Skip to main content

Quantum Chemical Study of Point Defects in Tin Dioxide

  • Conference paper
  • First Online:
Transactions on Engineering Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 275))

Abstract

First-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), and the introduction of intra-atomic interaction term for strongly correlated \(d\)-electrons (DFT+\(U)\), have been utilized to study defective \(\text {SnO}_{2}\) crystals. Introduction of some impurities, such as fluorine, gallium, aluminium and chromium affect the structural, electronic properties and magnetic properties of tin dioxide. F-doping produces alterations in the structure, with Sn atoms moving away from the impurity and O atoms moving closer to it; and, the system presents \(n\)-type electrical conductivity. Ga impurity incorporation distorts its surrounding, with the atoms moving closer to the impurity whereas the electrical properties of crystal remain unchanged. Results for Al impurity doping are almost the same as those for the Ga-doping. Cr presence produces the atoms in the neighbourhood of the point defect to move towards it, the band gap width has been slightly reduced and we observe the occurrence of a local magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamanaka T, Kurashima R, Mimaki J (2000) X-ray diffraction study of bond character of rutile type \(\text{ SiO }_{2}\), \(\text{ GeO }_{2}\) and \(\text{ SnO }_{2}\). Z Kristallogr 215(7):424–428

    Google Scholar 

  2. Godinho KG, Walsh A, Watson GW (2009) Energetic and electronic structure analysis of intrinsic defects in \(\text{ SnO }_{2}\). J Phys Chem 113:439–448

    Article  Google Scholar 

  3. Kiliç C, Zunger A (2002) Origins of coexistence of conductivity and transparency in \(\text{ SnO }_{2}\). Phys Rev Lett 88(9):095501

    Article  Google Scholar 

  4. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bulletin 25(8):22–27

    Article  Google Scholar 

  5. Maestre D, Ramirez-Castellanos J, Hidalgo P, Cremades A, Gonzalez-Calbet JM, Piqueras J (2007) Study of defects in sintered \(\text{ SnO }_{2}\) by high resolution transmission electron microscopy and cathodoluminescence. Eur J Inorg Chem 11:1544–1548

    Article  Google Scholar 

  6. Wagner JF (2003) Transparent Electronics. Science 300:1245–1246

    Article  Google Scholar 

  7. Presley RE, Munsee CL, Park CH, Hong D, Wager JF (2004) Tin oxide transparent thin-film transistors. J Phys D 37(20):2810–2813

    Article  Google Scholar 

  8. Zhang B, Tian Y, Zhang J, Cai W (2010) The FTIR studies on the structural and electrical properties of \(\text{ SnO }_{2}\):F films as a function of hydrofluoric acid concentration. Optoelectron Adv Mat 4(8):1158–1162

    Google Scholar 

  9. Moholkar AV, Pawar SM, Rajpure KY, Bhosale CH, Kim JH (2009) Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl Surf Sci 255(23):9358–9364

    Article  Google Scholar 

  10. Kuantama E, Han DW, Sung YM, Song JE, Han CH (2009) Structure and thermal properties of transparent conductive nanoporous F:\(\text{ SnO }_{2}\) films. Thin Solid Films 517(14):4211–4214

    Article  Google Scholar 

  11. Sirbuly DJ, Law M, Yan H, Yang P (2005) Semiconductor nanowires for subwavelength photonics integration. J Phys Chem B 109,:15190–15213

    Article  Google Scholar 

  12. Chaisitsak S (2011) Nanocrystalline \(\text{ SnO }_{2}\):F thin films for liquid petroleum gas sensors. Sensors 11(7):7127–7140

    Article  Google Scholar 

  13. Mäki-Jaskari MA, Rantala TT (2001) Band structure and optical parameters of the SnO\(_{2}\)(110) surface. Phys Rev B 64(7):075407–075413

    Article  Google Scholar 

  14. Robertson J, Xiong K, Clark SJ (2006) Band gaps and defect levels in functional oxides. Thin Solid Films 496(1):1–7

    Article  Google Scholar 

  15. Errico LA (2007) Ab initio FP-LAPW study of the semiconductors SnO and \(\text{ SnO }_{2}\). Physica B 389(1):140–144

    Article  Google Scholar 

  16. Alterkop B, Parkansky N, Goldsmith S, Boxman RL (2003) Effect of air annealing on opto-electrical properties of amorphous tin oxide films. J Phys D 36(5):552–558

    Article  Google Scholar 

  17. Joseph J, Mathew V, Abraham KE (2007) Studies on Cu, Fe, and Mn doped \(\text{ SnO }_{2}\) semi-conducting transparent films prepared by a vapour deposition technique. Chin J Phys 45(1):84–97

    Google Scholar 

  18. Liu XM, Wu SL, Chu PK, Zheng J, Li SL (2006) Characteristics of nano Ti-doped \(\text{ SnO }_{2}\) powders prepared by sol-gel method. Mater Sci Eng A 426:274–277

    Article  Google Scholar 

  19. Kawamura F, Kamei M, Yasui I (1999) Effect of impurity cations on the growth and habits of \(\text{ SnO }_{2}\) crystals in the \(\text{ SnO }_{2}-\text{ Cu }_{2}\)O flux system. J Am Ceram Soc 82(3):774–776

    Article  Google Scholar 

  20. Rivera R, Marcillo F, Chamba W, Puchaicela P, Stashans A (2013) \(\text{ SnO }_{2}\) physical and chemical properties due to the impurity doping. Lecture notes in engineering and computer science: proceedings of the international multiConference of engineers and computer scientists. Hong Kong, pp 814–818, 13–15 Mar 2013

    Google Scholar 

  21. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    Article  Google Scholar 

  22. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    Article  Google Scholar 

  23. Kresse G (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis. Comput Mater Sci 6(1):15–50

    Article  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  25. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  26. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  Google Scholar 

  27. Perdew JP, Ernzerhof M, Burke K (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  MathSciNet  Google Scholar 

  29. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954

    Article  Google Scholar 

  30. Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50(23):16861–16871

    Article  Google Scholar 

  31. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):R5467–R5470

    Article  Google Scholar 

  32. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509

    Article  Google Scholar 

  33. Bader RFW (1990) Atoms in molecules: a quantum theory, the international series of monographs on chemistry 22. Oxford University Press, Oxford

    Google Scholar 

  34. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  35. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28(5):899–908

    Article  Google Scholar 

  36. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21(8):084204

    Article  Google Scholar 

  37. Stashans A, Lunell S, Grimes RW (1996) Theoretical study of perfect and defective \(\text{ TiO }_{2}\) crystals. J Phys Chem Solids 57(9):1293–1301

    Article  Google Scholar 

  38. Zhang B, Tian Y, Zhang JX, Cai W (2011) Structural, optical, electrical properties and FTIR studies of fluorine doped \(\text{ SnO }_{2}\) films deposited by sprays pyrolysis. J Mater Sci 46(6):1884–1889

    Google Scholar 

  39. Wu S, Yuan S, Shi L, Zhao Y, Fang J (2010) Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J Colloid Interface Sci 346(1):12–16

    Article  Google Scholar 

  40. Elangovan E, Ramamurthi K (2005) A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Appl Surf Sci 249(1–4):183–196

    Article  Google Scholar 

  41. Maldonado F, Rivera R, Stashans A (2012) Structure, electronic and magnetic properties of Ca-doped chromium oxide studied by the DFT method. Physica B 407(8):1262–1267

    Article  Google Scholar 

  42. Maldonado F, Novillo C, Stashans A (2012) Ab initio calculation of chromium oxide containing Ti dopant. Chem Phys 393(1):148–152

    Article  Google Scholar 

  43. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  44. Rivera R, Pinto HP, Stashans A, Piedra L (2012) Density functional theory study of Al-doped hematite. Phys Scr 85(1):015602

    Article  Google Scholar 

  45. Patiño E, Stashans A (2001) Structural and electronic effects in \(\text{ BaTiO }_{3}\) due to the Nb doping. Ferroelectrics 256(1):189–200

    Article  Google Scholar 

  46. Stashans A, Eras L, Chamba G (2010) Modelling of Al impurity in perovskite and ilmenite structures of \(\text{ MgSiO }_{3}\). Phys Chem Minerals 37(4):191–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rivera, R., Marcillo, F., Chamba, A., Puchaicela, P., Stashans, A. (2014). Quantum Chemical Study of Point Defects in Tin Dioxide. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7684-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7684-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7683-8

  • Online ISBN: 978-94-007-7684-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics