Skip to main content

Binder Chemistry – Blended Systems and Intermediate Ca Content

  • Chapter
  • First Online:
Book cover Alkali Activated Materials

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 13))

Abstract

Following the discussion in the two preceding chapters, which addressed high-calcium and low-calcium alkali-activated binder systems respectively, this chapter will provide a brief discussion of the progress which has been made in the development and characterisation of hybrid binders derived from intermediate-Ca precursors and mixtures of precursors. The need for durable, high-performance, low-CO2 alternative binder systems, along with the good existing understanding of the chemical mechanisms of mechanical strength development and durability of high-calcium and low-calcium alkali-activated materials (AAMs) as outlined in Chaps. 3 and 4, has given motivation for an increasing focus on hybrid systems over the past years. These binders are expected to provide a good synergy between mechanical strength and durability, making use of the stable coexistence of the hydration-reaction products characteristic of hydration of Portland clinker or alkali-activated BFS (mainly C-S-H gels) and alkali-activated aluminosilicates (geopolymeric gel) [1–3]. Blending of aluminosilicate-rich materials with more reactive calcium sources (including Portland cement clinker) and with the use of a source of alkalis also opens the possibility for the use of aluminosilicate wastes or by-products which may be insufficiently reactive to provide good strength development when activated alone, providing a pathway to valorisation for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, C., Fernández-Jiménez, A., Palomo, A.: New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem. Concr. Res. 41(7), 750–763 (2011)

    Article  Google Scholar 

  2. van Deventer, J.S.J., Provis, J.L., Duxson, P.: Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89–104 (2012)

    Article  Google Scholar 

  3. Provis, J.L., Myers, R.J., White, C.E., Rose, V., van Deventer, J.S.J.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42(6), 855–864 (2012)

    Article  Google Scholar 

  4. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  5. Yip, C.K., van Deventer, J.S.J.: Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 38(18), 3851–3860 (2003)

    Article  Google Scholar 

  6. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005)

    Article  Google Scholar 

  7. Alonso, S., Palomo, A.: Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem. Concr. Res. 31(1), 25–30 (2001)

    Article  Google Scholar 

  8. Alonso, S., Palomo, A.: Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater. Lett. 47(1–2), 55–62 (2001)

    Article  Google Scholar 

  9. Dombrowski, K., Buchwald, A., Weil, M.: The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 42(9), 3033–3043 (2007)

    Article  Google Scholar 

  10. García-Lodeiro, I., Fernández-Jiménez, A., Blanco, M.T., Palomo, A.: FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 45(1), 63–72 (2008)

    Article  Google Scholar 

  11. García Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009)

    Article  Google Scholar 

  12. García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., Macphee, D.E.: Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27–32 (2010)

    Article  Google Scholar 

  13. García-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 41(9), 923–931 (2011)

    Article  Google Scholar 

  14. Bernal, S.A., Mejía de Gutiérrez, R., Rose, V., Provis, J.L.: Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 40(6), 898–907 (2010)

    Article  Google Scholar 

  15. Bernal, S.A., Provis, J.L., Rose, V., Mejía de Gutiérrez, R.: High-resolution x-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders. J. Am. Ceram. Soc. 96(6), 1951–1957 (2013)

    Article  Google Scholar 

  16. Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011)

    Article  Google Scholar 

  17. Cross, D., Stephens, J., Vollmer, J.: Structural applications of 100 percent fly ash concrete. In: World of Coal Ash 2005, Lexington. Paper 131 (2005)

    Google Scholar 

  18. Berry, M., Stephens, J., Cross, D.: Performance of 100 % fly ash concrete with recycled glass aggregate. ACI Mater. J. 108(4), 378–384 (2011)

    Google Scholar 

  19. Husbands, T.B., Malone, P.G., Wakeley, L.D.: Performance of Concretes Proportioned with Pyrament Blended Cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2 (1994)

    Google Scholar 

  20. ASTM International: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM C618 - 12). West Conshohocken (2012)

    Google Scholar 

  21. Gravitt, B.B., Heitzmann, R.F., Sawyer, J.L.: Hydraulic cement and composition employing the same. U.S. Patent 4,997,484 (1991)

    Google Scholar 

  22. Roy, A., Schilling, P.J., Eaton, H.C.: Alkali activated class C fly ash cement. U.S. Patent 5,565,028 (1996)

    Google Scholar 

  23. Nicholson, C.L., Fletcher, R.A., Miller, N., Stirling, C., Morris, J., Hodges, S., MacKenzie, K.J.D., Schmücker, M.: Building innovation through geopolymer technology. Chem. N. Z. 69(3), 10–12 (2005)

    Google Scholar 

  24. Perera, D.S., Nicholson, C.L., Blackford, M.G., Fletcher, R.A., Trautman, R.A.: Geopolymers made using New Zealand flyash. J. Ceram. Soc. Jpn. 112(5), S108–S111 (2004)

    Google Scholar 

  25. Lloyd, R.R.: The durability of inorganic polymer cements. Ph.D. thesis, University of Melbourne, Australia (2008)

    Google Scholar 

  26. Keyte, L.M.: What’s wrong with Tarong? The importance of fly ash glass chemistry in inorganic polymer synthesis. Ph.D. thesis, University of Melbourne, Australia (2008)

    Google Scholar 

  27. Lee, N.P.: Creep and Shrinkage of Inorganic Polymer Concrete, BRANZ Study Report 175, BRANZ (2007)

    Google Scholar 

  28. Lloyd, R.R., Provis, J.L., Smeaton, K.J., van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Micropor. Mesopor. Mater. 126(1–2), 32–39 (2009)

    Article  Google Scholar 

  29. Diaz-Loya, E.I., Allouche, E.N., Vaidya, S.: Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108(3), 300–306 (2011)

    Google Scholar 

  30. Winnefeld, F., Leemann, A., Lucuk, M., Svoboda, P., Neuroth, M.: Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr. Build. Mater. 24(6), 1086–1093 (2010)

    Article  Google Scholar 

  31. Oh, J.E., Monteiro, P.J.M., Jun, S.S., Choi, S., Clark, S.M.: The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 40(2), 189–196 (2010)

    Article  Google Scholar 

  32. Guo, X.L., Shi, H.S., Dick, W.A.: Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32(2), 142–147 (2010)

    Article  Google Scholar 

  33. Fares, G., Tagnit-Hamou, A.: Chemical and thermal activation of sodium-rich calcium alumino-silicate binder. In: Beaudoin, J.J., (ed.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. Cement Association of Canada, Ottawa, Canada. CD-ROM proceedings (2007)

    Google Scholar 

  34. Tashima, M.M., Soriano, L., Monzó, J., Borrachero, M.V., Payà, J.: Novel geopolymeric material cured at room temperature. Adv. Appl. Ceram. 112(4), 179–183 (2013)

    Article  Google Scholar 

  35. Granizo, M.L., Alonso, S., Blanco-Varela, M.T., Palomo, A.: Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 85(1), 225–231 (2002)

    Article  Google Scholar 

  36. Shi, C.: Early microstructure development of activated lime-fly ash pastes. Cem. Concr. Res. 26(9), 1351–1359 (1996)

    Article  Google Scholar 

  37. Williams, P.J., Biernacki, J.J., Walker, L.R., Meyer, H.M., Rawn, C.J., Bai, J.: Microanalysis of alkali-activated fly ash–CH pastes. Cem. Concr. Res. 32(6), 963–972 (2002)

    Article  Google Scholar 

  38. Shi, C., Day, R.L.: Chemical activation of blended cements made with lime and natural pozzolans. Cem. Concr. Res. 23(6), 1389–1396 (1993)

    Article  Google Scholar 

  39. Shi, C., Day, R.L.: Pozzolanic reaction in the presence of chemical activators: Part II Reaction products and mechanism. Cem. Concr. Res. 30(4), 607–613 (2000)

    Article  Google Scholar 

  40. Shi, C., Day, R.L.: Pozzolanic reaction in the presence of chemical activators: Part I. Reaction kinetics. Cem. Concr. Res. 30(1), 51–58 (2000)

    Article  Google Scholar 

  41. Shi, C., Day, R.L.: Comparison of different methods for enhancing reactivity of pozzolans. Cem. Concr. Res. 31(5), 813–818 (2001)

    Article  Google Scholar 

  42. Buchwald, A., Hilbig, H., Kaps, C.: Alkali-activated metakaolin-slag blends – performance and structure in dependence on their composition. J. Mater. Sci. 42(9), 3024–3032 (2007)

    Article  Google Scholar 

  43. Buchwald, A., Tatarin, R., Stephan, D.: Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J. Mater. Sci. 44(20), 5609–5617 (2009)

    Article  Google Scholar 

  44. Bernal, S.A., Provis, J.L., Mejía de Gutierrez, R., Rose, V.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Article  Google Scholar 

  45. White, C.E., Page, K., Henson, N.J., Provis, J.L.: In situ synchrotron x-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl. Clay. Sci. 73, 17–25 (2013)

    Article  Google Scholar 

  46. Bernal, S.A., Mejía de Gutiérrez, R., Provis, J.L.: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr. Build Mater 33, 99–108 (2012)

    Article  Google Scholar 

  47. Cheng, T.W., Chiu, J.P.: Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 16(3), 205–210 (2003)

    Article  Google Scholar 

  48. Lecomte, I., Liégeois, M., Rulmont, A., Cloots, R., Maseri, F.: Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. J. Mater. Res. 18(11), 2571–2579 (2003)

    Article  Google Scholar 

  49. Zhang, Y., Sun, W., Chen, Q., Chen, L.: Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 143(1–2), 206–213 (2007)

    Google Scholar 

  50. Bernal López, S., Gordillo, M., Mejía de Gutiérrez, R., Rodríguez Martínez, E., Delvasto Arjona, S., Cuero, R.: Modeling of the compressive strength of alternative concretes using the response surface methodology. Rev. Fac. Ing.-Univ. Antioquia 49, 112–123 (2009)

    Google Scholar 

  51. Bernal, S.A.: Carbonatación de Concretos Producidos en Sistemas Binarios de una Escoria Siderúrgica y un Metacaolín Activados Alcalinamente. Ph.D. thesis, Universidad del Valle (2009)

    Google Scholar 

  52. Burciaga-Díaz, O., Escalante-García, J.I., Arellano-Aguilar, R., Gorokhovsky, A.: Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements. J. Am. Ceram. Soc. 93(2), 541–547 (2010)

    Article  Google Scholar 

  53. Bernal, S.A., Rodríguez, E.D., Mejía de Gutiérrez, R., Gordillo, M., Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)

    Article  Google Scholar 

  54. Smith, M.A., Osborne, G.J.: Slag/fly ash cements. World Cem. Technol. 1(6), 223–233 (1977)

    Google Scholar 

  55. Bijen, J., Waltje, H.: Alkali activated slag-fly ash cements. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway, Detroit, MI. vol. 2, pp. 1565–1578. American Concrete Institute (1989)

    Google Scholar 

  56. Li, Z., Liu, S.: Influence of slag as additive on compressive strength of fly ash-based geopolymer. J. Mater. Civil Eng. 19(6), 470–474 (2007)

    Article  Google Scholar 

  57. Kumar, S., Kumar, R., Mehrotra, S.P.: Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45(3), 607–615 (2010)

    Article  Google Scholar 

  58. Ma, W., Sample, D., Martin, R., Brown, P.W.: Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures. Cem. Concr. Aggr. 16(2), 93–99 (1994)

    Article  Google Scholar 

  59. Schindler, A.K., Folliard, K.J.: Heat of hydration models for cementitious materials. ACI Mater. J. 102(1), 24–33 (2005)

    Google Scholar 

  60. Blaakmeer, J.: Diabind: An alkali-activated slag fly ash binder for acid-resistant concrete. Adv. Cem. Based Mater. 1(6), 275–276 (1994)

    Article  Google Scholar 

  61. Shi, C., Qian, J.: Increasing coal fly ash use in cement and concrete through chemical activation of reactivity of fly ash. Energy Sources 25(6), 617–628 (2003)

    Article  Google Scholar 

  62. Pan, Z., Yang, N.: Updated review on AAM research in China. In: Shi, C., Shen, X. (eds.) First International Conference on Advances in Chemically-Activated Materials, Jinan, China. Bagneux, France. pp. 45–55. RILEM (2010)

    Google Scholar 

  63. Puertas, F., Martínez-Ramírez, S., Alonso, S., Vázquez, E.: Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30, 1625–1632 (2000)

    Article  Google Scholar 

  64. Puertas, F., Fernández-Jiménez, A.: Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 25(3), 287–292 (2003)

    Article  Google Scholar 

  65. Temuujin, J., Van Riessen, A., Williams, R.: Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 167(1–3), 82–88 (2009)

    Article  Google Scholar 

  66. Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53, 127–144 (2013).

    Google Scholar 

  67. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010)

    Article  Google Scholar 

  68. Escalante García, J.I., Campos-Venegas, K., Gorokhovsky, A., Fernández, A.: Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: Effect of Na2O concentration and modulus. Adv. Appl. Ceram. 105(4), 201–208 (2006)

    Article  Google Scholar 

  69. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44(2), 608–619 (2009)

    Article  Google Scholar 

  70. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. J. Mater. Sci. 44(2), 620–631 (2009)

    Article  Google Scholar 

  71. Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S., van Deventer, J.S.J.: Drying-induced changes in the structure of alkali-activated pastes. J. Mater. Sci. 48(9), 3566–3577 (2013)

    Article  Google Scholar 

  72. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 45(1–2), 1–14 (2012)

    Article  Google Scholar 

  73. Dimas, D., Giannopoulou, I.P., Panias, D.: Utilization of alumina red mud for synthesis of inorganic polymeric materials. Miner. Proc. Extr. Metall. Rev. 30(3), 211–239 (2009)

    Article  Google Scholar 

  74. Wagh, A.S., Douse, V.E.: Silicate bonded unsintered ceramics of Bayer process waste. J. Mater. Res. 6(5), 1094–1102 (1991)

    Article  Google Scholar 

  75. Sun, W.-b., Feng, X.-p., Zhao, G.-x.: Effect of distortion degree on the hydration of red mud base cementitious material. J. Coal Sci. Eng. 15(1), 88–93 (2009)

    Article  Google Scholar 

  76. Kumar, A., Kumar, S.: Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 38, 865–871 (2013)

    Article  Google Scholar 

  77. Pan, Z., Fang, Y., Pan, Z., Chen, Q., Yang, N., Yu, J., Lu, J.: Solid alkali-slag-red mud cementitious material. J. Nanjing Univ. Chem. Technol. 20(2), 34–38 (1998)

    Google Scholar 

  78. Pan, Z., Fang, Y., Zhao, C., Yang, N.: Research on alkali activated slag-red mud cement. Bull. Chin. Ceram. Soc. 18(3), 34–39 (1999)

    Google Scholar 

  79. Pan, Z.H., Li, D.X., Yu, J., Yang, N.R.: Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cem. Concr. Res. 33(9), 1437–1441 (2003)

    Article  Google Scholar 

  80. Pan, Z., Cheng, L., Lu, Y., Yang, N.: Hydration products of alkali-activated slag-red mud cementitious material. Cem. Concr. Res. 32(3), 357–362 (2002)

    Article  Google Scholar 

  81. Ye, N., Zhu, J., Liua, J., Li, Y., Ke, X., Yang, J.: Influence of thermal treatment on phase transformation and dissolubility of aluminosilicate phase in red mud. Mater. Res. Soc. Symp. Proc. 1488. (2012). doi 10.1557/opl.2012.1546

  82. Shi, C., Day, R.L.: Acceleration of the reactivity of fly ash by chemical activation. Cem. Concr. Res. 25(1), 15–21 (1995)

    Article  Google Scholar 

  83. Palomo, A., Fernández-Jiménez, A., Kovalchuk, G.Y., Ordoñez, L.M., Naranjo, M.C.: OPC-fly ash cementitious systems. Study of gel binders formed during alkaline hydration. J. Mater. Sci. 42(9), 2958–2966 (2007)

    Article  Google Scholar 

  84. Ruiz-Santaquiteria, C., Fernández-Jiménez, A., Skibsted, J., Palomo, A.: Clay reactivity: production of alkali activated cements. Appl. Clay Sci. 73, 11–16 (2013)

    Article  Google Scholar 

  85. Donatello, S., Fernández-Jimenez, A., Palomo, A.: Very high volume fly ash cements. Early age hydration study using Na2SO4 as an activator. J. Am. Ceram. Soc. 96(3), 900–906 (2013)

    Article  Google Scholar 

  86. Way, S.J., Shayan, A.: Early hydration of a Portland cement in water and sodium hydroxide solutions: composition of solutions and nature of solid phases. Cem. Concr. Res. 19, 759–769 (1989)

    Article  Google Scholar 

  87. Li, G., Le Bescop, P., Moranville, M.: The U phase formation in cement-based systems containing high amounts of Na2SO4. Cem. Concr. Res. 26(1), 27–33 (1996)

    Article  Google Scholar 

  88. Li, G., Le Bescop, P., Moranville, M.: Expansion mechanism associated with the secondary formation of the U phase in cement-based systems containing high amounts of Na2SO4. Cem. Concr. Res. 26(2), 195–201 (1996)

    Article  Google Scholar 

  89. Li, G., Le Bescop, P., Moranville-Regourd, M.: Synthesis of the U phase (4CaO∙0.9Al2O3∙1.1SO3∙0.5Na2O∙16H2O). Cem. Concr. Res. 27(1), 7–13 (1997)

    Article  Google Scholar 

  90. Martínez-Ramírez, S., Palomo, A.: OPC hydration with highly alkaline solutions. Adv. Cem. Res. 13(3), 123–129 (2001)

    Article  Google Scholar 

  91. Martínez-Ramírez, S., Palomo, A.: Microstructure studies on Portland cement pastes obtained in highly alkaline environments. Cem. Concr. Res. 31, 1581–1585 (2001)

    Article  Google Scholar 

  92. Fernández-Jiménez, A., Sobrados, I., Sanz, J., Palomo, A.: Hybrid cements with very low OPC content. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid, Spain. CSIC, Madrid, Spain. CD-ROM proceedings (2011)

    Google Scholar 

  93. Scheetz, B.E., Hoffer, J.P.: Characterization of sodium silicate-activated Portland cement: 1. Matrices for low-level radioactive waste forms. In: Al-Manaseer, A.A., Roy, D.M. (eds.) Concrete and Grout in Nuclear and Hazardous Waste Disposal (ACI SP 158). American Concrete Institute, Detroit, MI. pp. 91–110. (1995)

    Google Scholar 

  94. Brykov, A.S., Danilov, B.V., Korneev, V.I., Larichkov, A.V.: Effect of hydrated sodium silicates on cement paste hardening. Russ. J. Appl. Chem. 75(10), 1577–1579 (2002)

    Article  Google Scholar 

  95. Brykov, A.S., Danilov, B.V., Larichkov, A.V.: Specific features of Portland cement hydration in the presence of sodium hydrosilicates. Russ. J. Appl. Chem. 79(4), 521–524 (2006)

    Article  Google Scholar 

  96. Blazhis, A.R., Rostovskaya, G.S.: Super quick hardening high strength alkaline clinker and clinker-free cements. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 193–202. VIPOL Stock Company (1994)

    Google Scholar 

  97. Tailby, J., MacKenzie, K.J.D.: Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals. Cem. Concr. Res. 40(5), 787–794 (2010)

    Article  Google Scholar 

  98. Sanitskii, M.A.: Alkaline Portland cements. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. pp. 315–333. ORANTA (1999)

    Google Scholar 

  99. Sanitskii, M.A., Khaba, P.M., Pozniak, O.R., Zayats, B.J., Smytsniuk, R.V., Gorpynko, A.F.: Alkali-activated composites cements and concretes with fly ash additive. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. pp. 472–479. ORANTA (1999)

    Google Scholar 

  100. Bernal, S.A., Skibsted, J., Herfort, D.: Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid. CSIC, Madrid, Spain. CD-ROM proceedings (2011)

    Google Scholar 

  101. Krivenko, P.V., Kovalchuk, G., Kovalchuk, O.: Fly ash based geocements modified with calcium-containing additives. In: Bílek, V., Keršner, Z. (eds.) Proceedings of the 3rd International Symposium on Non-traditional Cement and Concrete. pp. 400–409. ZPSV A.S., Brno (2008)

    Google Scholar 

  102. Gelevera, A.G., Munzer, K.: Alkaline Portland and slag Portland cements. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 173–179. VIPOL Stock Company (1994)

    Google Scholar 

  103. Fundi, Y.S.A.: Alkaline pozzolana Portland cement. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 181–192. VIPOL Stock Company (1994)

    Google Scholar 

  104. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Carbonate mineral addition to metakaolin-based geopolymers. Cem. Concr. Compos. 30(10), 979–985 (2008)

    Article  Google Scholar 

  105. Sakulich, A.R., Anderson, E., Schauer, C., Barsoum, M.W.: Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr. Build. Mater. 23, 2951–2959 (2009)

    Article  Google Scholar 

  106. Sakulich, A.R., Anderson, E., Schauer, C.L., Barsoum, M.W.: Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete. Mater. Struct. 43(7), 1025–1035 (2010)

    Article  Google Scholar 

  107. Moseson, A.J., Moseson, D.E., Barsoum, M.W.: High volume limestone alkali-activated cement developed by design of experiment. Cem. Concr. Compos. 34(3), 328–336 (2012)

    Article  Google Scholar 

  108. Miller, S.A., Sakulich, A.R., Barsoum, M.W., Jud Sierra, E.: Diatomaceous earth as a pozzolan in the fabrication of an alkali-activated fine-aggregate limestone concrete. J. Am. Ceram. Soc. 93(9), 2828–2836 (2010)

    Article  Google Scholar 

  109. Ding, J., Fu, Y., Beaudoin, J.J.: Effect of different inorganic salts/alkali on conversion-prevention in high alumina cement products. Adv. Cem. Based Mater. 4(2), 43–47 (1996)

    Google Scholar 

  110. Fernández-Jiménez, A., Palomo, A., Vazquez, T., Vallepu, R., Terai, T., Ikeda, K.: Alkaline activation of blends of metakaolin and calcium aluminate cement. Part I: Strength and microstructural development. J. Am. Ceram. Soc. 91(4), 1231–1236 (2008)

    Article  Google Scholar 

  111. Najafi Kani, E., Allahverdi, A., Provis, J.L.: Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34(1), 25–33 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Provis, J.L., Bernal, S.A. (2014). Binder Chemistry – Blended Systems and Intermediate Ca Content. In: Provis, J., van Deventer, J. (eds) Alkali Activated Materials. RILEM State-of-the-Art Reports, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7672-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7672-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7671-5

  • Online ISBN: 978-94-007-7672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics