Chan TH. Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc Chem Res. 2006;39:897–908.

    Google Scholar 

  49. Chowdhury S, Mohan RS, Scott JL. Reactivity of ionic liquids. Tetrahedron. 2007;63:2363–89.

    Google Scholar 

  50. Arduengo AJ, Krafczyk R, Schmutzler R, et al. Imidazolylidenes, imidazolinylidenes and imidazolidines. Tetrahedron. 1999;55:14523–34.

    Google Scholar 

  51. Yoshizawa M, Xu W, Angell CA. Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions. J Am Chem Soc. 2003;125:15411–9.

    Google Scholar 

  52. Gordon C. New developments in catalysis using ionic liquids. Appl Catal Gen. 2001;222:101–17.

    Google Scholar 

  53. Cole AC, Jensen JL, Ntai I, et al. Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc. 2002;124:5962–3.

    Google Scholar 

  54. Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications. Chem Rev. 2008;108:206–37.

    Google Scholar 

  55. Sheldon R. Catalytic reactions in ionic liquids. Chem Commun 2001;23:2399–407.

    Google Scholar 

  56. Kim DW, Hong DJ, Seo JW, et al. Hydroxylation of alkyl halides with water in ionic liquid: significantly enhanced nucleophilicity of water. J Org Chem. 2004;69:3186–9.

    Google Scholar 

  57. Yang Z, Pan W. Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol. 2005;37:19–28.

    Google Scholar 

  58. Zhu H-P, Yang F, Tang J, He M-Y. Brønsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem. 2003;5:38.

    Google Scholar 

  59. Gui J, Cong Z, Liu D, et al. Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal Commun. 2004;5:473–7.

    Google Scholar 

  60. Sheldrake GN, Schleck D. Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars. Green Chem. 2007;9:1044.

    Google Scholar 

  61. Fei Z, Zhao D, Geldbach TJ, et al. Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem Eur J. 2004;10:4886–93.

    Google Scholar 

  62. Amarasekara AS, Owereh OS. Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids Under mild conditions. Ind Eng Chem Res. 2009;48:10152–5.

    Google Scholar 

  63. Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol. 2009;100:2580–7.

    Google Scholar 

  64. Mäki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod. 2010;32:175–201.

    Google Scholar 

  65. Aaltonen O, Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym. 2009;75:125–9.

    Google Scholar 

  66. Turner MB, Spear SK, Holbrey JD, Rogers RD. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules. 2004;5:1379–84.

    Google Scholar 

  67. Su S, Tan Y, Macfarlane DR. Ionic liquids in biomass processing. Top Curr Chem. 2009;290:311–39.

    Google Scholar 

  68. Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun (Camb). 2006;(12):1271–3.

    Google Scholar 

  69. Youngs TG, Hardacre C, Holbrey JD. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B. 2007;111:13765–74.

    Google Scholar 

  70. Singh S, Simmons BA, Vogel KP. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng. 2009;104:68–75.

    Google Scholar 

  71. Zhao H, Baker GA, Song Z, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008;10:696.

    Google Scholar 

  72. Anderson JL, Ding J, Welton T, Armstrong DW. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc. 2002;124:14247–54.

    Google Scholar 

  73. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–29.

    Google Scholar 

  74. Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–55.

    Google Scholar 

  75. Lynam JG, Reza MT, Vasquez VR, Coronella CJ. Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol. 2012;114:629–36.

    Google Scholar 

  76. Lee SH, Doherty TV, Linhardt RJ, Dordick JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng. 2009;102:1368–76.

    Google Scholar 

  77. Wu H, Mora-Pale M, Miao J, et al. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng. 2011;108:2865–75.

    Google Scholar 

  78. Kamiya N, Matsushita Y, Hanaki M, et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett. 2008;30:1037–40.

    Google Scholar 

  79. Zhao H, Baker GA, Cowins JV. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol Prog. 2009;26:127–33.

    Google Scholar 

  80. Nguyen T-AD, Kim K-R, Han SJ, et al. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol. 2010;101:7432–8.

    Google Scholar 

  81. Fu D, Mazza G. Aqueous ionic liquid pretreatment of straw. Bioresour Technol. 2011;102:7008–11.

    Google Scholar 

  82. Fu D, Mazza G. Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresour Technol. 2011;102:8003–10.

    Google Scholar 

  83. Brennan TCR, Datta S, Blanch HW, et al. Recovery of sugars from ionic liquid biomass liquor by solvent extraction. BioEnergy Res. 2010;3:123–33.

    Google Scholar 

  84. Gutowski KE, Broker GA, Willauer HD, et al. Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc. 2003;125:6632–3.

    Google Scholar 

  85. Shill K, Padmanabhan S, Xin Q, et al. Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng. 2011;108:511–20.

    Google Scholar 

  86. Saeman JF, Bubl JL, Harris EE. Quantitative saccharification of wood and cellulose. Ind Eng Chem Anal Ed. 1945;17:35–7.

    Google Scholar 

  87. Jacobsen SE, Wyman CE. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol. 2000;84–86:81–96.

    Google Scholar 

  88. Cox BJ, Jia S, Zhang ZC, Ekerdt JG. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polym Degrad Stab. 2011;96:426–31.

    Google Scholar 

  89. Thomazeau C, Olivier-Bourbigou H, Magna L, et al. Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc. 2003;125:5264–5.

    Google Scholar 

  90. Li C, Zhao ZK. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal. 2007;349:1847–50.

    Google Scholar 

  91. Sievers C, Valenzuela-Olarte MB, Marzialetti T, et al. Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res. 2009;48:1277–86.

    Google Scholar 

  92. Li B, Filpponen I, Argyropoulos DS. Acidolysis of wood in ionic liquids. Ind Eng Chem Res. 2010;49:3126–36.

    Google Scholar 

  93. Li C, Wang Q, Zhao ZK. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem. 2008;10:177.

    Google Scholar 

  94. Zhang Y, Du H, Qian X, Chen EY-X. Ionic liquid–water mixtures: enhanced K w for efficient cellulosic biomass conversion. Energy Fuel. 2010;24:2410–7.

    Google Scholar 

  95. Rinaldi R, Palkovits R, Schüth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed Engl. 2008;47:8047–50.

    Google Scholar 

  96. Rinaldi R, Meine N, Vom Stein J, et al. Which controls the depolymerization of cellulose in ionic liuqids: the solid acid catalyst or the cellulose? ChemSusChem. 2010;3:266–76.

    Google Scholar 

  97. Zhang Z, Zhao ZK. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res. 2009;344:2069–72.

    Google Scholar 

  98. Amarasekara AS, Owereh OS. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun. 2010;11:1072–5.

    Google Scholar 

  99. Su Y, Brown HM, Li G, et al. Accelerated cellulose depolymerization catalyzed by paired metal chlorides in ionic liquid solvent. Appl Catal Gen. 2011;391:436–42.

    Google Scholar 

  100. Kuster BFM. 5-hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch—Stärke. 1990;42:314–21.

    Google Scholar 

  101. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem Rev. 2011;111:397–417.

    Google Scholar 

  102. Ståhlberg T, Fu W, Woodley JM, Riisager A. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem. 2011;4:451–8.

    Google Scholar 

  103. Lansalot-Matras C, Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun. 2003;4:517–20.

    Google Scholar 

  104. Moreau C, Finiels A, Vanoye L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J Mol Catal A Chem. 2006;253:165–9.

    Google Scholar 

  105. Qi X, Watanabe M, Aida TM, Smith JRL. Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem. 2009;11:1327.

    Google Scholar 

  106. Hu S, Zhang Z, Zhou Y, et al. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem. 2008;10:1280.

    Google Scholar 

  107. Sievers C, Musin I, Marzialetti T, et al. Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem. 2009;2:665–71.

    Google Scholar 

  108. Zhao H, Holladay JE, Brown H, Zhang ZC. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science. 2007;316:1597–600.

    Google Scholar 

  109. Zhang Y, Pidko EA, Hensen EJM. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chem Eur J. 2011;17:5281–8.

    Google Scholar 

  110. Pidko EA, Degirmenci V, Van Santen RA, Hensen EJM. Coordination properties of ionic liquid-mediated chromium(II) and copper(II) chlorides and their complexes with glucose. Inorg Chem. 2010;49:10081–91.

    Google Scholar 

  111. Binder JB, Cefali AV, Blank JJ, Raines RT. Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci. 2010;3:765.

    Google Scholar 

  112. Zhang Z, Zhao ZK. Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride. Bioresour Technol. 2011;102:3970–2.

    Google Scholar 

  113. Hu S, Zhang Z, Song J, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem. 2009;11:1746.

    Google Scholar 

  114. Su Y, Brown HM, Huang X, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl Catal Gen. 2009;361:117–22.

    Google Scholar 

  115. Binder JB, Raines RT. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc. 2009;131:1979–85.

    Google Scholar 

  116. Li C, Zhang Z, Zhao ZK. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett. 2009;50:5403–5.

    Google Scholar 

  117. Zhang Z, Zhao ZK. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol. 2010;101:1111–4.

    Google Scholar 

  118. Chidambaram M, Bell AT. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 2010;12:1253.

    Google Scholar 

  119. U.S. Energy Information Administration. How much oil is used to make plastics? Washington, DC: U.S. Energy Information Administration; 2012. http://www.eia.gov/tools/faqs/faq.cfm?id=34&t=6

  120. Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Prog Polym Sci. 2001;26:1689–762.

    Google Scholar 

  121. Lee SH, Nguyen HM, Koo Y-M, Ha SH. Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Process Biochem. 2008;43:1009–12.

    Google Scholar 

  122. Lee SH, Dang DT, Ha SH, et al. Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnol Bioeng. 2008;99:1–8.

    Google Scholar 

  123. Lee SH, Ha SH, Hiep NM, et al. Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. J Biotechnol. 2008;133:486–9.

    Google Scholar 

  124. Ganske F, Bornscheuer UT. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org Lett. 2005;7:3097–8.

    Google Scholar 

  125. Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules. 2004;5:266–8.

    Google Scholar 

  126. Abbott AP, Bell TJ, Handa S, Stoddart B. O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem. 2005;7:705.

    Google Scholar 

  127. Xie H, King A, Kilpelainen I, et al. Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules. 2007;8:3740–8.

    Google Scholar 

  128. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2006;8:301.

    Google Scholar 

  129. Liu CF, Sun RC, Zhang AP, et al. Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res. 2007;342:919–26.

    Google Scholar 

  130. Eremeeva T. Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review. J Biochem Biophys Methods. 2003;56:253–64.

    Google Scholar 

  131. Van Rantwijk F, Madeira Lau R, Sheldon RA. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 2003;21:131–8.

    Google Scholar 

  132. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol. 2003;14:432–7.

    Google Scholar 

  133. Mora-Pale M, Meli L, Doherty TV, et al. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng. 2011;108:1229–45.

    Google Scholar 

  134. Kubo S, Hashida K, Yamada T, et al. A characteristic reaction of lignin in ionic liquids; glycelol type enol-ether as the primary decomposition product of β-O-4 model compound. J Wood Chem Technol. 2008;28:84–96.

    Google Scholar 

  135. Okuda K, Ohara S, Umetsu M, et al. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds. Bioresour Technol. 2008;99:1846–52.

    Google Scholar 

  136. Cox BJ, Ekerdt JG. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol. 2012;118:584–8.

    Google Scholar 

  137. Jia S, Cox BJ, Guo X, et al. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid. Holzforschung. 2010;64:577–80.

    Google Scholar 

  138. Jia S, Cox BJ, Guo X, et al. Hydrolytic cleavage of -O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res. 2011;50:849–55.

    Google Scholar 

  139. Jia S, Cox BJ, Guo X, et al. Cleaving the β–O–4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. ChemSusChem. 2010;3:1078–84.

    Google Scholar 

  140. Binder JB, Gray MJ, White JF, et al. Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy. 2009;33:1122–30.

    Google Scholar 

  141. Jiang N, Ragauskas AJ. Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. J Org Chem. 2007;72:7030–3.

    Google Scholar 

  142. Yan N, Yuan Y, Dykeman R, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids. Angew Chem Int Ed Engl. 2010;49(32):5549–53.

    Google Scholar 

  143. Zhang ZC. Catalysis in ionic liquids. Adv Catal. 2006;49:153–237.

    Google Scholar 

  144. Park JI, Steen EJ, Burd H, et al. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One. 2012;7:e37010.

    Google Scholar 

  145. Stark A. Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci. 2011;4:19.

    Google Scholar 

  146. Sun N, Rodríguez H, Rahman M, Rogers RD. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun. 2011;47:1405–21.

    Google Scholar 

  147. Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal Gen. 2010;373:1–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Ekerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cox, B.J., Ekerdt, J.G. (2014). Catalytic Transformation of Biomass in Ionic Liquids. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_8

Download citation

Publish with us

Policies and ethics