Skip to main content

Fractionation of Lignocellulosic Materials with Ionic Liquids

  • Chapter
  • First Online:
Book cover Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

Ionic liquids (ILs) have been recognized as a promising way to fractionate lignocellulosic biomass. During recent years, a number of publications have introduced a variety of technical developments and solvent systems based on several types of ILs to fractionate lignocellulose into individual polymeric components, after full or partial dissolution. In this chapter we briefly review the latest developments and knowledge in this field of study and introduce an alternative fractionation method based on the controlled regeneration of components from 1-allyl-3-methyl-imidazolium chloride ([amim]Cl). Norway spruce (Picea abies) and Eucalyptus grandis woods were dissolved in their fibrous state or by utilizing ball milling to improve solubility. The resulting wood solutions were precipitated gradually into fractions by addition of non-solvents, such as acetonitrile and water. Further water extraction of the crude fractions resulted in better separations. By analyzing molecular weight distributions of the fractions, together with their chemical composition, we have obtained fundamental information concerning the mechanisms of wood fractionation with ILs. Fractionation efficiency is found to be highly dependent on the modification of the wood cell wall ultrastructure and the degree of reduction of the molecular weights of the main components, arising from mechanical degradation. Isolation of cellulose enriched fractions was archived with Spruce sawdust and ball milled Eucalyptus, evidently following from distinct dissolution mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun N, Rodríguez H, Rahman M, Rogers RD. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun. 2011;47:1405–21.

    Article  Google Scholar 

  2. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP. Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod. 2010;32:175–201.

    Article  Google Scholar 

  3. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng. 2011;108:1229–45.

    Article  Google Scholar 

  4. Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci. 2011;4:3913–29.

    Article  Google Scholar 

  5. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2012;124:4974–5.

    Article  Google Scholar 

  6. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 2007;9:63–9.

    Article  Google Scholar 

  7. Kilpeläinen I, Xie H, King A, Granström M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007;55:9142–8.

    Article  Google Scholar 

  8. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–55.

    Article  Google Scholar 

  9. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 2009;11:339–45.

    Article  Google Scholar 

  10. Lee SH, Doherty TV, Linhardt RJ, Dordick JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng. 2009;102:1368–76.

    Article  Google Scholar 

  11. Zhang H, Wu J, Zhang J, He J. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005;38:8272–7.

    Article  Google Scholar 

  12. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol. 2009;100:2580–7.

    Article  Google Scholar 

  13. Li B, Asikkala J, Filpponen I, Argyropoulos DS. Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res. 2010;49:2477–84.

    Article  Google Scholar 

  14. King A, Zoia L, Filpponen I, Olszewska A, Xie H, Kilpeläinen I, Argyropoulos DS. In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using 31P NMR. J Agric Food Chem. 2009;57:8236–43.

    Article  Google Scholar 

  15. King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I. Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed. 2011;50:6301–5.

    Article  Google Scholar 

  16. Anugwom I, Mäki-Arvela P, Virtanen P, Damlin P, Sjöholm R, Mikkola J. Switchable Ionic liquids (SILs) based on glycerol and acid gases. RSC Adv. 2011;452.

    Google Scholar 

  17. Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Sjöholm R, Mikkola J. Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr Polym. 2012;87:2005–11.

    Article  Google Scholar 

  18. Froschauer C, Hummel M, Laus G, Schottenberger H, Sixta H, Weber HK, Zuckerstätter G. Dialkyl phosphate-related ionic liquids as selective solvents for xylan. Biomacromolecules. 2012;13:1973.

    Article  Google Scholar 

  19. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H. Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules. 2012;13:2896.

    Article  Google Scholar 

  20. Pinkert A, Goeke DF, Marsh KN, Pang S. Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem. 2011;13:3124.

    Article  Google Scholar 

  21. Pu Y, Jiang N, Ragauskas AJ. Ionic liquid as a green solvent for lignin. J Wood Chem Technol. 2007;27:23–33.

    Article  Google Scholar 

  22. Peng X, Ren JL, Sun RC. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules. 2010;11:3519–24.

    Article  Google Scholar 

  23. (a) Leskinen T, King AWT, Kilpeläinen I, Argyropoulos DS. Fractionation of lignocellulosic materials with ionic liquids. 1. Effect of mechanical treatment. Ind Eng Chem Res. 2011;50:12349–57; (b) Leskinen T, King AWT, Kilpeläinen I, Argyropoulos DS. Fractionation of lignocellulosic materials using ionic liquids: Part 2. Effect of particle size on the mechanisms of fractionation. Ind Eng Chem Res. 2013;52:3958–66.

    Google Scholar 

  24. Wang X, Li H, Cao Y, Tang Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (amimCl). Bioresour Technol. 2011;102:7959–65.

    Article  Google Scholar 

  25. Casas A, Alonso MV, Oliet M, Santos TM, Rodriguez F. Characterization of cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride. Carbohydr Polym. 2013;92:1946–52.

    Article  Google Scholar 

  26. Sun L, Li C, Xue Z, Simmons BA, Singh S. Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Adv. 2013;3:2017–27.

    Article  Google Scholar 

  27. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem. 2010;12:1967–75.

    Article  Google Scholar 

  28. Miyafuji H, Suzuki N. Morphological changes in sugi (Cryptomeria japonica) wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci. 2012;58:222–30.

    Article  Google Scholar 

  29. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.

    Article  Google Scholar 

  30. Fu D, Mazza G, Tamaki Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem. 2010;58:2915–22.

    Article  Google Scholar 

  31. Kim J, Shin E, Eom I, Won K, Kim YH, Choi D, Choi I, Choi JW. Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol. 2011;102:9020–5.

    Article  Google Scholar 

  32. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 2011;13:2038–47.

    Article  Google Scholar 

  33. Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD. Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem. 2011;4:65–73.

    Article  MATH  Google Scholar 

  34. Cox BJ, Jia S, Zhang ZC, Ekerdt JG. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polym Degrad Stab. 2011;96:426–31.

    Article  Google Scholar 

  35. Cox BJ, Ekerdt JG. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol. 2012;118:584–8.

    Article  Google Scholar 

  36. Kubo S, Hashida K, Yamada T, Hishiyama S, Magara K, Kishino M, Ohno H, Hosoya S. A characteristic reaction of lignin in ionic liquids; glycelol type enol-ether as the primary decomposition product of β-O-4 model compound. J Wood Chem Technol. 2008;28:84–96.

    Article  Google Scholar 

  37. George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM. The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem. 2011;13:3375–85.

    Article  Google Scholar 

  38. Torr KM, Love KT, Çetinkol ÖP, Donaldson LA, George A, Holmes BM, Simmons BA. The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chem. 2012;14:778–87.

    Google Scholar 

  39. Argyropoulos D, Lignin MS, editors. Biotechnology in the pulp and paper industry, vol. 57. Berlin/Heidelberg: Springer; 1997. p. 127–58.

    Book  Google Scholar 

  40. Rinaldi R, Meine N, Vomstein J, Palkovits R, Schüth F. Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem. 2010;3:266–76.

    Article  Google Scholar 

  41. Li B, Filpponen I, Argyropoulos DS. Acidolysis of wood in ionic liquids. Ind Eng Chem Res. 2010;49:3126–36.

    Article  Google Scholar 

  42. Gazit OM, Katz A. Dialkylimidazolium ionic liquids hydrolyze cellulose under mild conditions. ChemSusChem. 2012;5:1542–8.

    Article  Google Scholar 

  43. Miyafuji H, Miyata K, Saka S, Ueda F, Mori M. Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci. 2009;55:215–9.

    Article  Google Scholar 

  44. Nakamura A, Miyafuji H, Saka S. Influence of reaction atmosphere on the liquefaction and depolymerization of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci. 2010;56:256–61.

    Article  Google Scholar 

  45. Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides 5. Solvents and reaction media for the modification of cellulose. BioResources. 2008;3:576–601.

    Google Scholar 

  46. Ebner G, Schiehser S, Potthast A, Rosenau T. Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett. 2008;49:7322–4.

    Article  Google Scholar 

  47. Karatzos S, Edye L, Wellard R. The undesirable acetylation of cellulose by the acetate ion of 1-ethyl-3-methylimidazolium acetate. Cellulose. 2012;19:307–12.

    Article  Google Scholar 

  48. Rodriguez H, Gurau G, Holbrey JD, Rogers RD. Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chem Commun. 2011;47:3222–4.

    Article  Google Scholar 

  49. King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpeläinen I. Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv. 2012;2:8020–6.

    Article  Google Scholar 

  50. Çetinkol ÖP, Dibble DC, Cheng G, Kent MS, Knierim B, Auer M, Wemmer DE, Pelton JG, Melnichenko YB, Ralph J, Simmons BA, Holmes BM. Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels. 2010;1:33–46.

    Article  Google Scholar 

  51. Gericke M, Liebert T, Seoud OAE, Heinze T. Tailored media for homogeneous cellulose chemistry: ionic liquid/Co-solvent mixtures. Macromol Mater Eng. 2011;296:483–93.

    Article  Google Scholar 

  52. Rinaldi R. Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun. 2011;47:511–3.

    Article  Google Scholar 

  53. Qu C, Kishimoto T, Hamada T, Nakajima N. Dissolution and acetylation of ball-milled lignocellulosic biomass in ionic liquids at room temperature: application to nuclear magnetic resonance analysis of cell-wall components. Holzforschung. 2012;67:25–32.

    Google Scholar 

  54. Xie H, Shen H, Gong Z, Wang Q, Zhao ZK, Bai F. Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone-ionic liquid solution for microbial lipid production. Green Chem. 2012;14:1202–10.

    Article  Google Scholar 

  55. Zhang Z, O’Hara IM, Doherty WOS. Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Green Chem. 2013;15:431–8.

    Article  Google Scholar 

  56. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem. 2011;13:2489–99.

    Article  Google Scholar 

  57. Zhang Y, Du H, Qian X, Chen EY. Ionic liquid-water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuel. 2010;24:2410–7.

    Article  Google Scholar 

  58. Fu D, Mazza G. Aqueous ionic liquid pretreatment of straw. Bioresour Technol. 2011;102:7008–11.

    Article  Google Scholar 

  59. Zoia L, King AWT, Argyropoulos DS. Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. J Agric Food Chem. 2011;59:829–38.

    Article  Google Scholar 

  60. Casas A, Alonso MV, Oliet M, Rojo E, Rodríguez F. FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. J Chem Technol Biotechnol. 2012;87:472–80.

    Article  Google Scholar 

  61. Emmel A, Mathias AL, Wypych F, Ramos LP. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol. 2003;86:105–15.

    Article  Google Scholar 

  62. Cantow MJR, editor. Polymer fractionation. New York: Academic; 1967. p. 527.

    Google Scholar 

  63. Yanagisawa M, Shibata I, Isogai A. SEC-MALLS analysis of softwood kraft pulp using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose. 2005;12:151–8.

    Article  Google Scholar 

  64. Schult T, Hjerde T, Optun OI, Kleppe PJ, Moe S. Characterization of cellulose by SEC-MALLS. Cellulose. 2002;9:149–58.

    Article  Google Scholar 

  65. Jacobs A, Dahlman O. Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biomacromolecules. 2001;2:894–905.

    Article  Google Scholar 

  66. Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H. Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym. 2002;48:29–39.

    Article  Google Scholar 

  67. Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS. Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem. 2006;54:5939–47.

    Article  Google Scholar 

  68. Lateef H, Grimes S, Kewcharoenwong P, Feinberg B. Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste. J Chem Technol Biotechnol. 2009;84:1818–27.

    Article  Google Scholar 

  69. Lawoko M, Henriksson G, Gellerstedt G. Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung. 2006;60:156–61.

    Google Scholar 

  70. Åkerholm M, Salmen L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer. 2001;42:963–9.

    Article  Google Scholar 

  71. Stevanic J, Salmén L. Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung. 2009;63:497–503.

    Article  Google Scholar 

  72. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc. 2004;36:23–40.

    Article  Google Scholar 

  73. Ebringerova A, Hromadkova Z, Hribalova V, Xuc C, Holmbom B, Sundberg A, Willför S. Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. Int J Biol Macromol. 2008;42:1–5.

    Article  Google Scholar 

  74. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules. 2004;5:266–8.

    Article  Google Scholar 

  75. Dence CW, Lin SY, editors. Methods in lignin chemistry. Heidelberg/Berlin: Springer; 1992. p. 578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris S. Argyropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leskinen, T., King, A.W.T., Argyropoulos, D.S. (2014). Fractionation of Lignocellulosic Materials with Ionic Liquids. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_6

Download citation

Publish with us

Policies and ethics