Skip to main content

Durability and Testing – Degradation via Mass Transport

  • Chapter
  • First Online:
Book cover Alkali Activated Materials

Abstract

In most applications of reinforced concrete, the predominant modes of structural failure of the material are actually related more to degradation of the embedded steel reinforcing rather than of the binder itself. Thus, a key role played by any structural concrete is the provision of sufficient cover depth, and alkalinity, to hold the steel in a passive state for an extended period of time. The loss of passivation usually takes place due to the ingress of aggressive species such as chloride, and/or the loss of alkalinity by processes such as carbonation. This means that the mass transport properties of the hardened binder material are essential in determining the durability of concrete, and thus the analysis and testing of the transport-related properties of alkali-activated materials will be the focus of this chapter. Sections dedicated to steel corrosion chemistry within alkali-activated binders, and to efflorescence (which is a phenomenon observed in the case of excessive alkali mobility), are also incorporated into the discussion due to their close connections to transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers, T.C., Brownyard, T.L.: Studies of the physical properties of hardened Portland cement paste. Part 7. Permeability and absorptivity. J. Am. Concr. Inst. Proc. 18(7), 865–880 (1947)

    Google Scholar 

  2. Garboczi, E.J.: Permeability, diffusivity, and microstructural parameters: a critical review. Cem. Concr. Res. 20(4), 591–601 (1990)

    Google Scholar 

  3. Ollivier, J.P., Maso, J.C., Bourdette, B.: Interfacial transition zone in concrete. Adv. Cem. Based Mater. 2(1), 30–38 (1995)

    Google Scholar 

  4. Lu, S., Landis, E., Keane, D.: X-ray microtomographic studies of pore structure and permeability in Portland cement concrete. Mater. Struct. 39(6), 611–620 (2006)

    Google Scholar 

  5. Kropp, J., Hilsdorf, H.K. (eds.): Performance criteria for concrete durability; RILEM Report REP12. E&FN Spon. London, UK (1995)

    Google Scholar 

  6. Torrent, R., Fernández Luco, L. (eds.): Non-destructive Evaluation of the Penetrability and Thickness of the Concrete Cover: State of the Art Report of RILEM Technical Committee 189-NEC. RILEM Publications, Bagneux (2007)

    Google Scholar 

  7. Harris, A.W., Atkinson, A., Claisse, P.A.: Transport of gases in concrete barriers. Waste Manag. 12(2–3), 155–178 (1992)

    Google Scholar 

  8. Houst, Y.F., Wittmann, F.H.: The diffusion of carbon dioxide and oxygen in aerated concrete. In: Wittmann, F.H. (ed.) 2nd International Colloquium: Materials Science and Restoration, pp. 629–634. WTA, Esslingen, Germany (1986)

    Google Scholar 

  9. Jung, S.H., Lee, M.K., Oh, B.H.: Measurement device and characteristics of diffusion coefficient of carbon dioxide in concrete. ACI Mater. J. 108(6), 589–595 (2011)

    Google Scholar 

  10. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Google Scholar 

  11. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Google Scholar 

  12. Diamond, S.: Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525 (2000)

    Google Scholar 

  13. Kaufmann, J., Loser, R., Leemann, A.: Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. J. Colloid Interf. Sci. 336, 730–737 (2009)

    Google Scholar 

  14. Kaufmann, J.: Characterization of pore space of cement-based materials by combined mercury and Wood’s metal intrusion. J. Am. Ceram. Soc. 92(1), 209–216 (2009)

    Google Scholar 

  15. Lloyd, R.R., Provis, J.L., Smeaton, K.J., van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Microporous Mesoporous Mater. 126(1–2), 32–39 (2009)

    Google Scholar 

  16. Deutsches Institut für Normung: Bestimmung der Porengrößenverteilung und der spezifischen Oberfläche mesoporöser Feststoffe durch Stickstoffsorption; Verfahren nach Barrett, Joyner und Halenda (BJH) (Determination of the pore size distribution and specific surface area of mesoporous solids by means of nitrogen sorption – Method of Barrett, Joyner and Halenda (BJH)) (DIN 66134). Berlin, Germany (1997)

    Google Scholar 

  17. International Organization for Standardization: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 2: Analysis of Mesopores and Macropores by Gas Adsorption (ISO 15901-2:2006). Geneva, Switzerland (2006)

    Google Scholar 

  18. Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44–45(1), 697–707 (2001)

    Google Scholar 

  19. Metroke, T., Thommes, M., Cychosz, K.: Porosity characteristics of geopolymers: influence of synthesis conditions. In: 36th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, FL. American Ceramic Society (2012)

    Google Scholar 

  20. Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671 (2010)

    Google Scholar 

  21. Sindhunata, Provis, J.L., Lukey, G.C., Xu, H., van Deventer, J.S.J.: Structural evolution of fly ash-based geopolymers in alkaline environments. Ind. Eng. Chem. Res. 47(9), 2991–2999 (2008)

    Google Scholar 

  22. Sindhunata, P.K., van Deventer, J.S.J., Lukey, G.C., Xu, H.: Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Ind. Eng. Chem. Res. 45(10), 3559–3568 (2006)

    Google Scholar 

  23. Deutsches Institut für Normung: Mikroporenanalyse mittels Gasadsorption (Micropore analysis by gas adsorption) (DIN 66135). Berlin, Germany (2001)

    Google Scholar 

  24. International Organization for Standardization: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 3: Analysis of Micropores by Gas Adsorption (ISO 15901-3:2007). Geneva, Switzerland (2007)

    Google Scholar 

  25. Sazama, P., Bortnovsky, O., Dědeček, J., Tvarůžková, Z., Sobalík, Z.: Geopolymer based catalysts–New group of catalytic materials. Catal. Today 164(1), 92–99 (2011)

    Google Scholar 

  26. ASTM International: Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry (ASTM D4404 – 10). West Conshohocken, PA (2010)

    Google Scholar 

  27. ASTM International: Standard Test Method for Determining Pore Volume Distribution of Catalysts by Mercury Intrusion Porosimetry (ASTM D4284 – 07). West Conshohocken, PA (2007)

    Google Scholar 

  28. Deutsches Institut für Normung: Bestimmung der Porenvolumenverteilung und der spezifischen Oberfläche von Feststoffen durch Quecksilberintrusion (Determination of pore volume distribution and specific surface area of solids by mercury intrusion) (DIN 66133). Berlin, Germany (1993)

    Google Scholar 

  29. ASTM International: Automated Pore Volume and Pore Size Distribution of Porous Substances by Mercury Porosimetry (UOP578 – 11). West Conshohocken, PA (2011)

    Google Scholar 

  30. British Standards Institution: Porosity and Pore Size Distribution of Materials. Method of Evaluation by Mercury Porosimetry (BS 7591-1:1992). London, UK (1992)

    Google Scholar 

  31. International Organization for Standardization: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 1: Mercury Porosimetry (ISO 15901-1:2005). Geneva, Switzerland (2005)

    Google Scholar 

  32. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties. Cem. Concr. Res. 23(2), 407–421 (1993)

    Google Scholar 

  33. Bell, J.L., Gordon, M., Kriven, W.M.: Nano- and microporosity in geopolymer gels. Microsc. Microanal. 12(S02), 552–553 (2006)

    Google Scholar 

  34. Bell, J.L., Kriven, W.M.: Nanoporosity in aluminosilicate, geopolymeric cements. In: Microscopy and Microanalysis ’04 (Proceedings of 62nd Annual Meeting of the Microscopy Society of America), vol. 10, Microscopy Society of America. Reston, VA (2004)

    Google Scholar 

  35. Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and nanoporosity in as-set geopolymers. Ceram. Eng. Sci. Proc. 27(2), 313–324 (2006)

    Google Scholar 

  36. Zhang, Z., Yao, X., Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism. Appl. Clay Sci. 49(1–2), 7–12 (2010)

    Google Scholar 

  37. Wong, H.S., Buenfeld, N.R., Head, M.K.: Estimating transport properties of mortars using image analysis on backscattered electron images. Cem. Concr. Res. 36(8), 1556–1566 (2006)

    Google Scholar 

  38. Brough, A.R., Atkinson, A.: Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cem. Concr. Res. 30(6), 849–854 (2000)

    Google Scholar 

  39. Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011)

    Google Scholar 

  40. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: effect of MgO. Cem. Concr. Res. 41(9), 955–963 (2011)

    Google Scholar 

  41. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: effect of Al2O3. Cem. Concr. Res. 42(1), 74–83 (2012)

    Google Scholar 

  42. Le Saoût, G., Ben Haha, M., Winnefeld, F., Lothenbach, B.: Hydration degree of alkali-activated slags: a 29Si NMR study. J. Am. Ceram. Soc. 94(12), 4541–4547 (2011)

    Google Scholar 

  43. Willis, K.L., Abell, A.B., Lange, D.A.: Image-based characterization of cement pore structure using Wood’s metal intrusion. Cem. Concr. Res. 28(12), 1695–1705 (1998)

    Google Scholar 

  44. Nemati, K.M.: Preserving microstructure of concrete under load using the Wood’s metal technique. Int. J. Rock Mech. Min Sci. 37(1–2), 133–142 (2000)

    Google Scholar 

  45. Diamond, S., Landis, E.N.: Microstructural features of a mortar as seen by computed microtomography. Mater. Struct. 40(9), 989–993 (2007)

    Google Scholar 

  46. Gallucci, E., Scrivener, K., Groso, A., Stampanoni, M., Margaritondo, G.: 3D experimental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography (μCT). Cem. Concr. Res. 37(3), 360–368 (2007)

    Google Scholar 

  47. Nakashima, Y., Kamiya, S.: Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data. J. Nucl. Sci. Technol. 44(9), 1233–1247 (2007)

    Google Scholar 

  48. Promentilla, M.A.B., Sugiyama, T., Hitomi, T., Takeda, N.: Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomography. Cem. Concr. Res. 39, 548–557 (2009)

    Google Scholar 

  49. Rattanasak, U., Kendall, K.: Pore structure of cement/pozzolan composites by X-ray microtomography. Cem. Concr. Res. 35(4), 637–640 (2005)

    Google Scholar 

  50. Provis, J.L., Myers, R.J., White, C.E., van Deventer, J.S.J.: Linking structure, performance and durability of alkali-activated aluminosilicate binders. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid, Spain. CD-ROM (2011)

    Google Scholar 

  51. Provis, J.L., Myers, R.J., White, C.E., Rose, V., van Deventer, J.S.J.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42(6), 855–864 (2012)

    Google Scholar 

  52. van Deventer, J.S.J., Provis, J.L., Duxson, P.: Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89–104 (2012)

    Google Scholar 

  53. Provis, J.L., Rose, V., Winarski, R.P., van Deventer, J.S.J.: Hard X-ray nanotomography of amorphous aluminosilicate cements. Scripta Mater. 65(4), 316–319 (2011)

    Google Scholar 

  54. Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)

    Google Scholar 

  55. Deja, J.: Carbonation aspects of alkali activated slag mortars and concretes. Silic. Ind. 67(1), 37–42 (2002)

    Google Scholar 

  56. Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008)

    Google Scholar 

  57. Provis, J.L., Muntingh, Y., Lloyd, R.R., Xu, H., Keyte, L.M., Lorenzen, L., Krivenko, P.V., van Deventer, J.S.J.: Will geopolymers stand the test of time? Ceram. Eng. Sci. Proc. 28(9), 235–248 (2007)

    Google Scholar 

  58. Adam, A.A.: Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete. Ph.D. thesis, RMIT University (2009)

    Google Scholar 

  59. Rodríguez, E., Bernal, S., Mejía de Gutierrez, R., Puertas, F.: Alternative concrete based on alkali-activated slag. Mater. Constr. 58(291), 53–67 (2008)

    Google Scholar 

  60. Bernal, S.A., Mejía de Gutierrez, R., Pedraza, A.L., Provis, J.L., Rodríguez, E.D., Delvasto, S.: Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1–8 (2011)

    Google Scholar 

  61. Dhir, R.K., Hewlett, P.C., Chan, Y.N.: Near surface characteristics of concrete: intrinsic permeability. Mag. Concr. Res. 41(147), 87–97 (1989)

    Google Scholar 

  62. Parrott, L.J.: Influence of cement type and curing on the drying and air permeability of cover concrete. Mag. Concr. Res. 47(171), 103–111 (1995)

    Google Scholar 

  63. Tsivilis, S., Chaniotakis, E., Batis, G., Meletiou, C., Kasselouri, V., Kakali, G., Sakellariou, A., Pavlakis, G., Psimadas, C.: The effect of clinker and limestone quality on the gas permeability, water absorption and pore structure of limestone cement concrete. Cem. Concr. Res. 21(2), 139–146 (1999)

    Google Scholar 

  64. Monlouis-Bonnaire, J.P., Verdier, J., Perrin, B.: Prediction of the relative permeability to gas flow of cement-based materials. Cem. Concr. Res. 34(5), 737–744 (2004)

    Google Scholar 

  65. Henderson, G.D., Basheer, P.A.M., Long, A.E.: Pull-off test and permeation tests. In: Malhotra, V.M., Carino, N.J. (eds.) Handbook on Nondestructive Testing of Concrete, pp. 6.1–6.12. CRC Press, Boca Raton (2004)

    Google Scholar 

  66. Romer, M., RILEM TC 189-NEC: Recommendation of RILEM TC 189-NEC: ‘Non-destructive evaluation of the concrete cover’ – Comparative test – Part I – Comparative test of ‘penetrability’ methods. Mater. Struct. 38(10), 895–906 (2005)

    Google Scholar 

  67. Kollek, J.: The determination of the permeability of concrete to oxygen by the Cembureau method—a recommendation. Mater. Struct. 22(3), 225–230 (1989)

    Google Scholar 

  68. Alarcon-Ruiz, L., Brocato, M., Dal Pont, S., Feraille, A.: Size effect in concrete intrinsic permeability measurements. Transp. Porous Media 85(2), 541–564 (2010)

    Google Scholar 

  69. Torrent, R.: A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater. Struct. 25(6), 358–365 (1992)

    Google Scholar 

  70. Schweizerisches Ingenieur and Architektenverein (SIA): Betonbau – Ergänzende Festlegungen (SIA 262/1). Zürich, Switzerland (2003)

    Google Scholar 

  71. Jacobs, F., Leemann, A., Denarié, E., Teruzzi, T.: Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen (VSS Report 641). Zurich, Switzerland (2009)

    Google Scholar 

  72. Materials Advanced Services Ltd: Annotated bibliography related to testing the air-permeability of the concrete cover according to the “Torrent” method (Swiss Standard SIA 162/1-E). http://www.tfb.ch/htdocs/Files/Annotated_Bibliography_on_TM_090616.pdf (2009)

  73. Romer, M.: Effect of moisture and concrete composition on the Torrent permeability measurement. Mater. Struct. 38(5), 541–547 (2005)

    Google Scholar 

  74. Basheer, P.A.M., Long, A.E., Montgomery, F.R.: The Autoclam – a new test for permeability. Concrete 28(4), 27–29 (1994)

    Google Scholar 

  75. RILEM Technical Committee 189-NEC: Update of the recommendation of RILEM TC 189-NEC ‘Non-destructive evaluation of the concrete cover’ “Comparative test—Part I—Comparative Test of Penetrability Methods”, Materials & Structures, v38, Dec 2005, pp. 895–906. Mater. Struct. 41(3), 443–447 (2008)

    Google Scholar 

  76. Häkkinen, T.: Durability of alkali-activated slag concrete. Nord. Concr. Res. 6(1), 81–94 (1987)

    Google Scholar 

  77. Sagoe-Crentsil, K., Brown, T., Yan, S.: Medium to long term engineering properties and performance of high-strength geopolymers for structural applications. Adv. Sci. Technol. 69, 135–142 (2010)

    Google Scholar 

  78. Hearn, N., Hooton, R.D., Nokken, M.R.: Pore structure, permeability, and penetration resistance characteristics of concrete. In: Lamond, J.F., Pielert, J.H. (eds.) Significance of Tests and Properties of Concrete and Concrete-Making Materials, pp. 238–252. ASTM International, West Conshohocken (2006)

    Google Scholar 

  79. Banthia, N., Mindess, S.: Water permeability of cement paste. Cem. Concr. Res. 19(5), 727–736 (1989)

    Google Scholar 

  80. ASTM International: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete (ASTM C642 – 13). West Conshohocken, PA (2013)

    Google Scholar 

  81. Standards Australia: Methods of Testing Concrete – Determination of Water Absorption and Apparent Volume of Permeable Voids in Hardened Concrete (AS 1012.21). Sydney, Australia (1999)

    Google Scholar 

  82. Andrews-Phaedonos, F.: VicRoads technical note 89: Test methods for the assessment of durability of concrete (2007)

    Google Scholar 

  83. De Schutter, G., Audenaert, K.: Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration. Mater. Struct. 37(9), 591–596 (2004)

    Google Scholar 

  84. Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S., van Deventer, J.S.J.: Drying-induced changes in the structure of alkali-activated pastes. J. Mater. Sci. 48(9), 3566–3577 (2013)

    Google Scholar 

  85. Wimpenny, D., Duxson, P., Cooper, T., Provis, J.L., Zeuschner, R.: Fibre reinforced geopolymer concrete products for underground infrastructure. In: Concrete 2011, Perth, Australia. CD-ROM proceedings. Concrete Institute of Australia (2011)

    Google Scholar 

  86. Bernal, S.A., Mejía de Gutiérrez, R., Provis, J.L.: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr. Build. Mater. 33, 99–108 (2012)

    Google Scholar 

  87. British Standards Institution: Testing Concrete. Method for Determination of Water Absorption (BS 1881-122:2011). London, UK (2011)

    Google Scholar 

  88. European Committee for Standardization (CEN): Testing Hardened Concrete. Depth of Penetration of Water Under Pressure (EN 12390-8). Brussels, Belgium (2009)

    Google Scholar 

  89. U.S. Army Engineer Research and Development Center: Test Method for Water Permeability of Concrete Using Triaxial Cell (CRD-C 163-92). Vicksburg, Mississippi (1992)

    Google Scholar 

  90. Figg, J.W.: Methods of measuring the air and water permeability of concrete. Mag. Concr. Res. 25(85), 213–219 (1973)

    Google Scholar 

  91. International Organization for Standardization: Concrete, Hardened – Determination of the Depth of Penetration of Water Under Pressure (ISO 7301). Geneva, Switzerland (1963)

    Google Scholar 

  92. Deutsches Institut für Normung: Prüfverfahren für Beton; Festbeton, gesondert hergestellte Probekörper (Testing concrete; hardened concrete, specially prepared specimens) (DIN 1048-5). Berlin, Germany (1991)

    Google Scholar 

  93. Olivia, M., Nikraz, H., Sarker, P.: Improvements in the strength and water penetrability of low calcium fly ash based geopolymer concrete. In: Uomoto, T., Nga, T.V. (eds.) The 3rd ACF International Conference- ACF/VCA 2008, Ho Chi Minh City, Vietnam, pp. 384–391. Vietnam Institute for Building Materials (2008)

    Google Scholar 

  94. Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996)

    Google Scholar 

  95. Wongpa, J., Kiattikomol, K., Jaturapitakkul, C., Chindaprasirt, P.: Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31(10), 4748–4754 (2010)

    Google Scholar 

  96. Talling, B., Krivenko, P.V.: Blast furnace slag – the ultimate binder. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 235–289. Noyes Publications, Park Ridge (1997)

    Google Scholar 

  97. Sugama, T., Brothers, L.E., Van de Putte, T.R.: Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends. Adv. Cem. Res. 17(2), 65–75 (2005)

    Google Scholar 

  98. Zhang, Z., Yao, X., Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl. Clay Sci. 49(1–2), 1–6 (2010)

    MATH  Google Scholar 

  99. Fagerlund, G.: On the capillarity of concrete. Nord. Concr. Res 1, 6.1–6.20 (1982)

    Google Scholar 

  100. ASTM International: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes (ASTM C1585 – 11). West Conshohocken, PA (2011)

    Google Scholar 

  101. European Committee for Standardization (CEN): Methods of Test for Mortar for Masonry. Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar (EN 1015-18). Brussels, Belgium (2002)

    Google Scholar 

  102. Schweizerisches Ingenieur and Architektenverein (SIA): Determination of Water Infiltration Rate (porosity) (SIA 262/1 Appendix A). Zürich, Switzerland (2003)

    Google Scholar 

  103. RILEM TC 116-PCD: test for gas permeablity of concrete. C. Determination of the capillary absorption of water of hardened concrete. Mater. Struct. 32(3), 178–179 (1999)

    Google Scholar 

  104. Häkkinen, T.: The permeability of high strength blast furnace slag concrete. Nord. Concr. Res. 11(1), 55–66 (1992)

    Google Scholar 

  105. Bernal, S., de Gutierrez, R., Delvasto, S., Rodriguez, E.: Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24(2), 208–214 (2010)

    Google Scholar 

  106. Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I., Law, D.W.: Strength, sorptivity and carbonation of geopolymer concrete. In: Ghafoori, N. (ed.) Challenges, Opportunities and Solutions in Structural Engineering and Construction, pp. 563–568. CRC Press, Boca Raton (2009)

    Google Scholar 

  107. Bernal, S.A., Mejía de Gutierrez, R., Rose, V., Provis, J.L.: Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 40(6), 898–907 (2010)

    Google Scholar 

  108. Collins, F., Sanjayan, J.: Unsaturated capillary flow within alkali activated slag concrete. J. Mater. Civil Eng. 20(9), 565–570 (2008)

    Google Scholar 

  109. Collins, F., Sanjayan, J.: Capillary shape: influence on water transport within unsaturated alkali activated slag concrete. J. Mater. Civil Eng. 22(3), 260–266 (2010)

    Google Scholar 

  110. Collins, F., Sanjayan, J.: Prediction of capillary transport of alkali activated slag cementitious binders under unsaturated conditions by elliptical pore shape modeling. J. Porous Mater. 17(4), 435–442 (2010)

    Google Scholar 

  111. Najafi Kani, E., Allahverdi, A., Provis, J.L.: Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34(1), 25–33 (2012)

    Google Scholar 

  112. Okada, K., Ooyama, A., Isobe, T., Kameshima, Y., Nakajima, A., MacKenzie, K.J.D.: Water retention properties of porous geopolymers for use in cooling applications. J. Eur. Ceram. Soc. 29(10), 1917–1923 (2009)

    Google Scholar 

  113. British Standards Institution: Testing Concrete. Recommendations for the Determination of the Initial Surface Absorption of Concrete (BS 1881-208:1996). London, UK (1996)

    Google Scholar 

  114. European Committee for Standardization (CEN): Methods of Test for Masonry Units. Determination of Water Absorption of Aggregate Concrete, Autoclaved Aerated Concrete, Manufactured Stone and Natural Stone Masonry Units due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units (EN 772-11). Brussels, Belgium (2011)

    Google Scholar 

  115. Vicat, L.-J., Smith, J.T.: A practical and scientific treatise on calcareous mortars and cements, artificial and natural; containing, directions for ascertaining the qualities of the different ingredients, for preparing them for use, and for combining them together in the most advantageous manner; with a theoretical investigation of their properties and modes of action. The whole founded upon an extensive series of original experiments, with examples of their practical application on the large scale. John Weale, Architectural Library, London, UK (1837)

    Google Scholar 

  116. Nmai, C.K.: Freezing and thawing. In: Lamond, J.F., Pielert, J.H. (eds.) Significance of Tests and Properties of Concrete and Concrete-Making Materials, pp. 154–163. ASTM International, West Conshohocken (2006)

    Google Scholar 

  117. Garrabrants, A.C., Sanchez, F., Kosson, D.S.: Leaching model for a cement mortar exposed to intermittent wetting and drying. AIChE J. 49(5), 1317–1333 (2003)

    Google Scholar 

  118. Puertas, F., Amat, T., Fernández-Jiménez, A., Vázquez, T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 33(12), 2031–2036 (2003)

    Google Scholar 

  119. Slavík, R., Bednařík, V., Vondruška, M., Nemec, A.: Preparation of geopolymer from fluidized bed combustion bottom ash. J. Mater. Proc. Technol. 200(1–3), 265–270 (2008)

    Google Scholar 

  120. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 2. Technical properties and theoretical examinations. Cem. Concr. Res. 23(3), 518–530 (1993)

    Google Scholar 

  121. Breton, D., Carles-Gibergues, A., Ballivy, G., Grandet, J.: Contribution to the formation mechanism of the transition zone between rock-cement paste. Cem. Concr. Res. 23(2), 335–346 (1993)

    Google Scholar 

  122. Struble, L., Skalny, J., Mindess, S.: A review of the cement-aggregate bond. Cem. Concr. Res. 10(2), 277–286 (1980)

    Google Scholar 

  123. Monteiro, P.J.M., Mehta, P.K.: Improvement of the aggregate–cement paste transition zone by grain refinement of hydration products. In: 8th International Congress on the Chemistry of Cement, vol. 3, pp. 433–437. Rio de Janeiro, Brazil (1986)

    Google Scholar 

  124. Scrivener, K.L., Bentur, A., Pratt, P.L.: Quantitative characterization of the transition zone in high-strength concretes. Adv. Cem. Res. 1, 230–237 (1988)

    Google Scholar 

  125. Mehta, P.K., Monteiro, P.J.M.: Concrete: Microstructure, Properties and Materials, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  126. Mitsui, K., Li, Z., Lange, D.A., Shah, S.P.: Relationship between microstructure and mechanical properties of the paste–aggregate interface. ACI Mater. J. 91, 30–39 (1994)

    Google Scholar 

  127. Trende, U., Büyüköztürk, O.: Size effect and influence of aggregate roughness in interface fracture of concrete composites. ACI Mater. J. 95, 331–338 (1998)

    Google Scholar 

  128. Brough, A.R., Atkinson, A.: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 32(6), 865–879 (2002)

    Google Scholar 

  129. Shi, C., Xie, P.: Interface between cement paste and quartz sand in alkali-activated slag mortars. Cem. Concr. Res. 28(6), 887–896 (1998)

    Google Scholar 

  130. Pacheco-Torgal, F., Castro-Gomes, J.P., Jalali, S.: Investigations of tungsten mine waste geopolymeric binder: strength and microstructure. Constr. Build. Mater. 22(11), 2212–2219 (2008)

    Google Scholar 

  131. Škvára, F., Doležal, J., Svoboda, P., Kopecký, L., Pawlasová, S., Lucuk, M., Dvořáček, K., Beksa, M., Myšková, L., Šulc, R.: Concrete based on fly ash geopolymers. In: Proceedings of 16th IBAUSIL, vol. 1, pp. 1079–1097. Weimar, Germany (2006)

    Google Scholar 

  132. San Nicolas, R., Provis, J.L.: Interfacial transition zone in alkali-activated slag concrete. In: 12th International Conference on Recent Advances in Concrete Technology and Sustainability Issues, ACI SP 289. Supplementary papers CD-ROM. American Concrete Institute, Prague, Czech Republic (2012)

    Google Scholar 

  133. Lee, W.K.W., van Deventer, J.S.J.: The interface between natural siliceous aggregates and geopolymers. Cem. Concr. Res. 34(2), 195–206 (2004)

    Google Scholar 

  134. Lee, W.K.W., van Deventer, J.S.J.: Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements. Cem. Concr. Res. 37(6), 844–855 (2007)

    Google Scholar 

  135. Zhang, J.X., Sun, H.H., Wan, J.H., Yi, Z.L.: Study on microstructure and mechanical property of interfacial transition zone between limestone aggregate and Sialite paste. Constr. Build. Mater. 23(11), 3393–3397 (2009)

    Google Scholar 

  136. Zhang, Y., Sun, W., Li, Z.: Hydration process of interfacial transition in potassium polysialate (K-PSDS) geopolymer concrete. Mag. Concr. Res. 57(1), 33–38 (2005)

    MathSciNet  Google Scholar 

  137. Krivenko, P.V., Gelevera, A.G., Petropavlovsky, O.N., Kavalerova, E.S.: Role of metakaolin additive on structure formation in the contact zone “cement-alkali-susceptible aggregate”. In: Bilek, V. (ed.) 2nd International Conference on Non-Traditional Cement & Concrete, Brno, Czech Republic. Brno University of Technology & ZPSV A.S (2005)

    Google Scholar 

  138. Alonso, C., Andrade, C., Castellote, M., Castro, P.: Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem. Concr. Res. 30(7), 1047–1055 (2000)

    Google Scholar 

  139. Angst, U., Elsener, B., Larsen, C.K., Vennesland, O.: Critical chloride content in reinforced concrete – a review. Cem. Concr. Res. 39(12), 1122–1138 (2009)

    Google Scholar 

  140. Stanish, K.D., Hooton, R.D., Thomas, M.D.A.: Testing the chloride penetration resistance of concrete: a literature review, FHWA Contract Report DTFH61-97-R-00022. Toronto, Canada (1997)

    Google Scholar 

  141. Tang, L.: CHLORTEST – EU funded research project under 5FP growth programme, Final Report: Resistance of Concrete to Chloride Ingress – From Laboratory Tests to In-Field Performance, SP Swedish National Testing and Research Institute (2005)

    Google Scholar 

  142. Andrade, C., Kropp, J. (eds.): Testing and Modelling Chloride Ingress into Concrete: Proceedings of the 3rd International RILEM Workshop. RILEM Proceedings PRO38, Madrid, Spain (2005)

    Google Scholar 

  143. Castellote, M., Andrade, C.: Round-Robin test on methods for determining chloride transport parameters in concrete. Mater. Struct. 39(10), 955–990 (2006)

    Google Scholar 

  144. European Committee for Standardization (CEN): Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Measurement of Chloride Ion Ingress (EN 13396:2004). Brussels, Belgium (2004)

    Google Scholar 

  145. ASTM International: Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding (ASTM C1543-10a). West Conshohocken, PA (2010)

    Google Scholar 

  146. McGrath, P.F., Hooton, R.D.: Re-evaluation of the AASHTO T259 90-day salt ponding test. Cem. Concr. Res. 29(8), 1239–1248 (1999)

    Google Scholar 

  147. Nordtest: Concrete, Hardened: Accelerated Chloride Penetration (NT BUILD 443). Espoo, Finland (1995)

    Google Scholar 

  148. ASTM International: Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion (ASTM C1556 – 11). West Conshohocken, PA (2011)

    Google Scholar 

  149. Yang, C.C., Cho, S.W., Huang, R.: The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test. Cem. Concr. Res. 32(2), 217–222 (2002)

    Google Scholar 

  150. Yang, C.C., Chiang, S.C.: The chloride ponding test and its correlation to the accelerated chloride migration test for concrete. J. Chin. Inst. Eng. 29(6), 1007–1015 (2006)

    Google Scholar 

  151. Yang, C.: The relationship between charge passed and the chloride concentrations in anode and cathode cells using the accelerated chloride migration test. Mater. Struct. 36(10), 678–684 (2003)

    Google Scholar 

  152. Nordtest: Concrete, Mortar and Cement-Based Repair Materials: Chloride Diffusion Coefficient from Migration Cell Experiments (NT BUILD 355), 2nd Edition. Espoo, Finland (1997)

    Google Scholar 

  153. Nordtest: Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady State Migration Experiments (NT BUILD 492). Espoo, Finland (1999)

    Google Scholar 

  154. Tang, L., Nilsson, L.-O.: Rapid determination of the chloride diffusivity in concrete by applying an electrical field. ACI Mater. J. 89(1), 49–53 (1992)

    Google Scholar 

  155. Tang, L., Sørensen, H.: Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete. Mater. Struct. 34(8), 479–485 (2001)

    Google Scholar 

  156. ASTM International: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration (ASTM C1202 – 10). West Conshohocken, PA (2010)

    Google Scholar 

  157. Whiting, D.: Rapid determination of the chloride permeability of concrete, Report No. FHWA RD-81-119, Federal Highway Administration. Washington DC (1981)

    Google Scholar 

  158. Shi, C.: Another Look at the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277), FHWA Resource Center. Federal Highway Administration, Baltimore, MD (2003)

    Google Scholar 

  159. Andrade, C.: Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 23(3), 724–742 (1993)

    Google Scholar 

  160. Pfeifer, D.W., McDonald, D.B., Krauss, P.D.: The rapid chloride permeability test and its correlation to the 90-day chloride ponding test. PCI J. 39(1), 38–47 (1994)

    Google Scholar 

  161. Wee, T.H., Suryavanshi, A.K., Tin, S.S.: Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Mater. J. 97(2), 221–232 (2000)

    Google Scholar 

  162. Shi, C., Stegemann, J.A., Caldwell, R.J.: Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test (AASHTO T277 and ASTM C1202) results. ACI Mater. J. 95(4), 389–394 (1998)

    Google Scholar 

  163. Shi, C.J.: Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cem. Concr. Res. 34(3), 537–545 (2004)

    Google Scholar 

  164. Douglas, E., Bilodeau, A., Malhotra, V.M.: Properties and durability of alkali-activated slag concrete. ACI Mater. J. 89(5), 509–516 (1992)

    Google Scholar 

  165. Roy, D.M.: Hydration, microstructure, and chloride diffusion of slag-cement pastes and mortars. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114,vol. 2, pp. 1265–1281. American Concrete Institute, Trondheim (1989)

    Google Scholar 

  166. Roy, D.M., Jiang, W., Silsbee, M.R.: Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 30, 1879–1884 (2000)

    Google Scholar 

  167. Mejía, R., Delvasto, S., Gutiérrez, C., Talero, R.: Chloride diffusion measured by a modified permeability test in normal and blended cements. Adv. Cem. Res. 15(3), 113–118 (2003)

    Google Scholar 

  168. Husbands, T.B., Malone, P.G., Wakeley, L.D.: Performance of concretes proportioned with Pyrament blended cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2. Vicksburg, MS (1994)

    Google Scholar 

  169. Zia, P., Ahmad, S.H., Leming, M.L., Schemmel, J.J., Elliott, R.P.: Mechanical Behavior of High Performance Concretes, Volume 3: Very High Early Strength Concrete. SHRP-C-363, Strategic Highway Research Program, National Research Council. Washington DC (1993)

    Google Scholar 

  170. Al-Otaibi, S.: Durability of concrete incorporating GGBS activated by water-glass. Constr. Build. Mater. 22(10), 2059–2067 (2008)

    Google Scholar 

  171. Shi, C.: Corrosion resistance of alkali-activated slag cement. Adv. Cem. Res. 15(2), 77–81 (2003)

    Google Scholar 

  172. Bertolini, L., Elsener, B., Pedeferri, P., Polder, R.: Corrosion of Steel in Concrete – Prevention, Diagnosis, Repair. Wiley-VCH. Weinheim, Germany (2004)

    Google Scholar 

  173. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010)

    Google Scholar 

  174. ASTM International: Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete (ASTM C876 – 09). West Conshohocken, PA (2009)

    Google Scholar 

  175. Gu, P., Beaudoin, J.J.: Construction Technology Update No. 18, Obtaining Effective Half-Cell Potential Measurements in Reinforced Concrete Structures, Institute of Research in Construction. National Research Council of Canada, Ottawa, Canada (1998)

    Google Scholar 

  176. Alonso, C., Sánchez, M., Andrade, C., Fullea, J.: Protection capacity of inhibitors against the corrosion of rebars embedded in concrete. In: Brillas, E., Cabot, P.-L. (eds.) Trends in Electrochemistry and Corrosion at the Beginning of the 21st Century, pp. 585–598. Universitat de Barcelona, Barcelona (2004)

    Google Scholar 

  177. ASTM International: Standard Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments (ASTM G109 – 07). West Conshohocken, PA (2007)

    Google Scholar 

  178. European Committee for Standardization (CEN): Admixtures for Concrete, Mortar and Grout. Test Methods. Determination of the Effect on Corrosion Susceptibility of Reinforcing Steel by Potentiostatic Electro-Chemical Test (EN 480-14:2006). Brussels, Belgium (2006)

    Google Scholar 

  179. Trejo, D., Halmen, C., Reinschmidt, K.: Corrosion performance tests for reinforcing steel in concrete: Technical Report FHWA/TX-09/0-4825-1. Texas Transportation Institute (2009)

    Google Scholar 

  180. Poursaee, A., Hansson, C.M.: Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cem. Concr. Res. 39(5), 391–400 (2009)

    Google Scholar 

  181. Fratesi, R.: Galvanized reinforcing steel bars in concrete. In: Working Group A2, Project I2, Final Report, COST 521 Workshop, pp. 33–44. Luxembourg (2002)

    Google Scholar 

  182. Wheat, H.G.: Corrosion behavior of steel in concrete made with Pyrament® blended cement. Cem. Concr. Res. 22, 103–111 (1992)

    Google Scholar 

  183. Miranda, J.M., Fernández-Jiménez, A., González, J.A., Palomo, A.: Corrosion resistance in activated fly ash mortars. Cem. Concr. Res. 35(6), 1210–1217 (2005)

    Google Scholar 

  184. Bastidas, D., Fernández-Jiménez, A., Palomo, A., González, J.A.: A study on the passive state stability of steel embedded in activated fly ash mortars. Corros. Sci. 50(4), 1058–1065 (2008)

    Google Scholar 

  185. Criado, M., Fernández-Jiménez, A., Palomo, A.: Corrosion behaviour of steel embedded in activated fly ash mortars. In: Shi, C., Shen, X. (eds.) First International Conference on Advances in Chemically-Activated Materials, Jinan, China. pp. 36–44. RILEM. Bagneux, France (2010)

    Google Scholar 

  186. Glasser, F.P.: Mineralogical aspects of cement in radioactive waste disposal. Miner. Mag. 65(5), 621–633 (2001)

    Google Scholar 

  187. Fernández-Jiménez, A., Miranda, J.M., González, J.A., Palomo, A.: Steel passive state stability in activated fly ash mortars. Mater. Constr. 60(300), 51–65 (2010)

    Google Scholar 

  188. Castro-Borges, P., Troconis de Rincón, O., Moreno, E.I., Torres-Acosta, A.A., Martínez-Madrid, M., Knudsen, A.: Performance of a 60-year-old concrete pier with stainless steel reinforcement. Mater. Perform. 41, 50–55 (2002)

    Google Scholar 

  189. Criado, M., Bastidas, D.M., Fajardo, S., Fernández-Jiménez, A., Bastidas, J.M.: Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cem. Concr. Compos. 33(6), 644–652 (2011)

    Google Scholar 

  190. Kukko, H., Mannonen, R.: Chemical and mechanical properties of alkali-activated blast furnace slag (F-concrete). Nord. Concr. Res. 1, 16.1–16.16 (1982)

    Google Scholar 

  191. Deja, J., Małolepszy, J., Jaskiewicz, G.: Influence of chloride corrosion on durability of reinforcement in the concrete. In: Malhotra, V.M. (ed.) 2nd International Conference on the Durability of Concrete, pp. 511–521. Montreal, Canada. American Concrete Institute (1991)

    Google Scholar 

  192. Małolepszy, J., Deja, J., Brylicki, W.: Industrial application of slag alkaline concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, vol. 2, pp. 989–1001. Kiev, Ukraine. VIPOL Stock Company (1994)

    Google Scholar 

  193. Holloway, M., Sykes, J.M.: Studies of the corrosion of mild steel in alkali-activated slag cement mortars with sodium chloride admixtures by a galvanostatic pulse method. Corros. Sci. 47(12), 3097–3110 (2005)

    Google Scholar 

  194. Bernal, S.A.: Carbonatación de Concretos Producidos en Sistemas Binarios de una Escoria Siderúrgica y un Metacaolín Activados Alcalinamente. Ph.D. thesis, Universidad del Valle. Cali (2009)

    Google Scholar 

  195. Aperador, W., Mejía de Gutierrez, R., Bastidas, D.M.: Steel corrosion behaviour in carbonated alkali-activated slag concrete. Corros. Sci. 51(9), 2027–2033 (2009)

    Google Scholar 

  196. Montoya, R., Aperador, W., Bastidas, D.M.: Influence of conductivity on cathodic protection of reinforced alkali-activated slag mortar using the finite element method. Corros. Sci. 51(12), 2857–2862 (2009)

    Google Scholar 

  197. Krivenko, P.V.: Alkaline cements. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, vol. 1, pp. 11–129. Kiev, Ukraine. VIPOL Stock Company (1994)

    Google Scholar 

  198. Krivenko, P.V., Pushkaryeva, E.K.: Durability of the Slag Alkaline Cement Concretes. Budivelnik, Kiev (1993)

    Google Scholar 

  199. International Atomic Energy Agency: Safety Reports Series No. 49: Assessing the Need for Radiation Protection Measures in Work Involving Minerals and Raw Materials, Vienna (2006)

    Google Scholar 

  200. Singh, D.D.N., Ghosh, R., Singh, B.K.: Fluoride induced corrosion of steel rebars in contact with alkaline solutions, cement slurry and concrete mortars. Corros. Sci. 44(8), 1713–1735 (2002)

    Google Scholar 

  201. Hobbs, D.W.: Concrete deterioration: causes, diagnosis, and minimising risk. Int. Mater. Rev. 46(3), 117–144 (2001)

    Google Scholar 

  202. Poonguzhali, A., Shaikh, H., Dayal, R.K., Khatak, H.S.: A review on degradation mechanism and life estimation of civil structures. Corros. Rev. 26(4), 215–294 (2008)

    Google Scholar 

  203. Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete — degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38(2), 226–246 (2008)

    Google Scholar 

  204. Fernández-Bertos, M., Simons, S.J.R., Hills, C.D., Carey, P.J.: A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. B112, 193–205 (2004)

    Google Scholar 

  205. Bary, B., Sellier, A.: Coupled moisture—carbon dioxide–calcium transfer model for carbonation of concrete. Cem. Concr. Res. 34, 1859–1872 (2001)

    Google Scholar 

  206. Papadakis, V.G., Vayenas, C.G., Fardis, M.N.: Experimental investigation and mathematical modeling of the concrete carbonation problem. Chem. Eng. Sci. 46, 1333–1338 (1991)

    Google Scholar 

  207. Johannesson, B., Utgenannt, P.: Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 31, 925–931 (2001)

    Google Scholar 

  208. Gonen, T., Yazicioglu, S.: The influence of mineral admixtures on the short and long-term performance of concrete. Build. Environ. 42(8), 3080–3085 (2007)

    Google Scholar 

  209. Rasheeduzzafar: Influence of cement composition on concrete durability. ACI Mater. J. 89(6), 574–586 (1992)

    Google Scholar 

  210. Anstice, D.J., Page, C.L., Page, M.M.: The pore solution phase of carbonated cement pastes. Cem. Concr. Res. 35(2), 377–383 (2005)

    Google Scholar 

  211. Houst, Y.F.: The role of moisture in the carbonation of cementitious materials. Int. Z. Bauinstandsetzen 2(1), 46–66 (1996)

    Google Scholar 

  212. Litvan, G.G., Meyer, A.: Carbonation of granulated blast furnace slag cement concrete during twenty years of field experience. In: ACI SP91, Proceedings of the Second International Conference on Fly ash, Silica Fume, Slag, and Other Natural Pozzolans in Concrete, pp. 1445–1462. CANMET/ACI, Detroit, MI (1986)

    Google Scholar 

  213. Tumidajski, P.J., Chan, G.W.: Effect of sulfate and carbon dioxide on chloride diffusivity. Cem. Concr. Res. 26(4), 551–556 (1996)

    Google Scholar 

  214. Papadakis, V.G.: Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res. 30(2), 291–299 (2000)

    Google Scholar 

  215. Chindaprasirt, P., Rukzon, S., Sirivivatnanon, V.: Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar. Constr. Build. Mater. 22(8), 1701–1707 (2008)

    Google Scholar 

  216. Song, H.-W., Saraswathy, V.: Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—an overview. J. Hazard. Mater. 138(2), 226–233 (2006)

    Google Scholar 

  217. Topçu, İ.B., Boğa, A.R.: Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete. Mater. Des. 31(7), 3358–3365 (2010)

    Google Scholar 

  218. Fajardo, G., Valdez, P., Pacheco, J.: Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides. Constr. Build. Mater. 23(2), 768–774 (2009)

    Google Scholar 

  219. Parande, A.K., Babu, B.R., Karthik, M.A., Kumaar, K.K.D., Palaniswamy, N.: Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr. Build. Mater. 22(3), 127–134 (2008)

    Google Scholar 

  220. ASTM International: Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions (ASTM E104-02). West Conshohocken, PA (2007)

    Google Scholar 

  221. Henry, B.M., Kilmartin, B.A., Groves, G.W.: The microstructure and strength of carbonated aluminous cements. J. Mater. Sci. 32, 6249–6253 (1997)

    Google Scholar 

  222. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 31(9), 1277–1283 (2001)

    Google Scholar 

  223. Duran Atiş, C.: Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 17(3), 147–152 (2003)

    Google Scholar 

  224. Bernal, S.A., Rodríguez, E.: Durability and Mechanical Properties of Alkali-Activated Slag Concretes. B. Eng. thesis, Universidad del Valle (2004)

    Google Scholar 

  225. Jerga, J.: Physico-mechanical properties of carbonated concrete. Constr. Build. Mater. 18(9), 645–652 (2004)

    Google Scholar 

  226. European Committee for Standardization (CEN): Products and Systems for the Protection and Repair of Concrete Structures – Test Methods – Determination of Resistance to Carbonation (EN 13295:2004). Brussels, Belgium (2004)

    Google Scholar 

  227. International Organization for Standardization: Determination of the Potential Carbonation Resistance of Concrete — Accelerated Carbonation Method (ISO/CD 1920-12). Geneva, Switzerland (2012)

    Google Scholar 

  228. European Committee for Standardization (CEN): Products and Systems for the Protection and Repair of Concrete Structures – Test Methods – Determination of the Carbonation Depth in a Hardened Concrete Through the Phenolphthalein Method (EN 14630:2006). Brussels, Belgium (2006)

    Google Scholar 

  229. RILEM TC 56-MHM: CPC-18 Measurement of hardened concrete carbonation depth. Mater. Struct. 21(6), 453–455 (1988)

    Google Scholar 

  230. NORDTEST: Concrete, Repairing Materials and Protective Coating: Carbonation resistance (NT Build 357). Espoo, Finland (1989)

    Google Scholar 

  231. Laboratório Nacional de Engenharia Civil: Betões. Determinação da resistência à carbonatação. Estacionário (LNEC E391). Lisbon, Portugal (1993)

    Google Scholar 

  232. AFPC-AFREM: Durabilité des bétons, méthodes recommandées pour la mesure des grandeurs associées à la durabilité: Mode opératoire recommandé, essai de carbonatation accéléré, mesure de l’épaisseur de béton carbonaté, pp. 153–158. Toulouse, France (1997)

    Google Scholar 

  233. Melchers, R.E., Li, C.Q., Davison, M.A.: Observations and analysis of a 63-year-old reinforced concrete promenade railing exposed to the North Sea. Mag. Concr. Res. 61(4), 233–243 (2009)

    Google Scholar 

  234. Vassie, P.R.: Measurement techniques for the diagnosis, detection and rate estimation of corrosion in concrete structures. In: Dhir, R.K., Newlands, M.D. (eds.) Controlling concrete degradation. Proceedings of the International Seminar, pp. 215–229. Thomas Telford, Dundee (1999)

    Google Scholar 

  235. Alexander, K.M., Wardlaw, J.: A possible mechanism for carbonation shrinkage and crazing, based on the study of thin layers of hydrated cement. Austr. J. Appl. Sci. 10(4), 470–483 (1959)

    Google Scholar 

  236. Houst, Y.F.: Carbonation shrinkage of hydrated cement paste. In: Malhotra, V.M. (ed.) Proceedings of the 4th CANMET/ACI International Conference of Durability of Concrete, Supplementary Papers, pp. 481–491. Sydney, Australia. American Concrete Institute (1997)

    Google Scholar 

  237. ASTM International: Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (ASTM C596 – 09). West Conshohocken, PA (2009)

    Google Scholar 

  238. ASTM International: Standard Test Method for Measuring Changes in Height of Cylindrical Specimens of Hydraulic-Cement Grout (ASTM C1090 – 10). West Conshohocken, PA (2010)

    Google Scholar 

  239. Byfors, K., Klingstedt, G., Lehtonen, H.P., Romben, L.: Durability of concrete made with alkali-activated slag. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, pp. 1429-1444. Trondheim, Norway. American Concrete Institute (1989)

    Google Scholar 

  240. Bernal, S.A., Mejía de Gutierrez, R., Provis, J.L.: Carbonation of alkali-activated GBFS-MK concretes. In: Justnes, H., et al. (eds.) International Congress on Durability of Concrete, Trondheim, Norway. CD-ROM. Norsk Betongforening (2012)

    Google Scholar 

  241. Puertas, F., Palacios, M., Vázquez, T.: Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 41, 3071–3082 (2006)

    Google Scholar 

  242. Palacios, M., Puertas, F.: Effect of carbonation on alkali-activated slag paste. J. Am. Ceram. Soc. 89(10), 3211–3221 (2006)

    Google Scholar 

  243. Puertas, F., Palacios, M.: Changes in C-S-H of alkali-activated slag and cement pastes after accelerated carbonation. In: Beaudoin, J.J., Makar, J.M., Raki, L. (eds.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. CD-ROM Proceedings. (2007)

    Google Scholar 

  244. Bernal, S.A., Provis, J.L., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cem. Concr. Res. 42(10), 1317–1326 (2012)

    Google Scholar 

  245. Bernal, S.A., San Nicolas, R., Provis, J.L., Mejía de Gutiérrez, R., van Deventer, J.S.J.: Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. (2013, in press). doi 10.1617/s11527-013-0089-2

  246. Criado, M., Palomo, A., Fernández-Jiménez, A.: Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84(16), 2048–2054 (2005)

    Google Scholar 

  247. ASTM International: Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile (ASTM C67 – 11). West Conshohocken, PA (2011)

    Google Scholar 

  248. Standards Australia: Masonry units, segmental pavers and flags – Methods of test. Method 6: Determining potential to effloresce (AS/NZS 4456.6:2003). Sydney, Australia (2003)

    Google Scholar 

  249. Czech Office for Standards Metrology and Testing: Stanovení náchylnosti pórobetonu k tvorbě primárních výkvětů (Determination of susceptibility to the formation of primary efflorescence) (ČSN 73 1358). Prague, Czech Republic (2010)

    Google Scholar 

  250. Dow, C., Glasser, F.P.: Calcium carbonate efflorescence on Portland cement and building materials. Cem. Concr. Res. 33(1), 147–154 (2003)

    Google Scholar 

  251. Brocken, H., Nijland, T.G.: White efflorescence on brick masonry and concrete masonry blocks, with special emphasis on sulfate efflorescence on concrete blocks. Constr. Build. Mater. 18(5), 315–323 (2004)

    Google Scholar 

  252. Najafi Kani, E., Allahverdi, A.: Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram.-Silik. 53(3), 195–204 (2009)

    Google Scholar 

  253. Allahverdi, A., Mehrpour, K., Najafi Kani, E.: Investigating the possibility of utilizing pumice-type natural pozzolan in production of geopolymer cement. Ceram.-Silik. 52(1), 16–23 (2008)

    Google Scholar 

  254. Škvára, F., Kopecký, L., Myšková, L., Šmilauer, V., Alberovská, L., Vinšová, L.: Aluminosilicate polymers – influence of elevated temperatures, efflorescence. Ceram.-Silik. 53(4), 276–282 (2009)

    Google Scholar 

  255. Temuujin, J., Van Riessen, A.: Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164(2–3), 634–639 (2009)

    Google Scholar 

  256. Pacheco-Torgal, F., Jalali, S.: Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders. Constr. Build. Mater. 24(1), 56–60 (2010)

    Google Scholar 

  257. Smith, M.A., Osborne, G.J.: Slag/fly ash cements. World Cem. Technol. 1(6), 223–233 (1977)

    Google Scholar 

  258. Szklorzová, H., Bílek, V.: Influence of alkali ions in the activator on the performance of alkali activated mortars. In: Bílek, V., Keršner, Z. (eds.) Proceedings of the 3rd International Symposium on Non-Traditional Cement and Concrete, pp. 777–784. ZPSV A.S, Brno, Czech Republic (2008)

    Google Scholar 

  259. Škvara, F., Pavlasová, S., Kopecký, L., Myšková, L. and Alberovská, L.: High-temperature properties of fly ash-based geopolymers. In: Bílek, V. and Keršner, Z. (eds.) Proceedings of the 3rd International Symposium on Non-Traditional Cement and Concrete, pp. 741–750. ZPSV A.S., Brno, Czech Republic (2008)

    Google Scholar 

  260. Bortnovsky, O., Dědeček, J., Tvarůžková, Z., Sobalík, Z., Šubrt, J.: Metal ions as probes for characterization of geopolymer materials. J. Am. Ceram. Soc. 91(9), 3052–3057 (2008)

    Google Scholar 

  261. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F., Gan, Z.H.: 39K NMR of free potassium in geopolymers. Ind. Eng. Chem. Res. 45(26), 9208–9210 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Bernal, S.A. et al. (2014). Durability and Testing – Degradation via Mass Transport. In: Provis, J., van Deventer, J. (eds) Alkali Activated Materials. RILEM State-of-the-Art Reports, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7672-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7672-2_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7671-5

  • Online ISBN: 978-94-007-7672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics