Skip to main content

Modeling the Atmospheric Circulation and Climatic Conditions over Southern South America During the Late History of the Gondwana Supercontinent

  • Chapter
  • First Online:
Gondwana Landscapes in southern South America

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The different processes responsible for climate and atmospheric circulation forcing and their relevance on the general circulation of the Southern South America together with the conditions over Patagonia, for the period of the Gondwana supercontinent, are identified in this chapter. During the history of this supercontinent, the main paleoclimate forcings were as follows: (1) the continental drift that affected latitude, elevation, and topography; (2) changes in the amount of greenhouse gases in the Earth’s atmosphere; and (3) volcanic activity. The paleoatmospheric circulation is analyzed in special sections according to age, Early Triassic to Early Jurassic, Middle to Late Jurassic, and Cretaceous, accordingly with the key changes in the ocean–land distribution and locations of the continents. Different paleoclimatic modeling scenarios through the periods are reviewed and compared with proxy data. From both sources of information, it arises that the opening of the Hispanic Corridor and the formation of the Atlantic Ocean were the chief factors that produced the strong climatic changes registered from the Triassic to the Cretaceous and the remarkable difference with current climate conditions. Other important factors were the variations in the volume of greenhouse gases, especially CO2, which is related to volcanic activity and changes in the heat transport through the oceans. The observed results suggest that strong monsoon conditions dominated this period of the Gondwana supercontinent. However, there are large differences with respect to the impact of the various climatic forcings between model simulations of circulation general conditions in the Cretaceous. An extensive list of references provides detailed and updated information on the topics covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arias C (2008) Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys Oceans. Gondwana Res 14:306–315

    Article  Google Scholar 

  • Barron EJ (1983) A warm, equable Cretaceous: the nature of the problem. Earth Sci Rev 19:305–338

    Article  Google Scholar 

  • Barron EJ, Fawcett PJ (1995) The climate of Pangaea: a review of climate model simulations of the Permian. In: Scholle PA, Peryt TM, Ulmer- Scholle DS (eds) The Permian of Northern Pangea, vol 1. Springer, Berlin, pp 37–52

    Chapter  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time. Am J Sci 301:182–204

    Article  Google Scholar 

  • Bice KL, Birgel D, Meyers PA, Dahl KA, Hinrichs K, Norris RD (2006) A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21, PA2002. doi:10.1029/2005PA001203

    Article  Google Scholar 

  • Bush ABG (1997) Numerical simulation of the Cretaceous Tethys circumglobal current. Science 275:807–810

    Article  Google Scholar 

  • Bush ABG, Philander SGH (1997) The late Cretaceous: simulation with a coupled atmosphere–ocean GCM. Paleoceanography 21:475–516

    Google Scholar 

  • Cavallotto JL, Violante RA, Hernández-Molina FJ (2011) Geological aspects and evolution of the Patagonian continental margin. Biol J Linn Soc 103:346–362

    Article  Google Scholar 

  • Chandler M, Rind D, Ruedy R (1992) Pangean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Bull Geol Soc Am 104:543–559

    Article  Google Scholar 

  • Crowley TJ, North GR (1999) Paleoclimatology. Oxford University Press, New York, 360 pp

    Google Scholar 

  • Crowley TJ, Hyde WT, Short DA (1989) Seasonal cycle variations on the supercontinent of Pangea. Geology 17:457–460

    Article  Google Scholar 

  • Davies A (2006) High resolution palaeoceanography and palaeoclimatology from mid and high latitude Late Cretaceous laminated sediments. Unpublished doctoral dissertation, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, University of Southampton, Southampton, 274 pp

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  Google Scholar 

  • Dubiel RF, Parrish JT, Parrish JM, Good SC (1991) The Pangaean megamonsoon—evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios 6:347–370

    Article  Google Scholar 

  • Fawcett PJ, Barron EJ, Robison VD, Katz BJ (1994) The climatic evolution of India and Australia from the Late Permian to Mid-Jurassic: a comparison of climate model results with the geologic record. Geol Soc Am Spec Pap 288:139–158

    Article  Google Scholar 

  • Floegel S (2001) On the influence of precessional Milankovitch cycles on the Late Cretaceous climate system: comparison of GCM-results, geochemical, and sedimentary proxies for the Western Interior Seaway of North America. Universitätsbibliothek der Christian-Albrechts-Universität Kiel, Kiel

    Google Scholar 

  • Frakes LA (1999) Estimating the global thermal state from Cretaceous sea surface and continental temperature data. Spec Pap-Geol Soc Am: 49–58

    Google Scholar 

  • Gradstein F, Ogg J, Smith A, Bleeker W (2004) A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes 27:83–100

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:1156–1167

    Article  Google Scholar 

  • Hay WW (2008) Evolving ideas about the Cretaceous climate and ocean circulation. Cretac Res 29(5–6):725–753

    Article  Google Scholar 

  • Hay WW, Flögel S, Söding E (2005) Is the initiation of glaciation of the Cretaceous Ocean-Climate System on Antarctica related to a change in the structure of the ocean? Glob Planet Change (Geol Soc Am Spec) 45:23–33

    Article  Google Scholar 

  • Haywood AM, Valdes PJ, Markwick PJ (2004) Cretaceous (Wealden) climates: a modeling perspective. Cretac Res 25:303–311

    Article  Google Scholar 

  • Hotinski RM, Toggweiller JR (2003) Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography 18(1):1007. doi:10.1029/2001PA000730

    Article  Google Scholar 

  • Huber BT, MacLeod KG, Wing SL (eds) (2000) Warm climates in earth history. Cambridge University Press, Cambridge, p 462

    Google Scholar 

  • Iglesias Llanos MP, Riccardi AC, Singer SE (2006) Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic apparent polar wander path for South America. Earth Planet Sci Lett 252:379–397

    Article  Google Scholar 

  • Kump LR, Pollard D (2008) Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320:195

    Article  Google Scholar 

  • Kutzbach JE, Gallimore RG (1989) Pangaean climates: megamonsoons of the megacontinent. J Geophys Res 94(D3):3341–3357. doi:10.1029/JD094iD03p03341

    Article  Google Scholar 

  • Kutzbach JE, Guetter PJ, Washington WM (1990) Simulated circulation of an idealized ocean for Pangaean time. Paleoceanography 5(3):299–317

    Article  Google Scholar 

  • Markwick PJ, Valdes PJ (2002) A quantitative evaluation and application of the results of a Maastrichtian (Late Cretaceous) coupled ocean–atmosphere experiment using the HadCM3 AOGCM, Cretaceous Climate and Oceans Dynamics Workshop, 14–17 July 2002, The Nature Place, Florissant, CO, USA

    Google Scholar 

  • Moore GT, Hayashida DN, Ross CA, Jacobson SR (1992a) Palaeoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world. I. Results using a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 93:113–150

    Article  Google Scholar 

  • Moore GT, Sloan LC, Hayashida DN, Umrigar NP (1992b) Paleoclimate of the Kimmeridge/Tithonian (Late Jurassic) world. II. Sensitivity tests comparing three different paleotopographic settings. Palaeogeogr Palaeoclimatol Palaeoecol 95:229–252

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Shields C (2002) Late Cretaceous ocean: coupled simulations with the National Center for Atmospheric Research Climate System Model. J Geophys Res 107. doi:10.1029/2001JD000821

  • Poulsen CJ (2008) Paleoclimate modeling, pre-quaternary. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Kluwer Academic, Dordrecht, pp 700–709

    Google Scholar 

  • Poulsen CJ, Gendaszek AS, Jacob R (2003) Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? Geology 31:115–118

    Article  Google Scholar 

  • Poulsen CJ, Pollard D, White TS (2007) General circulation model simulation of the δ18O content of continental precipitation in the middle Cretaceous: a model-proxy comparison. Geology 35:199–202

    Article  Google Scholar 

  • Rais P, Louis-Schmid B, Bernasconi SM, Weissert H (2007) Palaeoceanographic and palaeoclimatic reorganization around the Middle-Late Jurassic transition. Palaeogeogr Palaeoclimatol Palaeoecol 251:527–546

    Article  Google Scholar 

  • Rees PM, Zeigler AM, Valdes PJ (2000) Jurassic phytogeography and climates: new data and model comparisons. In: Huber BT, MacLeod KG, Wing ST (eds) Warm climates in earth history. Cambridge University Press, Cambridge, pp 297–318

    Google Scholar 

  • Ross CA, Ross JRP (1987) Late Paleozoic sea levels and depositional sequences. In: Ross CA, Haman D (eds) Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy, Special Publication 24. Cushman Foundation for Foraminiferal Research, Washington, DC, pp 137–149

    Google Scholar 

  • Ross CA, Ross JRP (1988) Late Paleozoic transgressive regressive deposition. In: Wilgus CK, Hastings BS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea level change: an integrated approach, Special Publication vol 42. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 227–247

    Chapter  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430

    Article  Google Scholar 

  • Scherer CMS, Goldberg K (2007) Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: evidence from aeolian cross-strata of the Botucatu Formation, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 250(1–4):89–100

    Article  Google Scholar 

  • Scotese CR (2001) Atlas of earth history. PALEOMAP Project, Arlington

    Google Scholar 

  • Scotese CR (2012) PALEOMAP, Earth history and climate history. [WWW document]. URL http://www.scotese.com/. Accessed Mar 2012

  • Scotese CR, Summerhayes CP (1986) A computer model of paleoclimate to predict upwelling in the Mesozoic and Cenozoic. Geobyte 1:28–42

    Google Scholar 

  • Sellwood BW, Valdes PJ (2006) Mesozoic climates: general circulation models and the rock record. Sediment Geol 190:269–287

    Article  Google Scholar 

  • Sellwood BW, Valdes PJ, Price GD (2000) Geological evaluation of GCM simulations of Late Jurassic palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 156:147–160

    Article  Google Scholar 

  • Sewall JO, van de Wal RSW, van der Zwan K, van Ooosterhout C, Dijkstra HA, Scotese CR (2007) Climate model boundary conditions for four Cretaceous time slices. Clim Past 3:647–657

    Article  Google Scholar 

  • Sijp WP, England MH (2004) Effect of the Drake Passage throughflow on global climate. J Phys Oceanogr 34:1254–1266

    Article  Google Scholar 

  • Trenberth KE (1992) Climate system modeling. Cambridge University Press, New York, 788 p

    Google Scholar 

  • U.S. Geological Survey Geologic Names Committee (2010) Divisions of geologic time—major chronostratigraphic and geochronologic units: U.S. Geological Survey Fact Sheet 2010–3059,2 p

    Google Scholar 

  • Valdes PJ (1993) Atmospheric general circulation models of the Jurassic. Philos Trans R Soc B 341(1297):317–326

    Article  Google Scholar 

  • Valdes PJ (2000) Warm climate forcing mechanisms. In: Huber BT, MacLeod KG, Wing SL (eds) Warm climates in earth history. Cambridge University Press, Cambridge, pp 3–20

    Google Scholar 

  • Valdes PJ, Sellwood BW (1992) A palaeoclimate model for the Kimmeridgian. Palaeogeogr Palaeoclimatol Palaeoecol 95:47–72

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Volkheimer W, Rauhut OWM, Quattrocchio ME, Martínez MA (2008) Jurassic Paleoclimates in Argentina, a review. Rev Asoc Geol Argent 63(4):549–556

    Google Scholar 

  • Walter H (1985) Vegetation of the earth. Springer, Berlin, 318 pp

    Google Scholar 

  • Ward PL (2009) Sulfur dioxide initiates global climate change in four ways. Thin Solid Films 517:3188–3203

    Article  Google Scholar 

  • Winguth AME, Heinze C, Kutzbach JE, Maier-Reimer E, Mikolajewicz U, Rowley D, Rees A, Ziegler AM (2002) Simulated ocean circulation of the Middle Permian. Paleoceanography 17(5):1057

    Google Scholar 

  • Winterer EL (1991) The Tethyan Pacific during Late Jurassic and Cretaceous times. Palaeogeogr Palaeoclimatol Palaeoecol 87:253–265

    Article  Google Scholar 

  • Zhou J, Poulsen CJ, Pollard D, White TS (2008) Simulation of modern and middle Cretaceous marine δ18O with an ocean–atmosphere general circulation model. Paleoceanography 23, PA3223. doi:10.1029/2008PA001596

    Article  Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic–North–Atlantic and the western Tethys. American Association of Petroleum Geologists, Tulsa

    Google Scholar 

  • Ziegler AM, Scotese CR, Barrett SF (1982) In: Brosche F, Sundermann J (eds) Tidal friction and earth’s rotation II. Springer, Berlin

    Google Scholar 

  • Ziegler AM, Gibbs MT, Hulver ML (1998) A mini-atlas of oceanic water masses in the Permian period. Proc R Soc Aust 110(1/2):323–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Hilda Compagnucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Compagnucci, R.H. (2014). Modeling the Atmospheric Circulation and Climatic Conditions over Southern South America During the Late History of the Gondwana Supercontinent. In: Rabassa, J., Ollier, C. (eds) Gondwana Landscapes in southern South America. Springer Earth System Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7702-6_6

Download citation

Publish with us

Policies and ethics