Skip to main content

Planation Surfaces on the Paraná Basaltic Plateau, South America

  • Chapter
  • First Online:
Gondwana Landscapes in southern South America

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

SRTM data constituted a good resource for morphometrical analyses of the extensive Paraná Basaltic Plateau (southern Brazil and northeastern Argentina, South America). The plateau is a stepped system of high-level surfaces separated by escarpments and with incised fluvial valleys, mainly belonging to the Upper Paraná and the Upper Uruguay River basins. Palaeosurface remnants of such basins preserve attributes that have been identified in digital elevation models. Generation of hypsometric curves in six representative tributary basins of the Uruguay River basin and also in one tributary basin of the Paraná River in the region permitted to identify, classify and map the main Cenozoic planation surfaces of the basaltic plateau. Other morphometric parameters such as longitudinal profiles and isobase lines were produced also to delimit such surfaces. Field geomorphological analyses were performed, also including the description of toposequences. Three groups of hypothetical hypsometric curves are deduced from proximal value sets for predicted base levels. Each mapped surface was considered between the minimum height for correlative surfaces in all of the subbasins and the minimum height of the next higher surface. Using that approach, which is based on the clustering from the modelled base level in the river mouth of the subbasins, three main palaeosurfaces were defined in northeastern Argentina. Complementarily, three intermediate or secondary surfaces also were identified based on morphometric analyses, taking into account that small flat remnants at the same level suggest that they could be remnants of a formerly extensive plain.

Remnants of the Late Cretaceous-Palaeogene King’s Sul-American Surface are well developed in the headwaters of the Uruguay River (on the subbasins of the Pelotas and Canoas Rivers, Brazil), located immediately westwards from the Serra Geral erosion scarp. Sul-Americana 1 (1,277–1,080 m a.s.l.) and Sul-Americana 2 (1,080–880 m a.s.l.) Surfaces in this work are equivalent to the King’s Sul-Americana Pediplain, represented by an extended low-relief surface. If the Upper Uruguay River basin corresponded to the lower segment of such surface, a predicted base-level value would be estimated around 880 m a.s.l. The higher relict surface of the plateau in Argentina corresponds to a secondary planation surface named Bernardo de Irigoyen Erosion Surface (675–880 m a.s.l.). The King’s Velhas Surface (Palaeogene) is mainly preserved on water divides as remnants in the Upper Uruguay basin in Brazil, and it is represented by a landscape of gentle and well-rounded hills. It is correlated in this chapter with Aristóbulo del Valle Erosion Surface, which in the Argentine Misiones province comprises the plane-top watershed between the Paraná and Uruguay basins (490–675 m a.s.l.). Because of the proximity of these large fluvial collectors, pediplanation and pedimentation processes leaved a narrow remnant that locally are restricted to ridges of planed tops. The general landscape of this surface is represented by rounded hills and flat-bottomed fluvial valleys. A predicted base-level value for this surface could be estimated around 310–425 m a.s.l. The main lower surface identified in this morphometric analysis corresponds to the Apóstoles Surface (110–165 m a.s.l.), which would be generated by the Plio-Pleistocene King’s Paraguaçu cycle of deep fluvial incision on the Velhas/Aristóbulo Surface. The base level for the lower surface remnant of this erosive cycle is above 100 m a.s.l. The parallel retreat of slopes along the major valleys to their coalescence generated an extended erosion surface in southeastern Upper Uruguay basin, named Apóstoles Pediplain. It is formed by convex, low and long hills with very gentle and simple slopes, alternating with wide and very shallow fluvial valleys that have consumed much of the interfluves bearing remnants of the Velhas cycle.

The formation of the Late Cretaceous–Cenozoic regional erosion surfaces mapped in a relatively distant area of the passive margin is mainly related to fluvial erosion and slope retreat process. Most fluvial erosion was concentrated in tributary valleys of the Paraná and Uruguay Rivers destroying the flat basaltic surface and generating a new erosion surface below. Field data also indicate that geomorphic processes like fluvial, surface wash and mass movement (rock fall, debris flow) were important. Uplift and rejuvenation of valleys before the new surface can be graded to the lower level were required. For the planation surfaces identified in the study region, the base level to which the erosion process developed was the Uruguay River or the Paraná River. The steeper longitudinal profile observed in a tributary of the Paraná, compared to the closest Uruguay tributary in northeastern Argentina, points out that erosion is more active on the Paraná system. Planation surfaces exert control on the active headward erosion by valley development and rock landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab’Sáber AN (1969) Participação das superficies aplainadas nas paisagens do Nordeste Brasileiro, vol 19, Geomorfologia. Instituto de Geografia, Universidade de São Paulo, São Paulo, pp 1–38

    Google Scholar 

  • Ab’Sáber AN (2000) The natural organization of Brazilian inter and subtropical landscapes. Rev Inst Geol 21(1/2):57–70

    Google Scholar 

  • Almeida F (1956) O Planalto basáltico do Bacia do Paraná. Bol Paul Geogr 24:3–34

    Google Scholar 

  • Almeida F (1986) Distribução regional e relações tectónicas do magmatismo pós-Paleozóico no Brasil. Rev Bras Geociênc 15:325–349

    Google Scholar 

  • Aslanian D, Moulin M, Olivet J-L, Unternehr P, Matias L, Bache F, Rabineau M, Nouze H, Klingelhoefer F, Contrucci I, Labails C (2009) Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: kinematic constrains. Tectonophys (Special Issue: Role of Magmatism) 468:98–112

    Google Scholar 

  • Assumpçao M (1992) The regional intraplate stress field in South America. J Geophys Res 97(8):11889–11903

    Article  Google Scholar 

  • Assumpçao M (1998) Focal mechanisms of small earthquakes in the southeastern Brazilian shield: a test of stress models of South American Plate. J Geophys J Int 133:490–498

    Article  Google Scholar 

  • Assumpçao M, Schimmel M, Escalante C, Barbosa JR, Rocha M, Barros LV (2004) Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots. J Geophys J Int 159:390–399

    Article  Google Scholar 

  • Bezerra F, Brito Neves B, Corrêa A, Barreto A, Suguio K (2008) Late Pleistocene tectonic-geomorphological development within a passive margin – the Cariatá trough, northeastern Brazil. Geophys J Roy Astron Soc 97:555–582

    Google Scholar 

  • Bigarella J (1975) The Barreiras Group in northeast Brazil. An Acad Bras Cienc 47:365–393

    Google Scholar 

  • Bigarella J, Andrade G (1965) Contribution to the study of the Brazilian Quaternary. Geol Soc Am Spec Pap 84:433–451

    Article  Google Scholar 

  • Bigarella J, Becker R (1975) Topics for discussion, international symposium on the quaternary (Southern Brazil). Bol Parana Geociênc 33:169–272

    Google Scholar 

  • Bigarella J, Mousinho M, Silva J (1965) Pediplanos, pedimentos e seus depósitos correlativos no Brasil. Bol Parana Geogr 16(17):117–151

    Google Scholar 

  • Büdel J (1957) Die ‘Doppelten Einebnungsflachen’ in den feuchten Tropen. Z Geomorphol NF 1:201–228

    Google Scholar 

  • Büdel J (1982) Climatic geomorphology (trans: Fischer L, Busche D). Princeton University Press, Princeton, 443 pp

    Google Scholar 

  • Castro ACM Jr (1987) The northeastern Brazil and Gabon Basins; a double rifting system associated with multiple crustal detachment surfaces. Tectonics 6(6):727–738

    Article  Google Scholar 

  • Cobbold PR, Meisling KE, Mount VS (2001) Reactivation of an obliquely rifted margin, Campos and Santos Basins, southeastern Brazil. AAPG Bull 85(11):1925–1944

    Google Scholar 

  • Coblentz DD, Richardson RM (1996) Analysis of the South American intraplate stress field. J Geophys Res 101(B4):8643–8657

    Article  Google Scholar 

  • Davis WM (1899) The geographical cycle. Geogr J 14(5):481–504

    Article  Google Scholar 

  • Davis WM (1909) Geographical essays. Ginn and Co., Boston, 777 pp

    Google Scholar 

  • Erhart H (1955) Biostasie et rhexistasie: esquise d’une théorie sur le rôle de la pédongenèse en tant que phénomène géologique. Comptes Rendus Academie des Sciences française 241:1218–1220

    Google Scholar 

  • Fairbridge R, Finkl C (1980) Cratonic regime, unconformities and peneplains. J Geol 88:69–86

    Article  Google Scholar 

  • Filosofov V (1960) Brief guide to morphometric methods in search of tectonic structures. Saratov University Public House, Saratov (Russian language)

    Google Scholar 

  • Gallagher K, Hawkesworth C, Mantovani M (1994) The denudation history of the onshore continental margin of S.E. Brazil inferred from fission track data. J Geophys Res 99:18117–18145

    Article  Google Scholar 

  • Golts S, Rosenthal E (1993) A morphotectonic map of the northern Arava in Israel derived from isobase lines. Geomorphology 7:305–315

    Article  Google Scholar 

  • Goudie AS (2004) Cycle of erosion. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 1, A–I. Routledge, London/New York, pp 213–214

    Google Scholar 

  • GRASS Development Team (2005) Geographic Resources Analysis Support System (GRASS), GNU General Public License. Electronic document, http://grass.itc.it

  • Grohmann C (2004) Morphometric analysis in Geographic Information Systems: application of free software GRASS and R. Comput Geosci 30:1055–1067

    Article  Google Scholar 

  • Grohmann C, Riccomini C, Machado Alves F (2007) SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Comput Geosci 33(1):10–19

    Article  Google Scholar 

  • Huggett RJ (2007) Fundamentals of geomorphology. Routledge, London/New York, p 463

    Google Scholar 

  • Iriondo M, Kröhling D (2004) Cenozoic geomorphological evolution of the Uruguay River Basin, South America. In: International Geological Congress (IUGS), 32, Florence. Abstracts, 1 pp

    Google Scholar 

  • Iriondo M, Kröhling D (2008) Cambios ambientales en la cuenca del Uruguay-desde dos millones de años hasta el Presente. Colección Ciencia y Técnica, Ediciones UNL (Universidad Nacional del Litoral), Santa Fe, Argentina, 360 pp

    Google Scholar 

  • Japsen P, Chalmers J, Green P, Bonow J (2012a) Elevated, passive continental margins: not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Global Planet Change 90–91:73–86

    Article  Google Scholar 

  • Japsen P et al (2012b) Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Geol Soc Am Bull 124(5–6):800–816. doi:10.1130/B30515.1

    Article  Google Scholar 

  • Jarvis A, Reuter H, Nelson A, Guevara E (2008) Holefilled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). Available from http://srtm.csi.cgiar.org

  • Justus J, Machado M, Franco M (1986) Geomorfología. Levantamento de Recursos Naturais. Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim, 33, 2. Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, pp 313–392

    Google Scholar 

  • King LC (1953) Canons of landscape evolution. Geol Soc Am Bull 64:721–752

    Article  Google Scholar 

  • King LC (1956) A Geomorfologia do Brasil Oriental. Rev Bras Geogr, IBGE 2:147–265

    Google Scholar 

  • King LC (1957) The uniformitarian nature of hillslopes. Trans Edinb Geol Soc 17:81–102

    Article  Google Scholar 

  • King LC (1967) The morphology of the earth, 2nd edn. Oliver & Boyd, Edinburgh/London, 726 pp

    Google Scholar 

  • King LC (1983) Wandering continents and spreading sea floors on an expanding earth. Wiley, Chichester, 232 pp

    Google Scholar 

  • Kirkby M (2004) Slope, evolution. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 2, J–Z. Routledge, London/New York, pp 963–968

    Google Scholar 

  • Kröhling D, Iriondo M, Brunetto E, Galina G (2009) Evolución del paisaje de la meseta basáltica en la alta cuenca del rio Uruguay. In: IV Congreso Argentino De Cuaternario y Geomorfología, 4, Congresso Da Associação Brasileira De Estudos Do Quaternário, 12 and Reunión sobre el Cuaternario de América del Sur, 2, La Plata. Actas de Resúmenes, La Plata, Argentina, 1 pp

    Google Scholar 

  • Kröhling D, Brunetto E, Galina G, Zalazar MC (2011) Palaeosurfaces analysis on the Cretaceous basaltic plateau on the Upper Uruguay River basin (NE Argentina and Southern Brazil). Geociências 30(1):31–46

    Google Scholar 

  • Lagorio SL (2008) Early Cretaceous alkaline volcanism of the Sierra Chica of Córdoba (Argentina): mineralogy, geochemistry and petrogenesis. J S Am Earth Sci 26:152–171

    Article  Google Scholar 

  • Lima CC, Nascimento E, Assumpção M (1997) Stress orientations in Brazilian sedimentary basins from breakout analysis: implications for force models in the South American plate. Geophys J Int 130:112–124

    Article  Google Scholar 

  • Lister GS, Etheridge MA, Symonds PA (1986) Detachment faulting and the evolution of passive continental margins. Geology 14(3):246–250

    Article  Google Scholar 

  • Lister GS, Etheridge MA, Symonds PA (1991) Detachment models for the formation of passive continental margins. Tectonics 10(5):1038–1064

    Article  Google Scholar 

  • Maack R (1947) Breves noticias sobre a geología dos Estados do Paraná e Santa Catarina. Arq Biol Tecnol 2:63–154

    Google Scholar 

  • Meijer PTH, Wortel MJR (1992) The dynamics of motion of the South American plate. J Geophys Res 97(8):11915–11931

    Article  Google Scholar 

  • Meisling KE, Cobbold PR, Mount VS (2001) Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bull 85(11):1903–1924

    Google Scholar 

  • Melfi AJ, Piccirillo EM, Nardy AJR (1988) Geological and magmatic aspects of the Paraná basin – an introduction. In: Piccirillo EM, Melfi AJ (eds) The Mesozoic flood volcanism of the Paraná Basin: petrogenetic and geophysical aspects. Inst. Astr. Bn. Geotis. Publ, São Paulo, pp l–13

    Google Scholar 

  • Migón P (2004) Planation surface. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 2, J–Z. Routledge, London/New York, pp 788–792

    Google Scholar 

  • Milani EJ, Zalán PV (1999) An outline of the geology and petroleum systems of Paleozoic interior basins of South America. Episodes 22(3):199–205

    Google Scholar 

  • Milner SC, Duncan AR, Whittingham AM, Ewart A (1995) Trans-Atlantic correlation of eruptive sequences and individual silicic units within the Paraná-Etendeka igneous province. J Volcanol Geotherm Res 69:137–157

    Article  Google Scholar 

  • Ollier CD (1991) Ancient landforms. Belhaven Press, London/New York, 233 pp

    Google Scholar 

  • Ollier CD (1993) Age of soils and landforms in Uganda. Israel J Earth Sci 41:227–231

    Google Scholar 

  • Ollier CD (2003) The origin of mountains on an expanding earth, and other hypotheses. In: Scalera G, Jacob KH (eds) Why expanding earth? A book in honour of Ott Christoph Hilgenberg. INGV (InstitutoNazionale di Geofisica e Vulcanologia), Rome, pp 129–160

    Google Scholar 

  • Ollier CD (2012) Extension everywhere – rifts, continental margins and island arcs. In: Scalera G, Boschi E, Cwojdzinski S (eds) The Earth expansion evidence – a challenge for geology, geophysics and astronomy selected contributions to the interdisciplinary workshop of the 37th international School of Geophysics, EMFCSC, Erice, 4–9 Oct 2011, pp 61–76

    Google Scholar 

  • Ollier CD, Pain CF (2000) The origin of mountains. Routledge, London, 345 pp

    Google Scholar 

  • Paisani JC, Pontelli ME, Andres J (2008) Superfícies aplainadas em zona morfoclimática subtropical úmida no planalto basáltico da bacia do Paraná (SW Paraná/NW Santa Catarina): primeira aproximação. Geociências 27(4):541–553

    Google Scholar 

  • Peate DW, Hawkesworth CJ, Mantovani MSM (1992) Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution. Bull Volcanol 55:119–139

    Article  Google Scholar 

  • Penck W (1953) Morphological analysis of landforms (trans: Czech H, Boswell KC). Macmillan, London, pp 1–18

    Google Scholar 

  • Peulvast JP, Sales VC, Bétard F, Gunnell Y (2008) Low post-Cenomanian denudation depths across the Brazilian northeast: implications for long-term landscape evolution at a transform continental margin. Global Planet Change 62:39–60

    Article  Google Scholar 

  • Popolizio E (1972) Geomorfología del relieve de plataforma de la provincia de Misiones y zonas aledañas. An Soc Argent Estud Geogr XV:17–82

    Google Scholar 

  • Ramos VA (1996) Evolución tectónica de la plataforma continental. XIII° Congreso Geológico Argentino y IIII° Congreso de Exploración de Hidrocarburos. In: Ramos VA, Turic MA (eds) Geología y Recursos Naturales de la Plataforma Continental Argentina. Relatorio 21, pp385–404

    Google Scholar 

  • Riccomini C, Assumpção M (1999) Quaternary tectonics in Brazil. Episodes 22:221–225

    Google Scholar 

  • Soares P, Riffel BS (2006) Hypsometric curves as a tool for paleosurface mapping. Math Geol 38(6):679–695

    Article  Google Scholar 

  • Steiner S (2007) Aquisição e processamento de dados morfométricos derivados do modelo digital de elevação SRTM. Dissertação (Mestrado) – Instituto de Geociências, Universidade de São Paulo, São Paulo, 38 p

    Google Scholar 

  • Strahler A (1952a) Dynamic basis of geomorphology. Geol Soc Am Bull 63:923–938

    Article  Google Scholar 

  • Strahler A (1952b) Hypsometric (areal-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1142

    Article  Google Scholar 

  • Summerfield MA (1984) Plate tectonics and landscape development on the African continent. In: Morisawa M, Hack JT (eds) Tectonic geomorphology, The symposia on geomorphology, international series no. 15. George Allen & Unwin, Boston, pp 27–51

    Google Scholar 

  • Thomas MF (1966) Some geomorphological implications of deep weathering patterns in crystalline rocks in Nigeria. Trans Inst Br Geogr 40:73–193

    Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333

    Article  Google Scholar 

  • Tricart J (1956) Comparaison entre les conditions de façonnement des lits fluviaux en zone temperée et. zone intertropicale. C R Acad Sci 245:555–557

    Google Scholar 

  • Tricart J (1959) Observations sur le façonnement des rapides des rivières intertropicales. Bull Sect Geogr Com Trav Hist Sci 68:333–343

    Google Scholar 

  • Twidale CR (1983) Pediments, peneplains and ultiplains. Rev Geomorphol Dyn 32:1–35

    Google Scholar 

  • Ussami N, Karner GD, Bott MHP (1986) Crustal detachment during South Atlantic rifting and formation of Tucano–Gabon Basin System. Nature 322(6080):629–632

    Article  Google Scholar 

  • Vasconcelos P, Carmo ID (2008) Calibrating denudation chronology through 40Ar/39Ar weathering geochronology. In: 33rd international geological conference, Abstract CD-ROM, Oslo, 1 p

    Google Scholar 

  • Ward S (2004) Taluvium. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 2, J–Z. Routledge, London/New York, pp 1035–1036

    Google Scholar 

  • Watts A (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Wayland EJ (1933) Peneplains and some other erosional platforms. Annual report bulletin, Protectorate of Uganda Geological Survival Department of Mines, Note 1, pp 77–79

    Google Scholar 

  • Wernicke B (1985) Uniform sense normal simple shear of continental lithosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • Widdowson M (1997) The geomorphological and geological importance of paleosurfaces. In: Widdowson M (ed) Paleosurfaces: recognition, reconstruction and paleoenvironmental interpretation, Special publication, 120. Geological Society of London, London, pp 1–12

    Google Scholar 

  • Wobbe F (2007) Geomorphological parameter extraction in GRASS GIS-Isobase map calculation. TU Bergakademie Freiberg, Institut für Geologie. http://www.rsg.tu-freiberg.de/twiki/bin/view/Main/GeomorphologyGrassGIS

  • Wood A (1942) The development of hillside slopes. Proc Geol Assoc Lond 53:128–140

    Article  Google Scholar 

  • Zuchiewicz W, Oaks JRR (1993) Geomorphology and structure of the Bear River Range, NE Utah: a morphometric approach. Z Geomorphol Suppl Bd. 94:41–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kröhling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kröhling, D., Brunetto, E., Galina, G., Zalazar, M.C., Iriondo, M. (2014). Planation Surfaces on the Paraná Basaltic Plateau, South America. In: Rabassa, J., Ollier, C. (eds) Gondwana Landscapes in southern South America. Springer Earth System Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7702-6_10

Download citation

Publish with us

Policies and ethics