Skip to main content

Introduction to Direct Alcohol Fuel Cells

  • Chapter
  • First Online:
Book cover Direct Alcohol Fuel Cells

Abstract

Fuel cells are strongly linked to renewable energies, particularly to the so-called “Hydrogen Economy”. For decades the development of fuel cells able to convert hydrogen and oxygen in electrical energy with water as unique byproduct has motivated huge activity in fundamental and applied electrochemistry.

In this chapter we introduce the concept of methanol economy and discuss its status and perspectives. To be a reality the methanol and other alcohol economies depend on the development of alcohol feed fuel cells, whose components, operation modes and general performance are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Toe is defined as the amount of energy released when one tonne of crude oil is burned. It is equivalent to 41.87 GJ or 11.63 MWh.

  2. 2.

    French economist and sociologist born in 1940, author of “Degrowth Economics”.

  3. 3.

    This concept was introduced in 1975 by M. K. Hubbert, who claims that the fossil era (coal, oil, gas) is just a “blink of eyes between the first and second solar civilizations”.

  4. 4.

    In this book we use both definitions for MEA, according to the authors preferences.

  5. 5.

    The anode GDL in a DAFC should be named DL because the alcohol is usually fed as an aqueous solution.

References

  1. BP Statistical Review of World Energy (2011). Available in: bp.com/statisticalreview

  2. The BP Energy Outlook 2030 (2013). Available in: http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/BP_World_Energy_Outlook_booklet_2013.pdf

  3. Shell energy scenarios to 2050 (2008). Available in: http://s08.static-shell.com/content/dam/shell/static/future-energy/downloads/shell-scenarios/shell-energy-scenarios2050.pdf

  4. Rühl C, Appleby P, Fennema J, Naumov A, Schaffer ME (2012) Economic development and the demand for energy: a historical perspective on the next 20 years. Energy Policy 50:109–116, Smith Bits S.T.A.T.S

    Article  Google Scholar 

  5. Crutzen P, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  6. Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Google Scholar 

  7. Winter CJ (2000) In: Winter C-J (ed) On energies-of-change, the hydrogen solution: policy, business, and technology decisions ahead. Gerling Akademie Verlag, Munich

    Google Scholar 

  8. Lamy C, Léger JM, Srinavasan S (2001) Direct methanol fuel cells: from a twentieth century electrochemical’s dream to a twenty-first century emerging technology. In: Bockris JO’M et al (eds) Modern aspect of electrochemistry, vol 34. Kluwer/Plenum, New York, pp 53–118

    Chapter  Google Scholar 

  9. Reid J (1903) Process of generating electricity. US Patent 736,016

    Google Scholar 

  10. Kordesch KV, Simader GR (1995) Environmental impact of fuel cell technology. Chem Rev 95:191–207

    Article  CAS  Google Scholar 

  11. Miiller E (1922) Die elektrochemische oxydation organischer verbindungen. Z Elektrochem 28:101–106

    Google Scholar 

  12. Tanaka S (1929) Z Elektrochem 35:38–42

    CAS  Google Scholar 

  13. Kordesch K, Marko A (1950) Oesterr Chem Ztg 52:125–130

    Google Scholar 

  14. Justi EW, Winsel AW (1955) British Patent 821,688

    Google Scholar 

  15. Wynn JE (1960) Proc Ann Power Sources Conf 14:52–57

    Google Scholar 

  16. Hunger HE (1960) Proc Ann Power Sources Conf 14:55–59

    CAS  Google Scholar 

  17. Vielstich W (1965) In: Baker BS (ed) Hydrocarbon fuel cell technology. Academic, New York, p 79

    Google Scholar 

  18. Koscher GA, Kordesch KV (2003) Alkaline methanol–air system. J Solid State Electrochem 7:632–636

    Article  CAS  Google Scholar 

  19. Murray JN, Grimes PG (1963) Fuel cells. American Institute of Chemical Engineers, New York, pp 57

    Google Scholar 

  20. McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol-air fuel cells for road transportation. J Power Sources 83:15–31

    Article  CAS  Google Scholar 

  21. Aricó AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Liu H, Zhang J (eds) Electrocatalysis for direct methanol fuel cells. Wiley, Weinheim, pp 1–78

    Chapter  Google Scholar 

  22. Cathro KJ (1969) The oxidation of water-soluble organic fuels using platinum-tin catalysts. J Electrochem Soc 116:1608–1611

    Article  CAS  Google Scholar 

  23. Janssen MMP, Moolhuysen J (1976) Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrocodeposition and by alloying. Electrochim Acta 21:861–868

    Article  CAS  Google Scholar 

  24. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283

    Article  CAS  Google Scholar 

  25. Cameron DS, Hards GA, Harrison B, Potter RJ (1987) Direct methanol fuel cells. Recent developments in the search for improved performance. Platinum Metals Rev 31:173–181

    CAS  Google Scholar 

  26. Apanel G, Johnson E (2004) Direct methanol fuel cells – ready to go commercial? Fuel Cells Bull 2004:12–17

    Article  Google Scholar 

  27. Surampudi L, Narayanan SI, Vamos F, Frank H, Halpert G, LaConti A, Kosek J, Surya Prakash GK, Olah GA (1994) Advances in direct oxidation methanol fuel cells. J Power Sources 47:377–385

    Article  CAS  Google Scholar 

  28. Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169:239–246

    Article  CAS  Google Scholar 

  29. Eccarius S, Garcia BL, Hebling C, Weidner JW (2008) Experimental validation of a methanol crossover model in DMFC applications. J Power Sources 179:723–733

    Article  CAS  Google Scholar 

  30. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450

    Article  CAS  Google Scholar 

  31. Song S, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environm 63:187–193

    Article  CAS  Google Scholar 

  32. Bever D, Wagner N, Von Bradke M (1998) Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures. Int J Hydrogen Energy 23:57–63

    Article  Google Scholar 

  33. Giorgi L, Antolini E, Pozio A, Passalacqua E (1998) Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 43:3675–3680

    Article  CAS  Google Scholar 

  34. Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis H, St. Pierre J, Johnson MC (1997) Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks. J Electrochem Soc 144:3845–3857

    Article  CAS  Google Scholar 

  35. Gottesfeld S, Minas C (2008) Optimization of direct methanol fuel cell systems and their mode of operation. In: Kakaç S, Pramuanjaroenkij A, Vasiliev L (eds) Mini-micro fuel cells. Springer, Dordrecht, pp 257–268

    Chapter  Google Scholar 

  36. Barton SC, Patterson T, Wang E, Fuller TF, West AC (2001) Mixed-reactant, strip-cell direct methanol fuel cells. J Power Sources 96:329–336

    Article  CAS  Google Scholar 

  37. Priestnall MA, Kotzeva VP, Fish DJ, Nilsson EM (2002) Compact mixed-reactant fuel cells. J Power Sources 106:21–30

    Article  CAS  Google Scholar 

  38. Scott K, Shukla AK (2007) Direct methanol fuel cells: fundamentals, problems and perspectives. In: White RE (ed) Modern aspects of electrochemistry, vol 40. Springer, New York, pp 127–227

    Google Scholar 

  39. Shukla AK, Raman RK (2003) Methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. Annu Rev Mater Res 33:155–168

    Article  CAS  Google Scholar 

  40. Ilicic AB, Wilkinson DP, Fatih K, Girard F (2008) High fuel concentration direct-liquid fuel cell with a redox couple cathode. J Electrochem Soc 155:B1322–B1327

    Article  CAS  Google Scholar 

  41. Ilicic AB, Wilkinson DP, Fatih K (2010) Advancing direct liquid redox fuel cells: mixed-reactant and in situ regeneration opportunities. J Electrochem Soc 157:B529–B535

    Article  CAS  Google Scholar 

  42. Lam A, Wilkinson DP, Zhang J (2009) Control of variable power conditions for a membraneless direct methanol fuel cell. J Power Sources 194:991–996

    Article  CAS  Google Scholar 

  43. Kim YS, Pivovar BS (2007) Chapter 4: Polymer electrolyte membranes for direct methanol fuel cells. In: Zhao TS, Kreuer KD, Van Nguyen T (eds) Advances in fuel cells. Elsevier, San Diego, pp 187–234

    Google Scholar 

  44. Lu G, Wang CY (2005) Chapter 9: Two-phase microfluidics, heat and mass transport in direct methanol fuel cells. In: Sundén B, Faghri M (eds) Transport phenomena in fuel cells. WIT Press, Southampton/Boston, pp 317–358

    Chapter  Google Scholar 

  45. Liao Q, Zhu X, Zheng X, Ding Y (2007) Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC. J Power Sources 171:644–651

    Article  CAS  Google Scholar 

  46. Park YJ, Lee JH, Kang S, Sauk JH, Song I (2008) Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions. J Power Sources 178:181–187

    Article  CAS  Google Scholar 

  47. Pasaogullari U, Wang CY, Chen KS (2005) Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media. J Electrochem Soc 152:A1574–A1582

    Article  CAS  Google Scholar 

  48. Zhang J, Yin GP, Lai QZ, Wang ZB, Cai KD, Liu P (2007) The influence of anode gas diffusion layer on the performance of low-temperature DMFC. J Power Sources 168:453–458

    Article  CAS  Google Scholar 

  49. Kang K, Lee G, Gwak G, Choi Y, Ju H (2012) Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system. Int J Hydrogen Energy 37:6285–6291

    Article  CAS  Google Scholar 

  50. Xing LH, Gao YZ, Wang ZB, Du CY, Yin GP (2011) Effect of anode diffusion layer fabricated with mesoporous carbon on the performance of direct dimethyl ether fuel cell. Int J Hydrogen Energy 36:11102–11107

    Article  CAS  Google Scholar 

  51. Aricó AS, Cretí P, Baglio V, Modica E, Antonucci V (2000) Influence of flow field design on the performance of a direct methanol fuel cell. J Power Sources 91:202–209

    Article  Google Scholar 

  52. Vijayakumar R, Rajkumar M, Sridhar P, Pitchumani S (2012) Effect of anode and cathode flow field depths on the performance of liquid feed direct methanol fuel cells (DMFCs). J Appl Electrochem 42:319–324

    Article  CAS  Google Scholar 

  53. Martin JJ, Qian W, Wang H, Neburchilov V, Zhang J, Wilkinson DP, Chang Z (2007) Design and testing of a passive planar three-cell DMFC. J Power Sources 164:287–292

    Article  CAS  Google Scholar 

  54. Chan YH, Zhao TS, Chen R, Xu C (2008) A self-regulated fuel-feed system for passive direct methanol fuel cells. J Power Sources 176:183–190

    Article  CAS  Google Scholar 

  55. Chan YH, Zhao TS, Chen R, Xu C (2008) A small mono-planar direct methanol fuel cell stack with passive operation. J Power Sources 178:118–124

    Article  CAS  Google Scholar 

  56. Kelley SC, Deluga GA, Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem Solid State Lett 3:407–409

    Article  CAS  Google Scholar 

  57. Nguyen NT, Chan SH (2006) Micromachined polymer electrolyte membrane and direct methanol fuel cells – a review. J Micromech Microeng 16:R1–R12

    Article  CAS  Google Scholar 

  58. Cha SW, O’Hayre R, Prinz FB (2004) The influence of size scale on the performance of fuel cells. J Power Sources 175:789–795

    CAS  Google Scholar 

  59. Zhang B, Zhang Y, He H, Li J, Yuan Z, Na C, Liu X (2010) Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J Power Sources 195:7338–7348

    Article  CAS  Google Scholar 

  60. Pavio J, Bostaph J, Fisher A, Hallmark J, Mylan BJ, Xie CG (2002) LTCC fuel cell system for portable wireless electronics. Adv Microelectr 29:1–8

    Google Scholar 

  61. Yen TJ, Fang N, Zhang X, Lu GQ, Wang CY (2003) A micro-methanol fuel cell operating at near room temperature. Appl Phys Lett 83:4056–4058

    Article  CAS  Google Scholar 

  62. Aravamudhan S, Rahman ARA, Bhansali S (2005) Porous silicon based orientation independent, self-priming microdirect ethanol fuel cell. Sens Actuat A 123–124:497–504

    Article  Google Scholar 

  63. Lu GQ, Wang CY (2006) Development of high performance micro DMFCs and a DMFC stack. J Fuel Cell Technol 3:131–136

    Article  CAS  Google Scholar 

  64. Yuan Z, Zhang Y, Fu W, Li Z, Liu X (2013) Investigation of a small-volume direct methanol fuel cell stack for portable application. Energy 51:462–467

    Article  CAS  Google Scholar 

  65. Litterst C, Eccarius S, Hebling C, Zengerle R, Koltay P (2006) Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation. J Micromech Microeng 16:S248–S253

    Article  CAS  Google Scholar 

  66. Sundarrajan S, Allakhverdiev SI, Ramakrishna S (2012) Progress and perspectives in micro direct methanol fuel cell. Int J Hydrogen Energy 37:8765–8786

    Article  CAS  Google Scholar 

  67. Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Comb Sci 35:275–292

    Article  CAS  Google Scholar 

  68. Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202

    Article  CAS  Google Scholar 

  69. Garcia BL, Weidner JW (2007) Review of direct methanol fuel cells. In: White RE (ed) Modern aspects of electrochemistry, vol 40. Springer, New York, pp 229–284

    Google Scholar 

  70. Kamarudin SK, Daud WRW, Ho SL, Hasran UA (2007) Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources 163:743–754

    Article  CAS  Google Scholar 

  71. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753

    Article  CAS  Google Scholar 

  72. Sharma S, Poleet BG (2012) Support materials for PEMFC and DMFC electrocatalysts – a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  73. Kim YS, Zelenay P (2009) Direct methanol fuel cell durability. In: Büchi FN et al (eds) Polymer electrolyte fuel cells durability. Springer, New York, pp 223–240

    Chapter  Google Scholar 

  74. Bahrami H, Faghri A (2012) Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation. J Power Sources 230:286–296

    Article  Google Scholar 

  75. Dillon R, Srinivasan S, Aricó AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126

    Article  CAS  Google Scholar 

  76. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  77. Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrchim Acta 101:41–58

    Article  CAS  Google Scholar 

  78. Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: status and perspective. Front Energy Power Eng China 4:443–458

    Article  Google Scholar 

  79. Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43:119–136

    Article  CAS  Google Scholar 

  80. Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013, in press) Review: direct ethanol fuel cells. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2012.07.59

  81. Heath CE (1964) Proc Ann Power Sources Conf 18:33

    Google Scholar 

  82. Tamura K, Tsukui T, Kamo T, Kudo T (1984) Hitachi Hyoron 66:49

    Google Scholar 

  83. Waidhas M, Drenckhahn W, Preidea W, Landes H (1996) Direct-fuelled fuel cells. J Power Sources 61:91–97

    Article  CAS  Google Scholar 

  84. Hogarth MP, Hards GA (1996) Direct methanol fuel cells. Platinum Metal Rev 40:150–159

    CAS  Google Scholar 

  85. Narayanam SR, Halpert G, Chun W, Jeffries-Nakamura B, Valdez TI, Frank H, Surampudi S (1996) Proceedings of 37th Power Sources Conference, Cherry Hill, NJ (USA), pp 96–99

    Google Scholar 

  86. Gottesfeld S, Cleghom SJC, Ren X, Springer TE Wilson MS, Zawodzinski T (1996) In: Courtesy Associates (ed) Fuel cell seminar. Washington, DC, pp 521–524

    Google Scholar 

  87. Fuller TF, Murach BL, Maricle DL (1997) 191th meeting of the electrochemical society, vol 97-1, abstract 620. The Electrochemical Society, Pennington, p 812

    Google Scholar 

  88. Aricó AS, Antonucci PL, Modica E, Baglio V, Kim H, Antonucci V (2002) Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation. Electrochim Acta 47:3723–3732

    Article  Google Scholar 

  89. Baldauf M, Preidel W (2001) Experimental results on the direct electrochemical oxidation of methanol in PEM fuel cells. J Appl Electrochem 31:781–786

    Article  CAS  Google Scholar 

  90. Ren X, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:L12–L15

    Article  CAS  Google Scholar 

  91. Scott K, Taama W, Cruickshank J (1998) Performance of a direct methanol fuel cell. J Appl Electrochem 28:289–297

    Article  CAS  Google Scholar 

  92. Shukla AK (2002) An improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions. Electrochim Acta 47:3401–3407

    Article  CAS  Google Scholar 

  93. Witham CK, Chun W, Valdez TI, Narayanan SR (2000) Performance of direct methanol fuel cells with sputter-deposited anode catalyst layers. Electrochem Solid State Lett 3:497–500

    Article  CAS  Google Scholar 

  94. Antonucci PL, Aricó AS, Creti P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 125:431–437

    Article  CAS  Google Scholar 

  95. Yang C, Srinivasan S, Aricó AS, Creti P, Baglio V, Antonucci V (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid State Lett 4:A31–A34

    Article  CAS  Google Scholar 

  96. Jung DH, Jo YH, Jung JH, Cho SH, Kim CS, Shin DR (2000) Proceedings of fuel cell seminar, Portland, pp 420–423

    Google Scholar 

  97. Kim D, Cho EA, Hong SA, Oh IH, Ha IH (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 130:172–177

    Article  CAS  Google Scholar 

  98. Kim C, Kim YJ, Yanagisawa T, Park KC, Endo M (2004) High-performance of cup-stacked-type carbon nanotubes as a Pt-Ru catalyst support for fuel cell applications. J Appl Phys 96:5903–5905

    Article  CAS  Google Scholar 

  99. Wong CW, Zhao TS, Ye Q, Liu JG (2006) Experimental investigations of the anode flow field of a micro direct methanol fuel cell. J Power Sources 155:291–296

    Article  CAS  Google Scholar 

  100. Lu CQ, Wang CY (2005) Development of micro direct methanol fuel cells for high power applications. J Power Sources 144:141–145

    Article  CAS  Google Scholar 

  101. Hou H, Sun G, He R, Wu Z, Sun B (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct methanol fuel cell. J Power Sources 182:95–99

    Article  CAS  Google Scholar 

  102. Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626

    Article  CAS  Google Scholar 

  103. Kjeang E, Djilali N, Sinton D (2009) Chapter 3: Advances in microfluidic fuel cells. In: Zhao TS (ed) Micro fuel cells. Academic, Burlington, pp 99–139

    Chapter  Google Scholar 

  104. Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931

    Article  CAS  Google Scholar 

  105. Tominaka S, Nishizeko H, Ohta S, Osaka T (2009) On-chip fuel cells for safe and high-power operation: investigation of alcohol fuel solutions. Energy Environ Sci 2:849–852

    Article  CAS  Google Scholar 

  106. Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio R. Corti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Corti, H.R., Gonzalez, E.R. (2014). Introduction to Direct Alcohol Fuel Cells. In: Corti, H., Gonzalez, E. (eds) Direct Alcohol Fuel Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7708-8_1

Download citation

Publish with us

Policies and ethics