Skip to main content

The PAR Polarity Complex and Cerebellar Granule Neuron Migration

  • Chapter
  • First Online:
Cellular and Molecular Control of Neuronal Migration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

Proper migration of neurons is one of the most important aspects of early brain development. After neuronal progenitors are born in their respective germinal niches, they must migrate to their final locations to form precise neural circuits. A majority of migrating neurons move by associating and disassociating with glial fibers, which serve as scaffolding for the developing brain. Cerebellar granule neurons provide a model system for examination of the mechanisms of neuronal migration in dissociated and slice culture systems; the ability to purify these cells allows migration assays to be paired with genetic, molecular, and biochemical findings. CGNs migrate in a highly polarized fashion along radial glial fibers, using a two-stroke nucleokinesis cycle. The PAR polarity complex of PARD3, PARD6, and an atypical protein kinase C (aPKC) regulate several aspects of neuronal migration. The PAR polarity complex regulates the coordinated movements of the centrosome and soma during nucleokinesis, and also the stability of the microtubule cytoskeleton during migration. PAR proteins coordinate actomyosin dynamics in the leading process of migrating neurons, which are required for migration. The PAR complex also controls the cell-cell adhesions made by migrating neurons along glial cells, and through this mechanism regulates germinal zone exit during prenatal brain development. These findings suggest that the PAR complex coordinates the movement of multiple cellular elements as neurons migrate and that further examination of PAR complex effectors will not only provide novel insights to address fundamental challenges to the field but also expand our understanding of how the PAR complex functions at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KM, Gleeson JG, Shoup SM, Walsh CA (1998) A YAC contig in Xq22. 3-q23, from DXS287 to DXS8088, spanning the brain-specific genes doublecortin (DCX) and PAK3. Genomics 52(2):214–218

    Article  PubMed  CAS  Google Scholar 

  • Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347

    Article  PubMed  CAS  Google Scholar 

  • Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25(24):5691–5699. doi:25/24/5691 [pii] 10.1523/JNEUROSCI.1030-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429(6992):667–671. doi:http://www.nature.com/nature/journal/v429/n6992/suppinfo/nature02590_S1.html

    Google Scholar 

  • Chen S, Chen J, Shi H, Wei M, Castaneda-Castellanos David R, Bultje Ronald S, Pei X, Kriegstein Arnold R, Zhang M, Shi S-H (2013) Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. Dev Cell 24(1):26–40. doi:http://dx.doi.org/10.1016/j.devcel.2012.11.014

    Google Scholar 

  • Cho C, Vale RD (2012) The mechanism of dynein motility: insight from crystal structures of the motor domain. Biochim Biophys Acta 1823(1):182–191. doi:http://dx.doi.org/10.1016/j.bbamcr.2011.10.009

    Google Scholar 

  • Dormoy V, Tormanen K, Sütterlin C (2013) Par6γ is at the mother centriole and controls centrosomal protein composition through a Par6α-dependent pathway. J Cell Sci 126(3):860–870. doi:10.1242/jcs.121186

    Article  PubMed  CAS  Google Scholar 

  • Dujardin DL, Vallee RB (2002) Dynein at the cortex. Curr Opin Cell Biol 14(1):44–49

    Article  PubMed  CAS  Google Scholar 

  • Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163(6):1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Edmondson JC, Hatten ME (1987) Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci 7(6):1928–1934

    PubMed  CAS  Google Scholar 

  • Edmondson J, Liem R, Kuster J, Hatten M (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J Cell Biol 106(2):505–517. doi:10.1083/jcb.106.2.505

    Article  PubMed  CAS  Google Scholar 

  • Famulski JK, Trivedi N, Howell D, Yang Y, Tong Y, Gilbertson R, Solecki DJ (2010) Siah regulation of Pard3A controls neuronal cell adhesion during germinal zone exit. Science 330(6012):1834–1838. doi:10.1126/science.1198480

    Article  PubMed  CAS  Google Scholar 

  • Faulkner NE, Dujardin DL, Tai CY, Vaughan KT, O’Connell CB, Wang Y, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2(11):784–791

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Olson EC, Stukenberg PT, Flanagan LA, Kirschner MW, Walsh CA (2000) LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28(3):665

    Article  PubMed  CAS  Google Scholar 

  • Fishell G, Hatten ME (1991) Astrotactin provides a receptor system for CNS neuronal migration. Development 113(3):755–765

    PubMed  CAS  Google Scholar 

  • Fishman R, Hatten M (1993) Multiple receptor systems promote CNS neural migration. J Neurosci 13(8):3485–3495

    PubMed  CAS  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet PJC (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23(2):247–256

    Article  PubMed  CAS  Google Scholar 

  • Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26:315–333

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23(2):257–271. doi:S0896-6273(00)80778-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gregory W, Edmondson J, Hatten M, Mason C (1988) Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci 8(5):1728–1738

    PubMed  CAS  Google Scholar 

  • Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125(7):1361–1374

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13(5):179–184. doi:http://dx.doi.org/10.1016/0166-2236(90)90044-B

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the development cerebellum. Annu Rev Neurosci 18(1):385–408

    Article  PubMed  CAS  Google Scholar 

  • He M, Z-h Z, C-b G, Xia D, X-b Y (2010) Leading tip drives soma translocation via forward F-actin flow during neuronal migration. J Neurosci 30(32):10885–10898. doi:10.1523/jneurosci.0240-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30(6):276–283

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y, Kurihara H, Sakai T, Suzuki Y, Yamanaka T, Suzuki A, Mizuno K, Ohno S (2002) Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 115(12):2485–2495

    PubMed  CAS  Google Scholar 

  • Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, Kaibuchi K (2010) Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton 67(5):297–308. doi:10.1002/cm.20444

    PubMed  CAS  Google Scholar 

  • Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2(8):531–539

    Article  PubMed  CAS  Google Scholar 

  • Kamm KE, Stull JT (2001) Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276(7):4527–4530. doi:10.1074/jbc.R000028200

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12(Spec No 1):R89–R96

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi T, Hoshino M (2007) Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Dev Neurosci 30(1–3):36–46

    Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52(3):311–320

    Article  PubMed  CAS  Google Scholar 

  • Kodani A, Tonthat V, Wu B, Sütterlin C (2010) Par6α interacts with the dynactin subunit p150Glued and is a critical regulator of centrosomal protein recruitment. Mol Biol Cell 21(19):3376–3385. doi:10.1091/mbc.E10-05-0430

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1998) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18(4):1478–1490

    PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21(2):527–540

    PubMed  CAS  Google Scholar 

  • Le Clainche C, Carlier M-F (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88(2):489–513. doi:10.1152/physrev.00021.2007

    Article  PubMed  Google Scholar 

  • Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2(8):540–547

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Kawamoto S, Hara Y, Adelstein RS (2004) A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 15(6):2568–2579. doi:10.1091/mbc.E03-11-0836

    Article  PubMed  CAS  Google Scholar 

  • Manzini MC, Walsh CA (2011) What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev 21(3):333–339. doi:10.1016/j.gde.2011.01.006

    Article  PubMed  CAS  Google Scholar 

  • Marín O, Valiente M, Ge X, Tsai L-H (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2(2):a001834. doi:10.1101/cshperspect.a001834

    Article  PubMed  Google Scholar 

  • Martini FJ, Valdeolmillos M (2010) Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. J Neurosci 30(25):8660–8670. doi:10.1523/jneurosci.1962-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Métin C, Luccardini C (2010) Ubiquitination inhibits neuronal exit. Science 330(6012):1754–1755. doi:10.1126/science.1200475

    Article  PubMed  Google Scholar 

  • Métin C, Vallee RB, Rakic P, Bhide PG (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28(46):11746–11752. doi:10.1523/jneurosci.3860-08.2008

    Article  PubMed  Google Scholar 

  • Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19. doi:http://dx.doi.org/10.1016/j.conb.2008.05.010

    Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1(9):761–772. doi:http://dx.doi.org/10.1016/0896-6273(88)90124-9

    Google Scholar 

  • Moussavi RS, Kelley CA, Adelstein RS (1993) Phosphorylation of vertebrate nonmuscle and smooth muscle myosin heavy chains and light chains. Mol Cell Biochem 127–128:219–227

    Article  PubMed  Google Scholar 

  • Munro EM (2006) PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol 18(1):86–94

    Article  PubMed  CAS  Google Scholar 

  • Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans Embryo. Dev Cell 7(3):413–424. doi:http://dx.doi.org/10.1016/j.devcel.2004.08.001

  • Nance J, Zallen JA (2011) Elaborating polarity: PAR proteins and the cytoskeleton. Development 138(5):799–809. doi:10.1242/dev.053538

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258(5080):299–302

    Article  PubMed  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141(3):283–312

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Knyihar-Csillik E, Csillik B (1996) Polarity of microtubule assemblies during neuronal cell migration. Proc Natl Acad Sci U S A 93(17):9218–9222

    Article  PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  PubMed  CAS  Google Scholar 

  • Rivas RJ, Hatten ME (1995) Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 15(2):981–989

    PubMed  CAS  Google Scholar 

  • Rochlin MW, Itoh K, Adelstein RS, Bridgman PC (1995) Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 108(Pt 12):3661–3670

    PubMed  CAS  Google Scholar 

  • Ross ME, Walsh CA (2001) Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci 24:1041–1070

    Article  PubMed  CAS  Google Scholar 

  • Rosse C, Boeckeler K, Linch M, Radtke S, Frith D, Barnouin K, Morsi AS, Hafezparast M, Howell M, Parker PJ (2012) Binding of dynein intermediate chain 2 to paxillin controls focal adhesion dynamics and migration. J Cell Sci 125(16):3733–3738. doi:10.1242/jcs.089557

    Article  PubMed  CAS  Google Scholar 

  • Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12(5):1011–1029. doi:http://dx.doi.org/10.1016/0896-6273(94)90310-7

  • Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M, Miyata T (2013) Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb Cortex

    Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657. doi:10.1073/pnas.0506008102

    Article  PubMed  CAS  Google Scholar 

  • Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG (2009) Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 19(13):1065–1074. doi:http://dx.doi.org/10.1016/j.cub.2009.05.065

    Google Scholar 

  • Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, Takebayashi H, Kiyonari H, Ishizaki T, Furuyashiki T (2012) A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci 15(3):373–380

    Article  PubMed  CAS  Google Scholar 

  • Shu T, Ayala R, Nguyen MD, Xie Z, Gleeson JG, Tsai LH (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44(2):263–277

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai L-H (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2(11):767–775

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7(11):1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Trivedi N, Govek E-E, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-Actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63(1):63–80. doi:http://dx.doi.org/10.1016/j.neuron.2009.05.028

  • Solinet S, Akpovi C, Garcia C, Barry A, Vitale M (2011) Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex. Histochem Cell Biol 136(3):245–266. doi:10.1007/s00418-011-0840-0

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165(5):709–721. doi:10.1083/jcb.200309025 jcb.200309025 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Trivedi N, Solecki DJ (2011) Neuronal migration illuminated: a look under the hood of the living neuron. Cell Adh Migr 5(1):42–47

    Article  PubMed  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388

    Article  PubMed  CAS  Google Scholar 

  • Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979

    Article  PubMed  CAS  Google Scholar 

  • Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci U S A 104(41):16182–16187. doi:10.1073/pnas.0708047104

    Article  PubMed  CAS  Google Scholar 

  • Valiente M, Marín O (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB, Seale GE, Tsai J-W (2009) Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 19(7):347–355. doi:http://dx.doi.org/10.1016/j.tcb.2009.03.009

    Google Scholar 

  • Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF (2007) Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol 176(5):573–580. doi:10.1083/jcb.200612043

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790

    Article  PubMed  CAS  Google Scholar 

  • Wang D, She L, Y-n S, X-b Y, Wen Y, M-m P (2012) Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells. Proc Natl Acad Sci 109(51):E3558–E3567. doi:10.1073/pnas.1219203110

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH (2003) Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114(4):469–482

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M, Miyoshi R, Toyokuni R, Zhu Y, Murakami F (2012) Dynamics of the leading process, nucleus, and Golgi apparatus of migrating cortical interneurons in living mouse embryos. Proc Natl Acad Sci U S A 109(41):16737–16742

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, Xu Z (2012) POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep 2(3):640–651

    Article  PubMed  CAS  Google Scholar 

  • Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ (2000) Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol Biol Cell 11(6):2047–2056

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272(5260):417–419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 We thank Sharon Naron, Niraj Trivedi, and Shalini Singh for editorial support in preparation of the manuscript. The Solecki Lab is funded by the American Lebanese Syrian Associated Charities (ALSAC), by grant #1-FY12-455 from the March of Dimes, and by grant 1R01NS066936 from the National Institute of Neurological Disorders and Stroke (NINDS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Solecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramahi, J.S., Solecki, D.J. (2014). The PAR Polarity Complex and Cerebellar Granule Neuron Migration. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_7

Download citation

Publish with us

Policies and ethics