Skip to main content

Design of Ionic Liquids for Cellulose Dissolution

  • Chapter
  • First Online:
  • 2053 Accesses

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

Cellulose consists of linear glucose polymer chains that form a very tight hydrogen-bonded supramolecular structure making it highly resistant to enzymatic degradation. The ionic liquid, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), has been found to dissolve cellulose and the regenerated cellulose from the IL solution is less crystalline. To design ionic liquids that dissolve cellulose, Kamlet-Abboud-Taft β-values can be used as a solvent indicator. Amino acid anions have strong interactions between hydroxyl groups in the cellulose molecule: N,N-diethyl,N-methyl,N-(2-methoxy)ethylammonium alanate ([N221(ME)][Ala]) thus they are studied in this chapter for cellulose dissolution. Addition of an anti-solvent like water or ethanol to the cellulose/IL solution caused precipitation of cellulose dissolved and the structure of the regenerated cellulose to change to a disordered form. Crystal form of the regenerated cellulose depends on the dissolution solvent; the disordered chain region seems to increase in the order of [N221(ME)][Ala] < [C2mim][OAc] < [C2mim][(EtO)2PO2] < [C2mim]Cl. On the other hand, the order of degree of polymerization of the cellulose is [N221(ME)][Ala] > [C2mim][OAc] > [C2mim][(EtO)2PO2] > [C2mim]Cl. Treatment with [N221(ME)][Ala] is therefore much more suitable to use in preparing regenerated cellulose fibers than other commonly used ionic liquids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Libert T. Chapter 1: Cellulose solvents-remarkable history, bright future. In: Liebert T, Heinz TJ, Edgar KJ, editors. Cellulose solvent: for analysis, shaping and chemical modification, ACS symposium series, vol. 1033. Washington, DC: American Chemical Society; 2010. p. 3–54.

    Chapter  Google Scholar 

  2. Hendriksson M, Berglund LA, Isaksson P, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules. 2008;9:1579–85.

    Article  Google Scholar 

  3. Pinkert A, Marsh KN, Pang S, et al. Ionic liquids and their interaction with cellulose. Chem Rev. 2009;109:6712–28.

    Article  Google Scholar 

  4. Klemm D, Heublein B, Fink H-P, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem. 2005;44:3358–93.

    Article  Google Scholar 

  5. Heinze T, Koschella A. Solvents applied in the field of cellulose chemistry: a mini review. Polimeros. 2005;15(2):84–90.

    Article  Google Scholar 

  6. Rosenau T, Potthast A, Sixta H, et al. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci. 2001;26:1763–837.

    Article  Google Scholar 

  7. (a) McCormick CL, Lichatowich DK. Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. Polym Sci Part B Polym Lett Ed. 1979;17:479–84; (b) Heinz T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci. 2005;5:520–25.

    Google Scholar 

  8. Hermanutz F, Gähr F, Uerdingen E, et al. New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp. 2008;262:23–7.

    Article  Google Scholar 

  9. Abe H, Fukaya Y, Ohno H. Fast and facile dissolution of cellulose with terabutylphosphonium hydroxide containing 40 wt% water. Chem Commun. 2012;48:11808–10.

    Article  Google Scholar 

  10. Fischer S, Leipner H, Thüemmler K, et al. Inorganic molten salts as solvents for cellulose. Cellulose. 2003;10:227–36.

    Article  Google Scholar 

  11. IL review: (a) Hallett JP, Welton T. Room temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev. 2011;111:3508–76; (b) Plaquevent J-C, Levillain J, Guillen F, et al. Ionic liquids: new targets and media for α-amino acid and peptide chemistry. Chem Rev. 2008;108:5035–60.

    Google Scholar 

  12. Reviews for enzymatic reactions in IL: (a) van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107:2757–85; (b) Itoh T. Chapter 1. In: Matsuda T, editor. Future directions in biocatalysis. Amsterdam: Elsevier Bioscience; 2007. p 3–20; (c) Lozano P. Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem. 2010;12:555–69.

    Google Scholar 

  13. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  Google Scholar 

  14. Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology. Chem Lett. 2009;38:2–7.

    Article  Google Scholar 

  15. Kamlet MJ, Abboud J-L, Taft RW. The solvatochromic comparison method. 6. The.pi.* scale of solvent polarities. J Am Chem Soc. 1977;99:6027–38.

    Article  Google Scholar 

  16. Reichardt C. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem. 2005;7:339–51.

    Article  Google Scholar 

  17. Fukaya Y, Hayashi K, Wada M, et al. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008;10:44–6.

    Article  Google Scholar 

  18. Abe M, Fukaya Y, Ohno H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem. 2010;12:1274–80.

    Article  Google Scholar 

  19. Bonhôte P, Dias A-P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.

    Article  Google Scholar 

  20. Lau RM, Sorgedrager MJ, Carrea G, et al. Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem. 2004;6:483–7.

    Article  Google Scholar 

  21. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  Google Scholar 

  22. Fukaya Y, Sugimoto A, Ohno H. Super solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formats. Biomacromolecules. 2006;7:3295–7.

    Article  Google Scholar 

  23. Remsing RC, Swatloski RP, Rogers RD, et al. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun. 2006;2006:1271–3.

    Article  Google Scholar 

  24. Ohira K, Abe Y, Suzuki K, et al. Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem. 2012;5:388–91.

    Article  Google Scholar 

  25. Notenboom V, Boraston AB, Kilburn DG, et al. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry. 2001;40:6248–56.

    Article  Google Scholar 

  26. Zou JY, Kleywegt GJ, Stahlberg J, et al. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7:1035–45.

    Article  Google Scholar 

  27. Ohno H, Fukumoto K. Amino acid ionic liquids. Acc Chem Res. 2007;40:1122–9.

    Article  Google Scholar 

  28. Gollapalli LE, Dale BE, Rivers DM. Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol. 2002;98(100):23–35.

    Article  Google Scholar 

  29. Bellesia G, Chundawat SPS, Langan P, et al. Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B. 2011;115:9782–8.

    Article  Google Scholar 

  30. Dadi AP, Varanasi S, Schall CA. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng. 2006;95:904–10.

    Article  Google Scholar 

  31. Zhao H, Baker GA, Cowins JV. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol Prog. 2011;26:127–33.

    Google Scholar 

  32. Kobayashi S, Kashiwa K, Kawasaki T, et al. Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc. 1991;113:3079.

    Article  Google Scholar 

  33. Mizuno M, Kachi S, Togawa E, et al. Structure of regenerated cellulose treated with ionic liquids and comparison of their enzymatic digestibility by purified cellulase components. Aust J Chem. 2012;65:1491–6.

    Article  Google Scholar 

  34. Rinaldi R. Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun. 2011;47:511–13.

    Article  Google Scholar 

  35. Tsukada Y, Iwamoto K, Itoh T, et al. Preparation of novel hydrophobic fluorine-substituted-alkyl sulfate ionic liquids and application as an efficient reaction medium for lipase-catalyzed reaction. Tetrahedron Lett. 2006;47:1801–4.

    Article  Google Scholar 

  36. Ohira K, Yoshida K, Itoh T, et al. Amino acid ionic liquid as an efficient cosolvent of dimethyl sulfoxide to realize cellulose dissolution at room temperature. Chem Lett. 2012;41:987–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Itoh, T. (2014). Design of Ionic Liquids for Cellulose Dissolution. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_4

Download citation

Publish with us

Policies and ethics