Skip to main content

Fundamentals of Ionic Liquids

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

Ionic liquids (ILs) are composed of cations and anions that exist as liquids at relatively low temperatures (<100 °C). They have many attractive properties, such as chemical and thermal stability, low flammability, and immeasurably low vapor pressures. This review provides a summary of the fundamental structural features of ionic liquids, the physical properties, and their applications as solvents for biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie H, King A, Kilpelainen I, et al. Thorough chemical modification of wood-based lingocellulosic materials in ionic liquids. Biomacromolecules. 2007;8:3740–8.

    Google Scholar 

  2. Dupont J, de Souza RF, Suarez PAZ. Ionic liquids (molten salt) phase organ metallic catalysis. Chem Rev. 2002;102:3667–91.

    Google Scholar 

  3. Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–83.

    Google Scholar 

  4. Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.

    Google Scholar 

  5. Hagiwara H, Sugawara Y, Isobe K, et al. Immobilization of Pd (OAc)2 in ionic liquid on silica: application to sustainable Mizoroki–Heck reaction. Org Lett. 2004;6:2325–8.

    Google Scholar 

  6. Bosmann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun. 2001;7:2494–5.

    Google Scholar 

  7. Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006;51:5567–80.

    Google Scholar 

  8. Adams CJ, Earle MJ, Roberts G. Friedel-Crafts reactions in room temperature ionic liquids. Chem Commun. 1998;1998:2097–8.

    Google Scholar 

  9. Fischer T, Sethi A, Welton T, et al. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett. 1999;40:793–6.

    Google Scholar 

  10. Snedden P, Cooper AI, Scott K, et al. Cross-linked polymer-ionic liquid composite materials. Macromolecules. 2003;36:4549–56.

    Google Scholar 

  11. Gurkan BE, Fuente JCL, Mindrup EM, et al. Equimolar CO2 absorption by anion functionalized ionic liquids. J Am Chem Soc. 2010;132:2116–17.

    Google Scholar 

  12. Pickett J. Sustainable biofuels: prospects and challenge. London: The Royal Society; 2008.

    Google Scholar 

  13. Perlack RD, Wright LL, Turhollow AF, et al. Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge: U.S. Department of Energy and U.S. Department of Agriculture; 2005.

    Google Scholar 

  14. Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng. 2004;86:88–95.

    Google Scholar 

  15. Updegraff DM. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969;32:420–4.

    Google Scholar 

  16. Qian X, Ding SY, Nimlos MR, et al. Atomic and electronic structures of molecular crystalline cellulose I β: a first-principles investigation. Macromolecules. 2005;38:10580–9.

    Google Scholar 

  17. Hammer RB, Turbak AF. Abstracts of papers of the American Chemical Society 1977;173: 8–8.

    Google Scholar 

  18. McCormick CL, Dawsey TR. Preparation of cellulose derivatives via ring opening reaction with cyclic reagents in lithium chloride/N, N-dimethylacetamide. Macromolecules. 1990;23:3606–10.

    Google Scholar 

  19. Ciacco GT, Liebert TF, Frollini E, et al. Application of the solvent dimethylsulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of sisal cellulose. Cellulose. 2003;10:125–32.

    Google Scholar 

  20. Fink HP, Weigel P, Purz HJ, et al. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci. 2001;26:1473–524.

    Google Scholar 

  21. Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Prog Polym Sci. 2001;26:1689–762.

    Google Scholar 

  22. Xu AR, Wang JJ, Wang HY. Effects of an ionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem. 2010;12:268–75.

    Google Scholar 

  23. Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Google Scholar 

  24. Graenacher C. Cellulose solution. US Patent, 1943176; 1934.

    Google Scholar 

  25. Rogers RD. Materials science – reflections on ionic liquids. Nature. 2007;447:917–18.

    Google Scholar 

  26. Zhang SJ, Lu XM, Zhou Q, et al. Ionic liquids: physicochemical properties. Oxford: Elsevier; 2009.

    Google Scholar 

  27. Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tretrafluoroborate for electrolyte. J Fluor Chem. 2003;120:135–41.

    Google Scholar 

  28. MacFarlane DR, Sun J, Golding J, et al. High conductivity molten salts based on the imide ion. Electrochim Acta. 2000;45:1271–8.

    Google Scholar 

  29. Holbery JD, Reichert WM. Efficient, halide free synthesis of new, low cost ionic liquids: 1, 3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 2002;4:407–13.

    Google Scholar 

  30. Zhou YH, Roberston AJ, Hillhouse JH. Phosphonium and imidazolium slats and methods of their preparation. WO Patent 2004/016631; 2004.

    Google Scholar 

  31. Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines. J Electro Chem Soc. 2000;147:4168–72.

    Google Scholar 

  32. Zhang QG, Yang JZ, Lu XM, et al. Studies on an ionic liquid based on FeCl3 and its properties. Fluid Phase Equilibr. 2004;226:207–11.

    Google Scholar 

  33. Cull SG, Holbrey JD, Vargas-Mora V, et al. Room temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng. 2000;69:227–33.

    Google Scholar 

  34. Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-buthylimidazolium hexafluorophosphate, [Bmim][PF6]. Chem Phys Lett. 2005;402:375–9.

    Google Scholar 

  35. Wasserscheid P, Sesing M, Korth W. Hydrogensulfate and tetrakis (hydrogensufato) borate ionic liquids: synthesis and catalytic application in highly Bronsted-acidic systems for Friedel-Crafts alkylation. Green Chem. 2002;4:134–8.

    Google Scholar 

  36. Roger M. Electrochemical 497 process for producing ionic liquids. US Patent 2003/0094380A1; 2003.

    Google Scholar 

  37. Namboodiri VV, Varma RS. An improved preparation of 1, 3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett. 2002;43:5381–3.

    Google Scholar 

  38. Ding J, Armstrong DW. Chiral ionic liquids: synthesis and applications. Chirality. 2005;17:281–92.

    Google Scholar 

  39. Clare B, Sirwardana A, MacFalane DR. Synthesis, purification and characterization of ionic liquids. In: Kirchner B, editor. Ionic liquids. New York: Springer; 2009.

    Google Scholar 

  40. Baudequin C, Baudoux J, Levillain J, et al. Ionic liquids and chirality: opportunities and changelings. Tetrahedron Asymmetry. 2003;14:3081–3.

    Google Scholar 

  41. Kitazume T. Preparation of optically active ionic liquid of nicotiniumbis(trifluoro-methylsulfonyl) amides for solvents. US Patent 2001/0031875; 2001.

    Google Scholar 

  42. Scammells PJ, Scott JL, Singer RD. Ionic liquids: the neglected issues. Aust J Chem. 2005;58:155–69.

    Google Scholar 

  43. Dong K, Zhang SJ. Hydrogen bonds: a structure insight into ionic liquids. Chem Eur J. 2012;18:2748–61.

    Google Scholar 

  44. Chiappe C, Pieraccini D. Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem. 2005;18:275–97.

    Google Scholar 

  45. Farahani N, Gharagheizi F, Mirkhani SA, et al. Ionic liquids: prediction of melting point by molecular-based model. Thermochim Acta. 2012;549:17–34.

    Google Scholar 

  46. Aguirre CL, Cisternas LA, Valderrama JO. Melting-point estimation of ionic liquids by a group contribution method. Int J Thermophys. 2012;33:34–46.

    Google Scholar 

  47. Holbrey JD, Rogers RD. Melting points and phase diagrams. In: Wasserscheid P, editor. Ionic liquids in synthesis. New York: Wiley; 2003.

    Google Scholar 

  48. Cao Y, Wu J, Zhang J, et al. Room temperature ionic liquids (RTionic liquids): a new and versatile platform for cellulose processing and derivatization. Chem Eng J. 2009;147:13–21.

    Google Scholar 

  49. Ramesh LG, Coutinho JAP. A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibr. 2008;266:195–201.

    Google Scholar 

  50. Dzyuba S, Bartsch RA. Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem. 2002;3:161–6.

    Google Scholar 

  51. Lovelock KRJ, Cowling FN, Taylor AW. Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids. J Phys Chem B. 2010;114:4442–50.

    Google Scholar 

  52. Ge ML, Zhao RS, Yi YF, et al. Densities and viscosities of 1-butyl-3-methylimidazolium trifluoromethanesulfonate + H2O binary mixtures at T = (303.15 to 343.15) K. J Chem Eng Data. 2008;53:2408–11.

    Google Scholar 

  53. Kulkarni PS, Branco LC, Crespo JG, et al. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem Eur J. 2007;13:8478–88.

    Google Scholar 

  54. Seddon R, Stark A, Torres MJ. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem. 2000;72:2275–87.

    Google Scholar 

  55. Arce A, Rodil E, Soto A. Volumetric and viscosity study for the mixtures of 2-ethoxy-2-methylpropane, ethanol, and 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. J Chem Eng Data. 2006;51:1453–7.

    Google Scholar 

  56. Abbott AP. Application of hole theory to the viscosity of ionic and molecular liquids. Chem Phys Chem. 2004;5:1242–6.

    Google Scholar 

  57. Han C, Yu G, Wen L, et al. Data and QSPR study for viscosity of imidazolium-based ionic liquids. Fluid Phase Equilibr. 2011;300:95–104.

    Google Scholar 

  58. de Guzman J. Relation between fluidity and heat of fusion. Anales Soc Espan Fis Quim. 1913;11:353–62.

    Google Scholar 

  59. Reid RC, Prausnitz JM, Sherwood TK. The properties of gases and liquids. New York: McGraw-Hill; 1987.

    Google Scholar 

  60. Wang H, Gurau G, Rogers RD. Ionic liquid processing of cellulose. Chem Soc Rev. 2012;41:1519–37.

    Google Scholar 

  61. Fukayaa Y, Hayashia K, Wadab M, et al. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008;10:44–6.

    Google Scholar 

  62. Kilpeläinen I, Xie H, King A, et al. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007;55:9142–8.

    Google Scholar 

  63. Zhao H, Baker GA, Song Z, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008;10:696–705.

    Google Scholar 

  64. Ma M, Johnson KE. Proceedings of the ninth international symposium on Molten salts. Hussey CL, Newman DS, Mamantov G, Ito Y, et al. editors. Pennington: The Electrochemical Society; 1994. p. 94–13: 179–186.

    Google Scholar 

  65. Sun J, Forsyth M, Mac-Farlane DR. Room temperature molten salts based on the quaternary ammonium ion. J Phys Chem B. 1998;102:8858–64.

    Google Scholar 

  66. Gardas RL, Costa HF, Freire MG, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids. J Chem Eng Data. 2008;53:805–11.

    Google Scholar 

  67. Gardas RL, Freire MG, Carvalho PJ, et al. P F T measurements of imidazolium based ionic liquids. J Chem Eng Data. 2007;52:1881–8.

    Google Scholar 

  68. Ye CF, Shreeve JM. Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 2007;111:1456–61.

    Google Scholar 

  69. Del Sesto RE, Corley C, Robertson A, et al. Tetraalkylphosphonium-based ionic liquids. J Organomet Chem. 2005;690:2536–42.

    Google Scholar 

  70. Paduszyński K, Domanska UA. New group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure. Ind Eng Chem Res. 2012; 51:591–604.

    Google Scholar 

  71. Lazzús J. A group contribution method to predict ρ-T-P of ionic liquids. Chem Eng Commun. 2010;197:974–1015.

    Google Scholar 

  72. Xu WG, Li L, Ma XX, et al. Density, surface tension, and refractive index of ionic liquids homologue of 1-alkyl-3-methylimidazolium tetrafluoroborate [Cnmim][BF4] (n = 2,3,4,5,6). J Chem Eng Data. 2012;57:2177–84.

    Google Scholar 

  73. Ngo HL, LeCompte K, Hargens L, et al. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357:97–102.

    Google Scholar 

  74. Fox DM, Awad WH, Gilman JW, et al. Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem. 2003;5:724–7.

    Google Scholar 

  75. Fox DM, Gilman W, De Long HC, et al. TGA decomposition kinetics of 1-butyl-2, 3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn. 2005;37:900–5.

    Google Scholar 

  76. Fox DM, Gilman JW, Morgan AB, et al. Flammability and thermal analysis characterization of imidazolium-based ionic liquids. Ind Eng Chem Res. 2008;47:6327–32.

    Google Scholar 

  77. Singh MP, Singh RK, Chandra S. Thermal stability of ionic liquid in confined geometry. J Phys D Appl Phys. 2010;43:1–4.

    Google Scholar 

  78. Meine N, Benedito F, Rinaldi R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem. 2010;12:1711–14.

    Google Scholar 

  79. Domańska U, Pobudkowska A, Eckert F. Liquid–liquid equilibria in the binary systems (1, 3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate + hydrocarbons). Green Chem. 2006;8:268–76.

    Google Scholar 

  80. Grishina EP, Ramenskaya LM, Gruzdev MS. Water effect on physicochemical properties of 1-butyl-3-methylimidazolium based ionic liquids with inorganic anions. J Mol Liq. 2013;177:267–72.

    Google Scholar 

  81. Li WZ, Ju MT, Wang YN. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride. Carbohydr Polym. 2013;92:228–35.

    Google Scholar 

  82. Wendler F, Todi LN, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.

    Google Scholar 

  83. Liang R, Yang MR, Xuan XP. Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chin J Chem Eng. 2010;18:736–41.

    Google Scholar 

  84. Hu YF, Liu ZC, Xu CM, et al. The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev. 2011;40:3802–23.

    Google Scholar 

  85. Lucinda JAC, Ewa BŁ, Rafał BŁ. A new outlook on solubility of carbohydrates and sugar alcohols in ionic liquids. RSC Adv. 2012;2:1846–55.

    Google Scholar 

  86. King AWT, Asikkala J, Mutikainen I, et al. Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed. 2011;50:6301–5.

    Google Scholar 

  87. Abrani MA, Brandt A, Crowhurst L, et al. Understanding the polarity of ionic liquids. Phys Chem Chem Phys. 2011;13:16831–40.

    Google Scholar 

  88. Zhao H, Jones CIL, Baker GA, et al. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol. 2009;139:47–54.

    Google Scholar 

  89. Edgar KJ, Buchanan CM, Debenham JS, et al. Advances in cellulose ester performance and application. Prog Polym Sci. 2001;26:1605–88.

    Google Scholar 

  90. Cai T, Zhang HH, Guo QH, et al. Structure and properties of cellulose fibers from ionic liquids. J Appl Polym Sci. 2010;115:1047–53.

    Google Scholar 

  91. Rahatekar SS, Rasheed A, Jain R, et al. Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer. 2009;50:4577–83.

    Google Scholar 

  92. Fort DA, Remsing RC, Swatloski RP, et al. Can ionic liquids dissolve wood? Processing and analysis of lingocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 2007;9:63–9.

    Google Scholar 

  93. Brandt A, Hallett JP, Leak DJ, et al. The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem. 2010;12:672–9.

    Google Scholar 

  94. Brandt A, Ray MJ, To TQ, et al. Ionic liquid pretreatment of lingocellulosic biomass with ionic liquid-water mixtures. Green Chem. 2011;13:2489–99.

    Google Scholar 

  95. Padmanabhan S, Kim M, Blanch HW, et al. Solubility and rate of dissolution for miscanthus in hydrophilic ionic liquids. Fluid Phase Equilibr. 2011;309:89–96.

    Google Scholar 

  96. Doherty TV, Mora-Pale M, Foley SE, et al. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem. 2010;12:1967–75.

    Google Scholar 

  97. Pereiro AB, Verdía P, Tojo E, et al. Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J Chem Eng Data. 2007;52:377–80.

    Google Scholar 

  98. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free, 1,3-dialkylimidazlium formats. Biomacromolecules. 2006;7:3295–7.

    Google Scholar 

  99. Wu D, Wu B, Zhang YM, et al. Density, viscosity, refractive index and conductivity of 1-allyl-3-methylimidazolium chloride + water mixture. J Chem Eng Data. 2010;55:621–4.

    Google Scholar 

  100. Huddleston JG, Visser AE, Reichert WM, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.

    Google Scholar 

  101. Lee SH, Lee SB. The hilde brand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun. 2005;2005:3469–71.

    Google Scholar 

  102. Olivier-Bourbigou H, Magna L. Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A Chem. 2002;182–183:419–37.

    Google Scholar 

  103. Ohlin CA, Dyson PJ, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem Commun. 2004;2004:1070–1.

    Google Scholar 

  104. Berthod A, Ruiz-Angel M, Carda-Broch S. Ionic liquids in separation techniques. J Chromatogr A. 2008;1184:6–18.

    Google Scholar 

  105. Chen Y, Zhang YM, Ke FY, et al. Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer. 2011;52:481–8.

    Google Scholar 

  106. Domańska U, Laskowska M. Temperature and composition dependence of the density and viscosity of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate + 1-alcohols. J Chem Eng Data. 2009;54:2113–19.

    Google Scholar 

  107. Wu B, Reddy RG, Rogers RD. Novel ionic liquid thermal storage for solar thermal electric power system. Proceedings of solar forum, solar energy: the power to choose. Washington, DC; 2001.

    Google Scholar 

  108. Wang JY, Zhao FY, Liu RJ, et al. Thermophysical properties of 1-methyl-3-methylimidazoliumdimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate. J Chem Thermodyn. 2011;43:47–50.

    Google Scholar 

  109. Ann E, Visser W, Matthew R, et al. Characterization of hydrophilic and hydrophobic ionic liquids: alternatives to volatile organic compounds for liquid-liquid separations. Ionic liquids industrial applications to green chemistry. ACS Symp Ser. 2002;818:289–308.

    Google Scholar 

  110. Yokozeki A, Shiflett MB. Vapor–liquid equilibria of ammonia + ionic liquid mixtures. Appl Energy. 2007;84:1258–73.

    Google Scholar 

  111. Diogo JCF, Caetano FJP, Fareleira JMNA. Viscosity measurements of the ionic liquid trihexyl(tetradecyl)phosphoniumdicyanamide [P6,6,6,14][dca] using the vibrating wire technique. J Chem Eng Data. 2012;57:1015–25.

    Google Scholar 

  112. Aantharam PD, Constance AS, Sasidhar V. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotech. 2007;136–140:407–21.

    Google Scholar 

  113. Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol. 2009;100:2580–7.

    Google Scholar 

  114. Lee SH, Doherty TV, Linhardt Robert J, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng. 2009;102:1368–76.

    Google Scholar 

  115. Pu YP, Jiang N, Ragauskas AJ. Ionic liquid as a green solvent for lignin. J Wood Chem Technol. 2007;27:23–33.

    Google Scholar 

  116. Anantharam PD, Sasidhar V, Constance AS. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng. 2006;95:904–10.

    Google Scholar 

  117. D’Ippolito G, Dipasquale L, Vella FM, et al. Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy. 2010;35:2290–5.

    Google Scholar 

  118. Li Q, He YC, Xian M, et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate pretreatment. Bioresour Technol. 2009;100:3570–5.

    Google Scholar 

  119. Shill K, Padmanabhan S, Xin Q, et al. Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng. 2011;108:510–20.

    Google Scholar 

  120. Tan SSY, Macfarlane DR, Upfal J, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 2009;11:339–45.

    Google Scholar 

  121. Tan SY. Studies in bagasse fractionation using ionic liquids. PhD thesis, Monash University, Australia; 2009.

    Google Scholar 

  122. Jurgen V, Erdmenger T, Claudia H, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. 2009;11:417–24.

    Google Scholar 

  123. D’Andola G, Szarvas L, Massonne K et al. Ionic liquids for solubilizing polymers. WO 2008/043837; 2008.

    Google Scholar 

  124. Omar AES, Andreas K, Ludmila CF, et al. Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules. 2007;8:2629–47.

    Google Scholar 

  125. Thomas H, Katrin S, Susann B. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci. 2005;5:520–5.

    Google Scholar 

  126. Luo HM, Li YQ, Zhou CR. Study on the dissolubility of the cellulose in the functionalized ionic liquid. Polym Mater Sci Eng. 2005;21:233–5.

    Google Scholar 

  127. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2006;8:301–6.

    Google Scholar 

  128. Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–55.

    Google Scholar 

  129. Phillips DM, Drummy LF, Conrady DG, et al. Dissolution and regeneration of Bombyxmori silk fibroin using ionic liquids. J Am Chem Soc. 2004;126:14350–1.

    Google Scholar 

  130. Sun P, Liu ZT, Liu ZW. Particles from bird feather: a novel application of an ionic liquid and waste resource. J Hazard Mater. 2009;170:786–90.

    Google Scholar 

  131. Xie HB, Zhang SB, Li SH. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006;8:630–3.

    Google Scholar 

  132. Zhang H, Wu J, Zhang J, et al. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005;38:8272–7.

    Google Scholar 

  133. Wang XJ, Li HQ, Cao Y, et al. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol. 2011;102:7959–65.

    Google Scholar 

  134. Hou XD, Li N, Zong MH. Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids − water mixtures. ACS Sustain Chem Eng. 2013;1:519–26.

    Google Scholar 

  135. Goshadrou A, Karimi K, Lefsrud M. Characterization of ionic liquid pretreated as pen wood using semi-quantitative methods for ethanol production. Carbohydr Polym. 2013;96:440–9.

    Google Scholar 

  136. Qiu ZH, Aita GM. Pretreatment of energy cane bagasse with recycled ionic liquid for enzymatic hydrolysis. Bioresour Technol. 2013;129:532–7.

    Google Scholar 

  137. FitzPatrick M, Champagne P, Cunningham MF, et al. Application of optical microscopy as a screening technique for cellulose and lignin solvent systems. Can J Chem Eng. 2012;90:1142–52.

    Google Scholar 

Download references

Acknowledgements

This research was supported financially by the Projects of International Cooperation and Exchanges NSFC (No. 21210006), Natural Science Foundation of Beijing of China (No.2131005, No.2132055) and National High Technology Research and Development Program of China (863 Program) (No. 2012AA063001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingmei Lu or Suojiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, J., Zhou, Q., Wang, X., Lu, X., Zhang, S. (2014). Fundamentals of Ionic Liquids. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_1

Download citation

Publish with us

Policies and ethics