Skip to main content

Compatibility of Ionic Liquids with Enzymes

  • Chapter
  • First Online:
Book cover Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

The potential of ionic liquids as a green alternative to environmentally harmful volatile organic solvents has been well recognized. Being considered as “designer solvents”, ionic liquids have been used extensively in a wide range of applications including biotransformations. As compared to those in traditional organic solvents, enzyme performance in ionic liquids is showed enhance in their activity, enantioselectivity, stability, as well as their recoverability and recyclability. This chapter will cover the biocompatibility issue of ionic liquids with enzymes. The effects of ionic liquid properties on the enzymatic reactions and conformation of enzyme as well as methods for activation and stabilization of enzymes in ionic liquids will be described. In addition, the current attempts for rational design of biocompatible ionic liquids will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freemantle M. Designer solvents. Chem Eng News. 1998;76:32–7.

    Google Scholar 

  2. Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sour. 2009;194:601–9.

    Google Scholar 

  3. Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661:1–16.

    Google Scholar 

  4. Yue C, Fang D, Liu L, Yi T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq. 2011;163:99–121.

    Google Scholar 

  5. Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A. 2010;373:1–56.

    Google Scholar 

  6. Li Z, Jia Z, Luan Y, Mu T. Ionic liquids for synthesis of inorganic nanomaterials. Curr Opin Solid State Mater Sci. 2008;12:1–8.

    MATH  Google Scholar 

  7. Kubisa P. Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci. 2009;34:1333–47.

    Google Scholar 

  8. Berthod A, Ruiz-Ángel MJ, Carda-Broch S. Ionic liquids in separation techniques. J Chromatogr A. 2008;1184:6–18.

    Google Scholar 

  9. Vidal L, Riekkola M-L, Canals A. Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal Chim Acta. 2012;715:19–41.

    Google Scholar 

  10. Quijano G, Couvert A, Amrane A. Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol. 2010;101:8923–30.

    Google Scholar 

  11. Pei Y, Wang J, Wu K, Xuan X, Lu X. Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol. 2009;64:88–95.

    Google Scholar 

  12. Tonova K. Separation of poly- and disaccharides by biphasic systems based on ionic liquids. Sep Purif Technol. 2012;89:57–65.

    Google Scholar 

  13. Vancov T, Alston A-S, Brown T, McIntosh S. Use of ionic liquids in converting lignocellulosic material to biofuels. Renew Energy. 2012;45:1–6.

    Google Scholar 

  14. van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107:2757–85.

    Google Scholar 

  15. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids – advantages beyond green technology. Curr Opin Biotechnol. 2003;14:432–7.

    Google Scholar 

  16. Moniruzzaman M, Nakashima K, Kamiya N, Goto M. Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J. 2010;48:295–314.

    Google Scholar 

  17. SG C, JD H, V-M V, KR S, GJ L. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng. 2000;69:227–33.

    Google Scholar 

  18. Sheldon RA, Rantwijk F v, Lau RM. Biotransformations in ionic liquids: an overview. ACS Symp Ser. 2003;856:192–205.

    Google Scholar 

  19. Erbeldinger M, Mesiano AJ, Russell AJ. Enzymatic catalysis of formation of Z-Aspartame in ionic liquid – an alternative to enzymatic catalysis in organic solvents. Biotechnol Progr. 2001;16:1129–31.

    Google Scholar 

  20. Lau RM, Rantwijk F v, Seddon KR, Sheldon RA. Lipase-catalyzed reactions in ionic liquids. Org Lett. 2000;2:4189–91.

    Google Scholar 

  21. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ. Impact of ionic liquid physical properties on lipase activity and stability. JACS. 2003;125:4125–31.

    Google Scholar 

  22. Schöfer SH, Kaftzik N, Wasserscheid P, Kragl U. Enzyme catalysis in ionic liquids: lipase-catalysed kinetic resolution of 1-phenyl ethanol with improved enantioselectivity. Chem Commun. 2001;5:425–6.

    Google Scholar 

  23. Zhao H, Luo RG, Malhotra SV. Kinetic study on the enzymatic resolution of homophenylalanine ester using ionic liquids. Biotechnol Progr. 2003;19:1016–18.

    Google Scholar 

  24. Park S, Kazlauskas RJ. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem. 2001;66:8395–401.

    Google Scholar 

  25. Eckstein M, Villela FM, Liese A, Kragl U. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem Commun. 2004;10:1084–5.

    Google Scholar 

  26. Lozano P, Diego T g, Guegan J-P, Vaultier M, Iborra JL. Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng. 2001;75:563–9.

    Google Scholar 

  27. Persson M, Bornscheuer UT. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J Mol Catal B: Enzym. 2003;22:21–7.

    Google Scholar 

  28. Zhao H, Malhotra SV. Enzymatic resolution of amino acid esters using ionic liquid N-ethyl pyridinium trifluoroacetate. Biotechnol Lett. 2002;24:1257–9.

    Google Scholar 

  29. Kaftzik N, Wasserscheid P, Kragl U. Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org Process Res Dev. 2002;6:553–7.

    Google Scholar 

  30. Laszlo JA, Compton DL. Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. J Mol Catal B: Enzym. 2002;18:109–20.

    Google Scholar 

  31. Hinckley G, Mozhaev VV, Budde C, Khmelnitsky YL. Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol Lett. 2002;24:2083–7.

    Google Scholar 

  32. Howarth J, James P, Dai J. Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett. 2001;42:7517–19.

    Google Scholar 

  33. Klembt S, Dreyer S, Eckstein M, Kragl U. Biocatalytic reactions in ionic liquids. In: Wasserscheid P, Welton T, (eds). Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA. 2008;641–61.

    Google Scholar 

  34. Lozano P. Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem. 2010;12:555–69.

    Google Scholar 

  35. Eckstein M, Villela Filho M, Liese A, Kragl U. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem Commun. 2004:1084–5.

    Google Scholar 

  36. Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN. Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev. 2012;41:4966–95.

    Google Scholar 

  37. Miyako E, Maruyama T, Kamiya N, Goto M. Enzyme-facilitated enantioselective transport of (S)-ibuprofen through a supported liquid membrane based on ionic liquids. Chem Commun. 2003;0:2926–7.

    Google Scholar 

  38. Fehér E, Illeová V, Kelemen-Horváth I, Bélafi-Bakó K, Polakovič M, Gubicza L. Enzymatic production of isoamyl acetate in an ionic liquid–alcohol biphasic system. J Mol Catal B: Enzym. 2008;50:28–32.

    Google Scholar 

  39. Lozano P, De Diego T, Sauer T, Vaultier M, Gmouh S, Iborra JL. On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. J Supercrit Fluids. 2007;40:93–100.

    Google Scholar 

  40. Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquids. Curr Opin Biotechnol. 2002;13:565–71.

    Google Scholar 

  41. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR. Biocatalysis in ionic liquids. Green Chem. 2002;4:147–51.

    Google Scholar 

  42. van Rantwijk F, Madeira Lau R, Sheldon RA. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 2003;21:131–8.

    Google Scholar 

  43. Zhao H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B: Enzym. 2005;37:16–25.

    Google Scholar 

  44. Zhao H, Campbell SM, Jackson L, Song Z, Olubajo O. Hofmeister series of ionic liquids: kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester. Tetrahedron: Asymmetry. 2006;17:377–83.

    Google Scholar 

  45. Zhao H, Olubajo O, Song Z, Sims AL, Person TE, Lawal RA, Holley LA. Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorg Chem. 2006;34:15–25.

    Google Scholar 

  46. Yang Z. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol. 2009;144:12–22.

    Google Scholar 

  47. Naushad M, Alothman ZA, Khan AB, Ali M. Effect of ionic liquid on activity, stability, and structure of enzymes: a review. Int J Biol Macromol. 2012;51:555–60.

    Google Scholar 

  48. Tavares APM, Rodriguez O, Macedo EA. Ionic liquids as alternative co-solvents for laccase: study of enzyme activity and stability. Biotechnol Bioeng. 2008;101:201–7.

    Google Scholar 

  49. Lee SH, Ha SH, Lee SB, Koo Y-M. Adverse effect of chloride impurities on lipase-catalyzed transesterifications in ionic liquids. Biotechnol Lett. 2006;28:1335–9.

    Google Scholar 

  50. Vrbka L, Jungwirth P, Bauduin P, Touraud D, Kunz W. Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions. J Phys Chem B. 2006;110:7036–43.

    Google Scholar 

  51. Reichardt C. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem. 2005;7:339–51.

    Google Scholar 

  52. Ab Rani MA, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH, Hallett JP, Hunt PA, Niedermeyer H, Perez-Arlandis JM, Schrems M, Welton T, Wilding R. Understanding the polarity of ionic liquids. Phys Chem Chem Phys. 2011;13:16831–40.

    Google Scholar 

  53. Jessop PG, Jessop DA, Fu D, Phan L. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 2012;14:1245–59.

    Google Scholar 

  54. Carmichael AJ, Seddon KR. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem. 2000;13:591–5.

    Google Scholar 

  55. Zhao H. Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol. 2010;85:891–907.

    Google Scholar 

  56. Greaves TL, Drummond CJ. Ionic liquids as amphiphile self-assembly media. Chem Soc Rev. 2008;37:1709–26.

    Google Scholar 

  57. Tariq M, Freire MG, Saramago B, Coutinho JAP, Lopes JNC, Rebelo LPN. Surface tension of ionic liquids and ionic liquid solutions. Chem Soc Rev. 2012;41:829–68.

    Google Scholar 

  58. Lou W-Y, Zong M-H. Efficient kinetic resolution of (R, S)-1-trimethylsilylethanol via lipase-mediated enantioselective acylation in ionic liquids. Chirality. 2006;18:814–21.

    Google Scholar 

  59. Irimescu R, Kato K. Investigation of ionic liquids as reaction media for enzymatic enantioselective acylation of amines. J Mol Catal B: Enzym. 2004;30:189–94.

    Google Scholar 

  60. Zhao H, Baker GA, Song Z, Olubajo O, Zanders L, Campbell SM. Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J Mol Catal B: Enzym. 2009;57:149–57.

    Google Scholar 

  61. Lau RM, Sorgedrager MJ, Carrea G, Van Rantwijk F, Secundo F, Sheldon RA. Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem. 2004;6:483–7.

    Google Scholar 

  62. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004;20:11594–9.

    Google Scholar 

  63. Eker B, Asuri P, Murugesan S, Linhardt R, Dordick J. Enzyme–carbon nanotube conjugates in room-temperature ionic liquids. Appl Biochem Biotechnol. 2007;143:153–63.

    Google Scholar 

  64. Shah S, Solanki K, Gupta M. Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J. 2007;1:30.

    Google Scholar 

  65. Wang S-F, Chen T, Zhang Z-L, Shen X-C, Lu Z-X, Pang D-W, Wong K-Y. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir. 2005;21:9260–6.

    Google Scholar 

  66. Wang S-F, Chen T, Zhang Z-L, Pang D-W, Wong K-Y. Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochem Commun. 2007;9:1709–14.

    Google Scholar 

  67. Brusova Z, Gorton L, Magner E. Comment on “direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids”. Langmuir. 2006;22:11453–5.

    Google Scholar 

  68. Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H. Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B: Enzym. 2009;58:103–9.

    Google Scholar 

  69. Reetz M. Practical protocols for lipase immobilization via sol-gel techniques. In: Guisan J (ed) Immobilization of Enzymes and Cells. Methods in Biotechnology. Humana Press. 2006;22:65–76.

    Google Scholar 

  70. Campás M, Marty J-L. Encapsulation of enzymes using polymers and sol-gel techniques. In: Guisan J (ed) Immobilization of Enzymes and Cells. Methods in Biotechnology. Humana Press; 2006;22:77–85.

    Google Scholar 

  71. Lee SH, Doan TTN, Ha SH, Koo Y-M. Using ionic liquids to stabilize lipase within sol–gel derived silica. J Mol Catal B: Enzym. 2007;45:57–61.

    Google Scholar 

  72. Lee SH, Doan TTN, Ha SH, Chang W-J, Koo Y-M. Influence of ionic liquids as additives on sol–gel immobilized lipase. J Mol Catal B: Enzym. 2007;47:129–34.

    Google Scholar 

  73. Nakashima K, Kamiya N, Koda D, Maruyama T, Goto M. Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Org Biomol Chem. 2009;7:2353–8.

    Google Scholar 

  74. Habeeb AFSA. Preparation of enzymically active, water-insoluble derivatives of trypsin. Arch Biochem Biophys. 1967;119:264–8.

    Google Scholar 

  75. Jansen EF, Olson AC. Properties and enzymatic activities of papain insolubilized with glutaraldehyde. Arch Biochem Biophys. 1969;129:221–7.

    Google Scholar 

  76. Quiocho FA, Richards FM. Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A. PNAS. 1964;52:833–9.

    Google Scholar 

  77. St. Clair NL, Navia MA. Cross-linked enzyme crystals as robust biocatalysts. JACS. 1992;114:7314–16.

    Google Scholar 

  78. Margolin AL, Navia MA. Protein crystals as novel catalytic materials. Angew Chem Int Ed. 2001;40:2204–22.

    Google Scholar 

  79. Cao L, Langen L v, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14:387–94.

    Google Scholar 

  80. Sheldon R, Schoevaart R, Langen L. Cross-linked enzyme aggregates. In: Guisan J (ed) Immobilization of Enzymes and Cells. Methods in Biotechnology. Humana Press; 2006;22:31–45.

    Google Scholar 

  81. Sheldon RA, Schoevaart R, Van Langen LM. Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform. 2005;23:141–7.

    Google Scholar 

  82. Cao L, van Langen LM, van Rantwijk F, Sheldon RA. Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics. J Mol Catal B: Enzym. 2001;11:665–70.

    Google Scholar 

  83. Toral AR, de los Ríos AP, Hernández FJ, Janssen MHA, Schoevaart R, van Rantwijk F, Sheldon RA. Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol. 2007;40:1095–9.

    Google Scholar 

  84. Shah S, Gupta MN. Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett. 2007;17:921–4.

    Google Scholar 

  85. Nakashima K, Maruyama T, Kamiya N, Goto M. Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin. Org Biomol Chem. 2006;4:3462–7.

    Google Scholar 

  86. Maruyama T, Nagasawa S, Goto M. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Lett. 2002;24:1341–5.

    Google Scholar 

  87. Laszlo JA, Compton DL. α-Chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol Bioeng. 2001;75:181–6.

    Google Scholar 

  88. Woodward CA, Kaufman EN. Enzymatic catalysis in organic solvents: polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene. Biotechnol Bioeng. 1996;52:423–8.

    Google Scholar 

  89. Ohno H, Suzuki C, Fukumoto K, Yoshizawa M, Fujita K. Electron transfer process of poly(ethylene oxide)-modified cytochrome c in imidazolium type ionic liquid. Chem Lett. 2003;32:450–1.

    Google Scholar 

  90. Nakashima K, Maruyama T, Kamiya N, Goto M. Comb-shaped poly(ethylene glycol)-modified subtilisin Carlsberg is soluble and highly active in ionic liquids. Chem Commun. 2005;0:4297–9.

    Google Scholar 

  91. Kodera Y, Tanaka H, Matsushima A, Inada Y. Chemical modification of L-asparaginase with a comb-shaped copolymer of polyethylene glycol derivative and maleic anhydride. Biochem Biophys Res Commun. 1992;184:144–8.

    Google Scholar 

  92. Kazunori N, Jun O, Tatsuo M, Noriho K, Masahiro G. Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol). Sci Technol Adv Mater. 2006;7:692.

    Google Scholar 

  93. Partridge J, Halling PJ, Moore DB. Practical route to high activity enzyme preparations for synthesis in organic media. Chem Commun. 1998;0:841–2.

    Google Scholar 

  94. Theppakorn T, Kanasawud P, Halling P. Activity of immobilized papain dehydrated by n-propanol in low-water media. Biotechnol Lett. 2004;26:133–6.

    Google Scholar 

  95. Roy I, Gupta MN. Preparation of highly active α-chymotrypsin for catalysis in organic media. Bioorg Med Chem Lett. 2004;14:2191–3.

    Google Scholar 

  96. Shah S, Gupta MN. Obtaining high transesterification activity for subtilisin in ionic liquids. Biochim Biophys Acta. 2007;1770:94–8.

    Google Scholar 

  97. Qiu Z, Texter J. Ionic liquids in microemulsions. Curr Opin Colloid Interface Sci. 2008;13:252–62.

    Google Scholar 

  98. Moniruzzaman M, Kamiya N, Nakashima K, Goto M. Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem. 2008;10:497–500.

    Google Scholar 

  99. Zhou G-P, Zhang Y, Huang X-R, Shi C-H, Liu W-F, Li Y-Z, Qu Y-B, Gao P-J. Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion. Colloids Surf B. 2008;66:146–9.

    Google Scholar 

  100. Pavlidis IV, Gournis D, Papadopoulos GK, Stamatis H. Lipases in water-in-ionic liquid microemulsions: structural and activity studies. J Mol Catal B: Enzym. 2009;60:50–6.

    Google Scholar 

  101. Lee JK, Kim M-J. Ionic liquid-coated enzyme for biocatalysis in organic solvent. J Org Chem. 2002;67:6845–7.

    Google Scholar 

  102. Itoh T, Han S, Matsushita Y, Hayase S. Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem. 2004;6:437–9.

    Google Scholar 

  103. Itoh T, Matsushita Y, Abe Y, Han S-h, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG–alkyl sulfate ionic liquid. Chem Eur J. 2006;12:9228–37.

    Google Scholar 

  104. Dang DT, Ha SH, Lee S-M, Chang W-J, Koo Y-M. Enhanced activity and stability of ionic liquid-pretreated lipase. J Mol Catal B: Enzym. 2007;45:118–21.

    Google Scholar 

  105. Guo Z, Chen B, Lopez Murillo R, Tan T, Xu X. Functional dependency of structures of ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis? Org Biomol Chem. 2006;4:2772–6.

    Google Scholar 

  106. Das D, Dasgupta A, Das PK. Improved activity of horseradish peroxidase (HRP) in ‘specifically designed’ ionic liquid. Tetrahedron Lett. 2007;48:5635–9.

    Google Scholar 

  107. Vafiadi C, Topakas E, Nahmias VR, Faulds CB, Christakopoulos P. Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J Biotechnol. 2009;139:124–9.

    Google Scholar 

  108. Moniruzzaman M, Kamiya N, Goto M. Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem. 2010;8:2887–99.

    Google Scholar 

  109. Bihari M, Russell TP, Hoagland DA. Dissolution and dissolved state of cytochrome c in a neat, hydrophilic ionic liquid. Biomacromolecules. 2010;11:2944–8.

    Google Scholar 

  110. Geng F, Zheng L, Yu L, Li G, Tung C. Interaction of bovine serum albumin and long-chain imidazolium ionic liquid measured by fluorescence spectra and surface tension. Process Biochem. 2010;45:306–11.

    Google Scholar 

  111. Yan H, Wu J, Dai G, Zhong A, Chen H, Yang J, Han D. Interaction mechanisms of ionic liquids [Cnmim]Br (n = 4, 6, 8, 10) with bovine serum albumin. J Lumin. 2012;132:622–8.

    Google Scholar 

  112. Akdogan Y, Hinderberger D. Solvent-induced protein refolding at low temperatures. J Phys Chem B. 2011;115:15422–9.

    Google Scholar 

  113. Bekhouche M, Blum LJ, Doumèche B. Contribution of dynamic and static quenchers for the study of protein conformation in ionic liquids by steady-state fluorescence spectroscopy. J Phys Chem B. 2011;116:413–23.

    Google Scholar 

  114. McCarty TA, Page PM, Baker GA, Bright FV. Behavior of acrylodan-labeled human serum albumin dissolved in ionic liquids. Ind Eng Chem Res. 2007;47:560–9.

    Google Scholar 

  115. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL. Understanding structure − stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules. 2005;6:1457–64.

    Google Scholar 

  116. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL. Fluorescence and CD spectroscopic analysis of the α-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Bioeng. 2004;88:916–24.

    Google Scholar 

  117. Lin Huang J, Noss ME, Schmidt KM, Murray L, Bunagan MR. The effect of neat ionic liquid on the folding of short peptides. Chem Commun. 2011;47:8007–9.

    Google Scholar 

  118. Baker SN, McCleskey TM, Pandey S, Baker GA. Fluorescence studies of protein thermostability in ionic liquids. Chem Commun. 2004;0:940–1.

    Google Scholar 

  119. Page TA, Kraut ND, Page PM, Baker GA, Bright FV. Dynamics of loop 1 of domain I in human serum albumin when dissolved in ionic liquids. J Phys Chem B. 2009;113:12825–30.

    Google Scholar 

  120. Shu Y, Liu M, Chen S, Chen X, Wang J. New insight into molecular interactions of imidazolium ionic liquids with bovine serum albumin. J Phys Chem B. 2011;115:12306–14.

    Google Scholar 

  121. Sasmal DK, Mondal T, Sen Mojumdar S, Choudhury A, Banerjee R, Bhattacharyya K. An FCS study of unfolding and refolding of CPM-labeled human serum albumin: role of ionic liquid. J Phys Chem B. 2011;115:13075–83.

    Google Scholar 

  122. Abe Y, Yoshiyama K, Yagi Y, Hayase S, Kawatsura M, Itoh T. A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction. Green Chem. 2010;12:1976–80.

    Google Scholar 

  123. Turner EA, Pye CC, Singer RD. Use of ab initio calculations toward the rational design of room temperature ionic liquids. Russ J Phys Chem A. 2003;107:2277–88.

    Google Scholar 

  124. Coutinho JAP, Carvalho PJ, Oliveira NMC. Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Adv. 2012;2:7322–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Mo Koo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mai, N.L., Koo, YM. (2014). Compatibility of Ionic Liquids with Enzymes. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_10

Download citation

Publish with us

Policies and ethics