Skip to main content

Binder Chemistry – Low-Calcium Alkali-Activated Materials

  • Chapter
  • First Online:
Alkali Activated Materials

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 13))

Abstract

Early developments in the developments of low-calcium (including calcium-free) alkali-activated binders were led by the work of Davidovits in France, as noted in Chap. 2. These materials were initially envisaged as a fire-resistant replacement for organic polymeric materials, with identification of potential applications as a possible binder for concrete production following relatively soon afterwards [1]. However, developments in the area of concrete production soon led back to more calcium-rich systems, including the hybrid Pyrament binders, leaving work based on the use of low-calcium systems predominantly aimed at high-temperature applications and other scenarios where the ceramic-like nature of clay-derived alkali-activated pastes was beneficial. Early work in this area was conducted with an almost solely commercial focus, meaning that little scientific information was made available with the exception of a conference proceedings volume [2], several scattered publications in other conferences, and an initial journal publication [3]. Academic research into the alkaline activation of metakaolin to form a binder material led to initial publications in the early 1990s [4, 5], and the first description of the formation of a strong and durable binder by alkaline activation of fly ash was published by Wastiels et al. [6–8]. With ongoing developments in fly ash activation, which offers more favourable rheology than is observed in clay-based binders, interest in low-calcium AAM concrete production was reignited, and work since that time in industry and academia has led to the development of a number of different approaches to this problem. A review of the binder chemistry of low-calcium AAM binder systems published in 2007 [9] has since received more than 350 citations in the scientific literature, indicating the high current level of interest in understanding and utilisation of these types of gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidovits, J.: Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin (2008)

    Google Scholar 

  2. Davidovits, J., Orlinski, J. (eds.): Proceedings of Geopolymer ’88 – First European Conference on Soft Mineralurgy, Universite de Technologie de Compeigne (1988)

    Google Scholar 

  3. Davidovits, J.: Geopolymers – inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)

    Google Scholar 

  4. Palomo, A., Macias, A., Blanco, M.T., Puertas, F.: Physical, chemical and mechanical characterisation of geopolymers. In: Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi, India, vol. 5, pp. 505–511. National Council for Cement and Building Materials (1992)

    Google Scholar 

  5. Palomo, A., Glasser, F.P.: Chemically-bonded cementitious materials based on metakaolin. Br. Ceram. Trans. J. 91(4), 107–112 (1992)

    Google Scholar 

  6. Wastiels, J., Wu, X., Faignet, S., Patfoort, G.: Mineral polymer based on fly ash. In: Proceedings of the 9th International Conference on Solid Waste Management, Widener University, Philadelphia, PA, 8pp (1993)

    Google Scholar 

  7. Wastiels, J., Wu, X., Faignet, S., Patfoort, G.: Mineral polymer based on fly ash. J. Resour. Manag. Technol. 22(3), 135–141 (1994)

    Google Scholar 

  8. Patfoort, G., Wastiels, J., Bruggeman, P., Stuyck, L.: Mineral polymer matrix composites. In: Brandt, A.M., Marshall, I.H. (eds.) Proceedings of Brittle Matrix Composites 2 (BMC 2), pp. 587–592. Elsevier, Cedzyna (1989)

    Google Scholar 

  9. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Google Scholar 

  10. Glukhovsky, V.D.: Ancient, modern and future concretes. In: Krivenko, P.V., (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. Vol. 1, pp. 1–9. VIPOL Stock Company (1994)

    Google Scholar 

  11. Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites? – A reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005)

    Google Scholar 

  12. Fernández-Jiménez, A., Monzó, M., Vicent, M., Barba, A., Palomo, A.: Alkaline activation of metakaolin–fly ash mixtures: obtain of zeoceramics and zeocements. Micropor. Mesopor. Mater. 108(1–3), 41–49 (2008)

    Google Scholar 

  13. Bell, J.L., Sarin, P., Driemeyer, P.E., Haggerty, R.P., Chupas, P.J., Kriven, W.M.: X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6∙5.5H2O inorganic polymer (geopolymer). J. Mater. Chem. 18, 5974–5981 (2008)

    Google Scholar 

  14. Bell, J.L., Sarin, P., Provis, J.L., Haggerty, R.P., Driemeyer, P.E., Chupas, P.J., van Deventer, J.S.J., Kriven, W.M.: Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem. Mater. 20(14), 4768–4776 (2008)

    Google Scholar 

  15. White, C.E., Provis, J.L., Proffen, T., van Deventer, J.S.J.: The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J. Am. Ceram. Soc. 93(10), 3486–3492 (2010)

    Google Scholar 

  16. White, C.E., Provis, J.L., Llobet, A., Proffen, T., van Deventer, J.S.J.: Evolution of local structure in geopolymer gels: an in-situ neutron pair distribution function analysis. J. Am. Ceram. Soc. 94(10), 3532–3539 (2011)

    Google Scholar 

  17. Richardson, I.G.: Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 34(9), 1733–1777 (2004)

    Google Scholar 

  18. Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011)

    Google Scholar 

  19. Davidovits, J.: The need to create a new technical language for the transfer of basic scientific information. In: Gibb, J.M., Nicolay, D. (eds.) Transfer and Exploitation of Scientific and Technical Information, EUR 7716, pp. 316–320. Commission of the European Communities, Luxembourg (1982)

    Google Scholar 

  20. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in the development of ‘Green concrete’. Cem. Concr. Res. 37(12), 1590–1597 (2007)

    Google Scholar 

  21. Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 25(9), 1471–1477 (2005)

    Google Scholar 

  22. Provis, J.L.: Activating solution chemistry for geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 50–71. Woodhead, Cambridge (2009)

    Google Scholar 

  23. Koloušek, D., Brus, J., Urbanova, M., Andertova, J., Hulinsky, V., Vorel, J.: Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J. Mater. Sci. 42(22), 9267–9275 (2007)

    Google Scholar 

  24. Feng, D., Provis, J.L., van Deventer, J.S.J.: Thermal activation of albite for the synthesis of one-part mix geopolymers. J. Am. Ceram. Soc. 95(2), 565–572 (2012)

    Google Scholar 

  25. Vicat, L.-J., Smith, J.T.: A practical and scientific treatise on calcareous mortars and cements, artificial and natural; containing, directions for ascertaining the qualities of the different ingredients, for preparing them for use, and for combining them together in the most advantageous manner; with a theoretical investigation of their properties and modes of action. The whole founded upon an extensive series of original experiments, with examples of their practical application on the large scale. John Weale, Architectural Library, London (1837)

    Google Scholar 

  26. Treussart, G.: On hydraulic and common mortars. Art. VII. Of artificial trass and puzzalona. J. Franklin Inst. 21(1), 1–35 (1838)

    Google Scholar 

  27. Provis, J.L., Yong, S.L., Duxson, P.: Nanostructure/microstructure of metakaolin geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 72–88. Woodhead, Cambridge (2009)

    Google Scholar 

  28. Fernández-Jiménez, A., Palomo, A.: Nanostructure/microstructure of fly ash geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 89–117. Woodhead, Cambridge (2009)

    Google Scholar 

  29. Bortnovsky, O., Dědeček, J., Tvarůžková, Z., Sobalík, Z., Šubrt, J.: Metal ions as probes for characterization of geopolymer materials. J. Am. Ceram. Soc. 91(9), 3052–3057 (2008)

    Google Scholar 

  30. Demortier, A., Gobeltz, N., Lelieur, J.P., Duhayon, C.: Infrared evidence for the formation of an intermediate compound during the synthesis of zeolite Na-A from metakaolin. Int. J. Inorg. Mater. 1(2), 129–134 (1999)

    Google Scholar 

  31. Benharrats, N., Belbachir, M., Legrand, A.P., D’Espinose de la Caillerie, J.-B.: 29Si and 27Al MAS NMR study of the zeolitization of kaolin by alkali leaching. Clay Miner. 38(1), 49–61 (2003)

    Google Scholar 

  32. Slavík, R., Bednařík, V., Vondruška, M., Skoba, O., Hanzlíček, T.: Proof of sodalite structures in geopolymers. Chem. Listy 99, s471–s472 (2005)

    Google Scholar 

  33. Criado, M., Palomo, A., Fernández-Jiménez, A.: Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel 84(16), 2048–2054 (2005)

    Google Scholar 

  34. Palomo, A., Alonso, S., Fernández-Jiménez, A., Sobrados, I., Sanz, J.: Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 87(6), 1141–1145 (2004)

    Google Scholar 

  35. Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A. 292(1), 8–20 (2007)

    Google Scholar 

  36. Rowles, M., O’Connor, B.: Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13(5), 1161–1165 (2003)

    Google Scholar 

  37. Zhang, B., MacKenzie, K.J.D., Brown, I.W.M.: Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J. Mater. Sci. 44(17), 4668–4676 (2009)

    Google Scholar 

  38. Heller-Kallai, L., Lapides, I.: Reactions of kaolinites and metakaolinites with NaOH - comparison of different samples (Part 1). Appl. Clay Sci. 35, 99–107 (2007)

    Google Scholar 

  39. Rocha, J., Klinowski, J., Adams, J.M.: Synthesis of zeolite Na-A from metakaolinite revisited. J. Chem. Soc. Faraday Trans. 87(18), 3091–3097 (1991)

    Google Scholar 

  40. Barrer, R.M., Mainwaring, D.E.: Chemistry of soil minerals. Part XIII. Reactions of metakaolinite with single and mixed bases. J. Chem. Soc. Dalton Trans. 22, 2534–2546 (1972)

    Google Scholar 

  41. Oh, J.E., Monteiro, P.J.M., Jun, S.S., Choi, S., Clark, S.M.: The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 40(2), 189–196 (2010)

    Google Scholar 

  42. Criado, M., Fernández-Jiménez, A., de la Torre, A.G., Aranda, M.A.G., Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37(5), 671–679 (2007)

    Google Scholar 

  43. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23(15), 8170–8179 (2007)

    Google Scholar 

  44. Duxson, P., Provis, J.L., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7), 3028–3036 (2005)

    Google Scholar 

  45. Provis, J.L., Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem. Mater. 17(11), 2976–2986 (2005)

    Google Scholar 

  46. Duxson, P., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44(4), 832–839 (2005)

    Google Scholar 

  47. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F., Gan, Z.H.: 39K NMR of free potassium in geopolymers. Ind. Eng. Chem. Res. 45(26), 9208–9210 (2006)

    Google Scholar 

  48. Fernández-Jiménez, A., Palomo, A., Criado, M.: Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Mater. Constr. 56(281), 51–65 (2006)

    Google Scholar 

  49. Fernández-Jiménez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6), 1204–1209 (2005)

    Google Scholar 

  50. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17), 9076–9082 (2007)

    Google Scholar 

  51. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44(2), 608–619 (2009)

    Google Scholar 

  52. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. J. Mater. Sci. 44(2), 620–631 (2009)

    Google Scholar 

  53. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf. A 318(1–3), 97–105 (2008)

    Google Scholar 

  54. Lee, W.K.W., van Deventer, J.S.J.: Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19(21), 8726–8734 (2003)

    Google Scholar 

  55. Fernández-Jiménez, A., Palomo, A.: Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Micropor. Mesopor. Mater. 86(1–3), 207–214 (2005)

    Google Scholar 

  56. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: The effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 22(18), 5199–5208 (2010)

    Google Scholar 

  57. Provis, J.L., van Deventer, J.S.J.: Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. J. Mater. Sci. 42(9), 2974–2981 (2007)

    Google Scholar 

  58. Provis, J.L., Rose, V., Bernal, S.A., van Deventer, J.S.J.: High resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali activated fly ash. Langmuir 25(19), 11897–11904 (2009)

    Google Scholar 

  59. Catalfamo, P., Di Pasquale, S., Corigliano, F., Mavilia, L.: Influence of the calcium content on the coal fly ash features in some innovative applications. Resourc. Conserv. Recyc. 20(2), 119–125 (1997)

    Google Scholar 

  60. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A. 269(1–3), 47–58 (2005)

    Google Scholar 

  61. Lloyd, R.R.: Accelerated ageing of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 139–166. Woodhead, Cambridge (2009)

    Google Scholar 

  62. Davidovits, J.: Mineral polymers and methods of making them. U.S. Patent 4,349,386 (1982)

    Google Scholar 

  63. Davidovits, J.: Synthetic mineral polymer compound of the silicoaluminates family and preparation process. U.S. Patent 4,472,199 (1984)

    Google Scholar 

  64. Yang, K.-H., Song, J.-K., Ashour, A.F., Lee, E.-T.: Properties of cementless mortars activated by sodium silicate. Constr. Build. Mater. 22(9), 1981–1989 (2008)

    Google Scholar 

  65. Yang, K.H., Song, J.K.: Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. J. Mater. Civ. Eng. 21(3), 119–127 (2009)

    Google Scholar 

  66. Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash. Effect of the SiO2/Na2O ratio. Part I: FTIR study. Micropor. Mesopor. Mater. 106(1–3), 180–191 (2007)

    Google Scholar 

  67. Steveson, M., Sagoe-Crentsil, K.: Relationships between composition, structure and strength of inorganic polymers. Part I – Metakaolin-derived inorganic polymers. J. Mater. Sci. 40(8), 2023–2036 (2005)

    Google Scholar 

  68. Steveson, M., Sagoe-Crentsil, K.: Relationships between composition, structure, and strength of inorganic polymers. Part 2. Fly ash-derived inorganic polymers. J. Mater. Sci. 40(16), 4247–4259 (2005)

    Google Scholar 

  69. Lloyd, R.R., Provis, J.L., Smeaton, K.J., van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Micropor. Mesopor. Mater. 126(1–2), 32–39 (2009)

    Google Scholar 

  70. Phair, J.W., van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Proc. 66(1–4), 121–143 (2002)

    Google Scholar 

  71. van Jaarsveld, J.G.S., van Deventer, J.S.J.: Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind. Eng. Chem. Res. 38(10), 3932–3941 (1999)

    Google Scholar 

  72. Rahier, H., Simons, W., van Mele, B., Biesemans, M.: Low-temperature synthesized aluminosilicate glasses. 3. Influence of the composition of the silicate solution on production, structure and properties. J. Mater. Sci. 32(9), 2237–2247 (1997)

    Google Scholar 

  73. Rahier, H., van Mele, B., Biesemans, M., Wastiels, J., Wu, X.: Low-temperature synthesized aluminosilicate glasses. 1. Low-temperature reaction stoichiometry and structure of a model compound. J. Mater. Sci. 31(1), 71–79 (1996)

    Google Scholar 

  74. Rahier, H., van Mele, B., Wastiels, J.: Low-temperature synthesized aluminosilicate glasses. 2. Rheological transformations during low-temperature cure and high-temperature properties of a model compound. J. Mater. Sci. 31(1), 80–85 (1996)

    Google Scholar 

  75. Yao, X., Zhang, Z., Zhu, H., Chen, Y.: Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 493(1–2), 49–54 (2009)

    Google Scholar 

  76. Granizo, M.L., Blanco, M.T.: Alkaline activation of metakaolin – an isothermal conduction calorimetry study. J. Therm. Anal. 52(3), 957–965 (1998)

    Google Scholar 

  77. Palomo, A., Banfill, P.F.G., Fernandéz-Jiménez, A., Swift, D.S.: Properties of alkali-activated fly ashes determined from rheological measurements. Adv. Cem. Res. 17(4), 143–151 (2005)

    Google Scholar 

  78. Skinner, L.B., Chae, S.R., Benmore, C.J., Wenk, H.R., Monteiro, P.J.M.: Nanostructure of calcium silicate hydrates in cements. Phys. Rev. Lett. 104, 195502 (2010)

    Google Scholar 

  79. Meral, C., Benmore, C.J., Monteiro, P.J.M.: The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem. Concr. Res. 41(7), 696–710 (2011)

    Google Scholar 

  80. Provis, J.L., Rose, V., Winarski, R.P., van Deventer, J.S.J.: Hard X-ray nanotomography of amorphous aluminosilicate cements. Scripta Mater. 65(4), 316–319 (2011)

    Google Scholar 

  81. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: The effect of silica availability on the mechanism of geopolymerisation. Cem. Concr. Res. 41(3), 210–216 (2011)

    Google Scholar 

  82. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J. Colloid Interf. Sci. 357(2), 384–392 (2011)

    Google Scholar 

  83. Rowles, M.R., Hanna, J.V., Pike, K.J., Smith, M.E., O’Connor, B.H.: 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl. Magn. Reson. 32, 663–689 (2007)

    Google Scholar 

  84. Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2(4), 309–317 (2000)

    Google Scholar 

  85. Criado, M., Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: Alkali activation of fly ash. Effect of the SiO2/Na2O ratio. Part II: 29Si MAS-NMR survey. Micropor. Mesopor. Mater. 109(1–3), 525–534 (2008)

    Google Scholar 

  86. Brus, J., Kobera, L., Urbanová, M., Koloušek, D., Kotek, J.: Insights into the structural transformations of aluminosilicate inorganic polymers: a comprehensive solid-state NMR study. J. Phys. Chem. C 116(27), 14627–14637 (2012)

    Google Scholar 

  87. Vance, E.R., Perera, D.S., Hanna, J.V., Pike, K.J., Aly, Z., Blackford, M.G., Zhang, Y., Zhang, Z., Rowles, M., Davis, J., Uchida, O., Yee, P., Ly, L.: Solid state chemistry phenomena in geopolymers with Si/Al~2. In: International Workshop on Geopolymers and Geopolymer Concrete, Perth, Australia. CD-ROM proceedings (2005)

    Google Scholar 

  88. Duxson, P.: Structure and thermal conductivity of metakaolin geopolymers. Ph.D. Thesis, University of Melbourne (2006)

    Google Scholar 

  89. Gehman, J.D., Provis, J.L.: Generalized biaxial shearing of MQMAS NMR spectra. J. Magn. Reson. 200(1), 167–172 (2009)

    Google Scholar 

  90. MacKenzie, K., Rahner, N., Smith, M., Wong, A.: Calcium-containing inorganic polymers as potential bioactive materials. J. Mater. Sci. 45(4), 999–1007 (2010)

    Google Scholar 

  91. Barbosa, V.F.F., MacKenzie, K.J.D.: Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 57(9–10), 1477–1482 (2003)

    Google Scholar 

  92. Provis, J.L., van Deventer, J.S.J.: Discussion of “Synthesis and microstructural characterization of fully-reacted potassium-poly (sialate-siloxo) geopolymeric cement matrix”, by Y. Zhang et al. ACI Mater. J. 106(1), 95–96 (2009)

    Google Scholar 

  93. Zhang, Y.S., Li, Z.J., Sun, W., Li, W.L.: Setting and hardening of geopolymeric cement pastes incorporated with fly ash. ACI Mater. J. 106(5), 405–412 (2009)

    Google Scholar 

  94. Provis, J.L., Walls, P.A., van Deventer, J.S.J.: Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem. Eng. Sci. 63(18), 4480–4489 (2008)

    Google Scholar 

  95. Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 1. In situ energy dispersive X-ray diffractometry. Chem. Eng. Sci. 62(9), 2309–2317 (2007)

    Google Scholar 

  96. Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 62(9), 2318–2329 (2007)

    Google Scholar 

  97. Zhang, Y., Sun, W.: Semi-empirical AM1 calculations on 6-memebered alumino-silicate rings model: implications for dissolution process of metakaoline in alkaline solutions. J. Mater. Sci. 42(9), 3015–3023 (2007)

    Google Scholar 

  98. White, C.E., Provis, J.L., Kearley, G.J., Riley, D.P., van Deventer, J.S.J.: Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 40(6), 1348–1355 (2011)

    Google Scholar 

  99. White, C.E., Provis, J.L., Proffen, T., van Deventer, J.S.J.: Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation. AIChE J 58(7), 2241–2253 (2012)

    Google Scholar 

  100. Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind. Eng. Chem. Res. 45(23), 7781–7788 (2006)

    Google Scholar 

  101. Vance, E.R., Hadley, J.H., Hsu, F.H., Drabarek, E.: Positron annihilation lifetime spectra in a metakaolin-based geopolymer. J. Am. Ceram. Soc. 91(2), 664–666 (2008)

    Google Scholar 

  102. Provis, J.L., Yong, C.Z., Duxson, P., van Deventer, J.S.J.: Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf. A 336(1–3), 57–63 (2009)

    Google Scholar 

  103. Provis, J.L., Duxson, P., Harrex, R.M., Yong, C.Z., van Deventer, J.S.J.: Valorisation of fly ashes by geopolymerisation. Global NEST J. 11(2), 147–154 (2009)

    Google Scholar 

  104. Van Riessen, A., Jamieson, E., Kealley, C.S., Hart, R.D., Williams, R.P.: Bayer-Geopolymers: an exploration of synergy between the alumina and geopolymer industries. Cem. Concr. Compos. 41, 29–33 (2013)

    Google Scholar 

  105. Phair, J.W., van Deventer, J.S.J.: Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate. Ind. Eng. Chem. Res. 41(17), 4242–4251 (2002)

    Google Scholar 

  106. Nugteren, H., Ogundiran, M.B., Witkamp, G.-J., Kreuzer, M.T.: Coal fly ash activated by waste sodium aluminate as an immobilizer for hazardous waste. In: 2011 World of Coal Ash Conference, Denver, CO. CD-ROM proceedings. ACAA/CAER (2011)

    Google Scholar 

  107. Fernández-Jiménez, A., Palomo, A.: Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem. Concr. Res. 35(10), 1984–1992 (2005)

    Google Scholar 

  108. Shi, C., Day, R.L.: Acceleration of the reactivity of fly ash by chemical activation. Cem. Concr. Res. 25(1), 15–21 (1995)

    Google Scholar 

  109. Bernal, S.A., Skibsted, J., Herfort, D.: Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid. CD-ROM proceedings (2011)

    Google Scholar 

  110. Criado, M., Fernández-Jiménez, A., Palomo, A.: Effect of sodium sulfate on the alkali activation of fly ash. Cem. Concr. Compos. 32(8), 589–594 (2010)

    Google Scholar 

  111. Davis, R.E., Carlson, R.W., Kelly, J.W., Davis, H.E.: Properties of cements and concretes containing fly ash. J. Am. Concr. Inst. 33, 577–612 (1937)

    Google Scholar 

  112. Bilodeau, A., Malhotra, V.M.: High-volume fly ash system: concrete solution for sustainable development. ACI Mater. J. 97(1), 41–48 (2000)

    Google Scholar 

  113. Fernández-Jiménez, A., de la Torre, A.G., Palomo, A., López-Olmo, G., Alonso, M.M., Aranda, M.A.G.: Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85(5–6), 625–634 (2006)

    Google Scholar 

  114. Fernández-Jiménez, A., de la Torre, A.G., Palomo, A., López-Olmo, G., Alonso, M.M., Aranda, M.A.G.: Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel 85(14–15), 1960–1969 (2006)

    Google Scholar 

  115. Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: The role played by the reactive alumina content in the alkaline activation of fly ashes. Micropor. Mesopor. Mater. 91(1–3), 111–119 (2006)

    Google Scholar 

  116. Winnefeld, F., Leemann, A., Lucuk, M., Svoboda, P., Neuroth, M.: Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr. Build. Mater. 24(6), 1086–1093 (2010)

    Google Scholar 

  117. Keyte, L.M.: Fly ash glass chemistry and inorganic polymer cements. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 15–36. Woodhead, Cambridge (2009)

    Google Scholar 

  118. Keyte, L.M.: What’s wrong with Tarong? The importance of fly ash glass chemistry in inorganic polymer synthesis. Ph.D. Thesis, University of Melbourne, Australia (2008)

    Google Scholar 

  119. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010)

    Google Scholar 

  120. Duxson, P., Provis, J.L.: Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91(12), 3864–3869 (2008)

    Google Scholar 

  121. Diaz, E.I., Allouche, E.N.: Recycling of fly ash into geopolymer concrete: Creation of a database. In: Green Technologies Conference 2010, IEEE, Grapevine, TX, USA. CD-ROM proceedings (2010)

    Google Scholar 

  122. Diaz, E.I., Allouche, E.N., Eklund, S.: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89, 992–996 (2010)

    Google Scholar 

  123. Diaz-Loya, E.I., Allouche, E.N., Vaidya, S.: Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108(3), 300–306 (2011)

    Google Scholar 

  124. Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)

    Google Scholar 

  125. Towler, M.R., Stanton, K.T., Mooney, P., Hill, R.G., Moreno, N., Querol, X.: Modelling of the glass phase in fly ashes using network connectivity theory. J. Chem. Technol. Biotechnol. 77, 240–245 (2002)

    Google Scholar 

  126. van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 57(7), 1272–1280 (2003)

    Google Scholar 

  127. Diamond, S.: On the glass present in low-calcium and in high-calcium fly ashes. Cem. Concr. Res. 13(4), 459–464 (1983)

    MathSciNet  Google Scholar 

  128. Chancey, R.T., Stutzman, P., Juenger, M.C.G., Fowler, D.W.: Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem. Concr. Res. 40(1), 146–156 (2010)

    Google Scholar 

  129. Gustashaw, K., Chancey, R., Stutzman, P., Juenger, M.: Quantitative characterization of fly ash reactivity for use in geopolymer cements. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid, Spain. CD-ROM proceedings (2011)

    Google Scholar 

  130. Chen-Tan, N.W., Van Riessen, A., Ly, C.V., Southam, D.C.: Determining the reactivity of a fly ash for production of geopolymer. J. Am. Ceram. Soc. 92(4), 881–887 (2009)

    Google Scholar 

  131. Bumrongjaroen, W., Muller, I.S., Pegg, I.L.: Characterization of glassy phase in fly ash from Iowa State University, Vitreous State Laboratory, Catholic University of America, Report VSL-07R520X-1 (2007)

    Google Scholar 

  132. Valcke, S.L.A., Sarabèr, A.J., Pipilikaki, P., Fischer, H.R., Nugteren, H.W.: Screening coal combustion fly ashes for application in geopolymers. Fuel 106, 490–497 (2013)

    Google Scholar 

  133. Zhang, Z., Wang, H., Provis, J.L.: Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J. Sust. Cem.-Based Mater. 1(4), 154–166 (2012)

    Google Scholar 

  134. Brouwers, H.J.H., van Eijk, R.J.: Fly ash reactivity: extension and application of a shrinking core model and thermodynamic approach. J. Mater. Sci. 37(10), 2129–2141 (2002)

    Google Scholar 

  135. Brouwers, H.J.H., Van Eijk, R.J.: Reactivity of fly ash: extension and application of a shrinking core model. Concr. Sci. Eng. 4, 106–113 (2002)

    Google Scholar 

  136. Das, S.K., Yudhbir: A simplified model for prediction of pozzolanic characteristics of fly ash, based on chemical composition. Cem. Concr. Res. 36(10), 1827–1832 (2006)

    Google Scholar 

  137. Li, C., Li, Y., Sun, H., Li, L.: The composition of fly ash glass phase and its dissolution properties applying to geopolymeric materials. J. Am. Ceram. Soc. 94(6), 1773–1778 (2011)

    Google Scholar 

  138. Chen, C., Gong, W., Lutze, W., Pegg, I., Zhai, J.: Kinetics of fly ash leaching in strongly alkaline solutions. J. Mater. Sci. 46(3), 590–597 (2011)

    Google Scholar 

  139. Ben Haha, M., De Weerdt, K., Lothenbach, B.: Quantification of the degree of reaction of fly ash. Cem. Concr. Res. 40(11), 1620–1629 (2010)

    Google Scholar 

  140. Sear, L.K.A.: Coal fired power station ash products and EU regulation. Coal Comb. Gasif. Prod. 1, 63–66 (2009)

    Google Scholar 

  141. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 38(5), 681–688 (2008)

    Google Scholar 

  142. Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vázquez, E., Barra, M.: Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 154(1–3), 175–183 (2008)

    Google Scholar 

  143. Rickard, W.D.A., Williams, R., Temuujin, J., van Riessen, A.: Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 528(9), 3390–3397 (2011)

    Google Scholar 

  144. Kumar, R., Kumar, S., Mehrotra, S.P.: Towards sustainable solutions for fly ash through mechanical activation. Resourc. Conserv. Recyc. 52(2), 157–179 (2007)

    Google Scholar 

  145. Kumar, S., Kumar, R., Alex, T.C., Bandopadhyay, A., Mehrotra, S.P.: Influence of reactivity of fly ash on geopolymerisation. Adv. Appl. Ceram. 106(3), 120–127 (2007)

    Google Scholar 

  146. Kumar, S., Kumar, R.: Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram. Int. 37(2), 533–541 (2011)

    Google Scholar 

  147. Lee, W.K.W., van Deventer, J.S.J.: Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf. A 211(1), 49–66 (2002)

    Google Scholar 

  148. Škvára, F., Kopecký, L., Šmilauer, V., Bittnar, Z.: Material and structural characterization of alkali activated low-calcium brown coal fly ash. J. Hazard. Mater. 168(2–3), 711–720 (2009)

    Google Scholar 

  149. Topçu, I.B., Toprak, M.U.: Properties of geopolymer from circulating fluidized bed combustion coal bottom ash. Mater. Sci. Eng. A 528(3), 1472–1477 (2011)

    Google Scholar 

  150. Xu, H., Li, Q., Shen, L., Zhang, M., Zhai, J.: Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Manag. 30(1), 57–62 (2010)

    Google Scholar 

  151. Songpiriyakij, S., Kubprasit, T., Jaturapitakkul, C., Chindaprasirt, P.: Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Constr. Build. Mater. 24(3), 236–240 (2010)

    Google Scholar 

  152. Brindley, G.W., Nakahira, M.: The kaolinite-mullite reaction series. 2. Metakaolin. J. Am. Ceram. Soc. 42(7), 314–318 (1959)

    Google Scholar 

  153. MacKenzie, K.J.D., Brown, I.W.M., Meinhold, R.H., Bowden, M.E.: Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance. 1. Metakaolinite. J. Am. Ceram. Soc. 68(6), 293–297 (1985)

    Google Scholar 

  154. Collins, D.R., Fitch, A.N., Catlow, C.R.A.: Time-resolved powder neutron diffraction study of the thermal reactions in clay minerals. J. Mater. Chem. 1(6), 965–970 (1991)

    Google Scholar 

  155. Gualtieri, A., Bellotto, M.: Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments. Phys. Chem. Miner. 25(6), 442–452 (1998)

    Google Scholar 

  156. McConville, C.J., Lee, W.E., Sharp, J.H.: Microstructural evolution in fired kaolinite. Br. Ceram. Trans. 97(4), 162–168 (1998)

    Google Scholar 

  157. Brindley, G.W., Nakahira, M.: The kaolinite-mullite reaction series. 1. A survey of outstanding problems. J. Am. Ceram. Soc. 42(7), 311–314 (1959)

    Google Scholar 

  158. Lee, S., Kim, Y.J., Lee, H.J., Moon, H.-S.: Electron-beam-induced phase transformations from metakaolinite to mullite investigated by EF-TEM and HRTEM. J. Am. Ceram. Soc. 84(9), 2096–2098 (2001)

    Google Scholar 

  159. Sperinck, S., Raiteri, P., Marks, N., Wright, K.: Dehydroxylation of kaolinite to metakaolin - a molecular dynamics study. J. Mater. Chem. 21(7), 2118–2125 (2011)

    Google Scholar 

  160. White, C.E., Provis, J.L., Proffen, T., Riley, D.P., van Deventer, J.S.J.: Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J. Phys. Chem. A 114(14), 4988–4996 (2010)

    Google Scholar 

  161. Granizo, M.L., Blanco-Varela, M.T., Palomo, A.: Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry. J. Mater. Sci. 35(24), 6309–6315 (2000)

    Google Scholar 

  162. Zibouche, F., Kerdjouj, H., d’Espinose de la Caillerie, J.-B., Van Damme, H.: Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl. Clay Sci. 43(3–4), 453–458 (2009)

    Google Scholar 

  163. Zhang, Z.H., Yao, X., Zhu, H.J., Hua, S.D., Chen, Y.: Activating process of geopolymer source material: Kaolinite. J. Wuhan Univ. Technol.- Mater Sci. Ed. 24(1), 132–136 (2009)

    Google Scholar 

  164. Provis, J.L., Duxson, P., van Deventer, J.S.J.: The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 21(1), 2–7 (2010)

    Google Scholar 

  165. Marín-López, C., Reyes Araiza, J., Manzano-Ramírez, A., Rubio Avalos, J., Perez-Bueno, J., Muñiz-Villareal, M., Ventura-Ramos, E., Vorobiev, Y.: Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorg. Mater. 45(12), 1429–1432 (2009)

    Google Scholar 

  166. San Nicolas, R.: Approche performantielle des bétons avec métakaolins obtenus par calcination flash. Ph.D. Thesis, Université de Toulouse, France (2011)

    Google Scholar 

  167. Živica, V., Balkovic, S., Drabik, M.: Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction. Constr. Build. Mater. 25(5), 2206–2213 (2011)

    Google Scholar 

  168. Lee, S., Kim, Y.J., Moon, H.S.: Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation. J. Am. Ceram. Soc. 86(1), 174–176 (2003)

    Google Scholar 

  169. Wang, M.R., Jia, D.C., He, P.G., Zhou, Y.: Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Mater. Lett. 64(22), 2551–2554 (2010)

    Google Scholar 

  170. Cioffi, R., Maffucci, L., Santoro, L.: Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour. Conserv. Recyc. 40(1), 27–38 (2003)

    Google Scholar 

  171. Elimbi, A., Tchakoute, H.K., Njopwouo, D.: Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 25(6), 2805–2812 (2011)

    Google Scholar 

  172. Medri, V., Fabbri, S., Dedecek, J., Sobalik, Z., Tvaruzkova, Z., Vaccari, A.: Role of the morphology and the dehydroxylation of metakaolins on geopolymerization. Appl. Clay Sci. 50(4), 538–545 (2010)

    Google Scholar 

  173. White, C.E., Provis, J.L., Gordon, L.E., Riley, D.P., Proffen, T., van Deventer, J.S.J.: The effect of temperature on the local structure of kaolinite intercalated with potassium acetate. J. Am. Ceram. Soc. 23(2), 188–199 (2011)

    Google Scholar 

  174. White, C.E., Provis, J.L., Proffen, T., Riley, D.P., van Deventer, J.S.J.: Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys. Chem. Chem. Phys. 12(13), 3239–3245 (2010)

    Google Scholar 

  175. White, C.E., Perander, L.M., Provis, J.L., van Deventer, J.S.J.: The use of XANES to clarify issues related to bonding environments in metakaolin: a discussion of the paper S. Sperinck et al., “Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study”, J. Mater. Chem. 21, 2118–2125. J. Mater. Chem. 21(19), 7007–7010 (2011)

    Google Scholar 

  176. van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 89(1–3), 63–73 (2002)

    Google Scholar 

  177. van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: A comparative study of kaolinite versus metakaolinite in fly ash based geopolymers containing immobilized metals. Chem. Eng. Commun. 191(4), 531–549 (2004)

    Google Scholar 

  178. Bernal, S.A., Rodríguez, E.D., Mejía de Gutierrez, R., Gordillo, M., Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)

    Google Scholar 

  179. Bernal, S.A., Provis, J.L., Mejía de Gutierrez, R., Rose, V.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Google Scholar 

  180. Krivenko, P.V., Petropavlovsky, O., Gelevera, A., Kavalerova, E.: Alkali-aggregate reaction in the alkali-activated cement concretes. In: Bilek, V., Keršner, Z. (eds.) Proceedings of the 4th International Conference on Non-Traditional Cement & Concrete, Brno, Czech Republic. ZPSV, a.s. (2011)

    Google Scholar 

  181. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem. Concr. Res. 37(6), 933–941 (2007)

    Google Scholar 

  182. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment. Constr. Build. Mater. 22(3), 154–161 (2008)

    Google Scholar 

  183. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Tungsten mine waste geopolymeric binder: preliminary hydration products investigations. Constr. Build. Mater. 23(1), 200–209 (2009)

    Google Scholar 

  184. Pacheco-Torgal, F., Castro-Gomes, J.P., Jalali, S.: Investigations on mix design of tungsten mine waste geopolymeric binder. Constr. Build. Mater. 22(9), 1939–1949 (2008)

    Google Scholar 

  185. Pacheco-Torgal, F., Castro-Gomes, J.P., Jalali, S.: Investigations of tungsten mine waste geopolymeric binder: Strength and microstructure. Constr. Build. Mater. 22(11), 2212–2219 (2008)

    Google Scholar 

  186. Buchwald, A., Hohmann, M., Posern, K., Brendler, E.: The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl. Clay Sci. 46(3), 300–304 (2009)

    Google Scholar 

  187. MacKenzie, K.J.D., Komphanchai, S., Vagana, R.: Formation of inorganic polymers (geopolymers) from 2:1 layer lattice aluminosilicates. J. Eur. Ceram. Soc. 28(1), 177–181 (2008)

    Google Scholar 

  188. MacKenzie, K.J.D., Brew, D.R.M., Fletcher, R.A., Vagana, R.: Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J. Mater. Sci. 42(12), 4667–4674 (2007)

    Google Scholar 

  189. MacKenzie, K.J.D.: Utilisation of non-thermally activated clays in the production of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 296–316. Woodhead, Cambridge (2009)

    Google Scholar 

  190. Yang, K.-H., Hwang, H.-Z., Lee, S.: Effects of water-binder ratio and fine aggregate-total aggregate ratio on the properties of hwangtoh-based alkali-activated concrete. J. Mater. Civil Eng. 22(9), 887–896 (2010)

    Google Scholar 

  191. Gomes, K.C., Torres, S.M., De Barros, S., Vasconcelos, I.F., Barbosa, N.P.: Mechanical properties of geopolymers with iron rich precursors. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid, Spain. CD-ROM proceedings (2011)

    Google Scholar 

  192. Gomes, K.C., Lima, G.S.T., Torres, S.M., De Barros, S., Vasconcelos, I.F., Barbosa, N.P.: Iron distribution in geopolymer with ferromagnetic rich precursor. Mater. Sci. Forum 643, 131–138 (2010)

    Google Scholar 

  193. Xu, H., van Deventer, J.S.J.: Geopolymerisation of multiple minerals. Miner. Eng. 15(12), 1131–1139 (2002)

    Google Scholar 

  194. Xu, H., van Deventer, J.S.J.: Effect of source materials on geopolymerization. Ind. Eng. Chem. Res. 42(8), 1698–1706 (2003)

    Google Scholar 

  195. Xu, H., van Deventer, J.S.J.: The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A 216(1–3), 27–44 (2003)

    Google Scholar 

  196. Xu, H., van Deventer, J.S.J.: Factors affecting the geopolymerization of alkali-feldspars. Miner. Metall. Proc. 19(4), 209–214 (2002)

    Google Scholar 

  197. Xu, H., van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Proc. 59(3), 247–266 (2000)

    Google Scholar 

  198. Xu, H., van Deventer, J.S.J., Roszak, S., Leszczynski, J.: Ab initio study of dissolution reactions of 5-membered aluminosilicate framework rings. Int. J. Quant. Chem. 96(4), 365–373 (2004)

    Google Scholar 

  199. Xu, H., van Deventer, J.S.J.: Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM. Cem. Concr. Res. 32(11), 1705–1716 (2002)

    Google Scholar 

  200. Pacheco-Torgal, F., Jalali, S.: Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders. Constr. Build. Mater. 24(1), 56–60 (2010)

    Google Scholar 

  201. Leonelli, C., Kamseu, E., Boccaccini, D.N., Melo, U.C., Rizzuti, A., Billong, N., Piselli, P.: Volcanic ash as alternative raw materials for traditional vitrified ceramic products. Adv. Appl. Ceram. 106(3), 141–148 (2007)

    Google Scholar 

  202. Kamseu, E., Leonelli, C., Perera, D.S., Melo, U.C., Lemougna, P.N.: Investigation of volcanic ash based geopolymers as potential building materials. Interceram 58(2–3), 136–140 (2009)

    Google Scholar 

  203. Allahverdi, A., Mehrpour, K., Najafi Kani, E.: Investigating the possibility of utilizing pumice-type natural pozzolan in production of geopolymer cement. Ceram.-Silik. 52(1), 16–23 (2008)

    Google Scholar 

  204. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25(6), 2906–2910 (2011)

    Google Scholar 

  205. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 25(10), 4065–4071 (2011)

    Google Scholar 

  206. Najafi Kani, E., Allahverdi, A.: Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram.-Silik. 53(3), 195–204 (2009)

    Google Scholar 

  207. Najafi Kani, E., Allahverdi, A.: Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J. Mater. Sci. 44, 3088–3097 (2009)

    Google Scholar 

  208. Chávez-García, M.L., García, T.A., de Pablo, L.: Synthesis and characterization of geopolymers from clinoptilolite tuff. In: Palomo, A. (ed.) 13th International Congress on the Chemistry of Cement, Madrid, Spain. CD-ROM proceedings (2011)

    Google Scholar 

  209. Najafi Kani, E., Allahverdi, A., Provis, J.L.: Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34(1), 25–33 (2012)

    Google Scholar 

  210. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 33(2), 251–260 (2011)

    Google Scholar 

  211. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N.: Oxygen and chloride permeability of alkali-activated natural pozzolan concrete. ACI Mater. J. 104(1), 53–62 (2012)

    Google Scholar 

  212. Glukhovsky, V.D.: Gruntosilikaty (Soil Silicates). Gosstroyizdat, Kiev (1959)

    Google Scholar 

  213. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater. J. 108(1), 64–72 (2011)

    Google Scholar 

  214. Zosin, A.P., Priimak, T.I., Avsaragov, K.B.: Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes. At. Energy 85(1), 510–514 (1998)

    Google Scholar 

  215. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42(9), 3073–3082 (2007)

    Google Scholar 

  216. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 161(2–3), 760–768 (2009)

    Google Scholar 

  217. Zaharaki, D., Komnitsas, K., Perdikatsis, V.: Use of analytical techniques for identification of inorganic polymer gel composition. J. Mater. Sci. 45(10), 2715–2724 (2010)

    Google Scholar 

  218. Komnitsas, K., Zaharaki, D.: Utilisation of low-calcium slags to improve the strength and durability of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 345–378. Woodhead, Cambridge (2009)

    Google Scholar 

  219. Hos, J.P., McCormick, P.G., Byrne, L.T.: Investigation of a synthetic aluminosilicate inorganic polymer. J. Mater. Sci. 37(11), 2311–2316 (2002)

    Google Scholar 

  220. Gordon, M., Bell, J.L., Kriven, W.M.: Comparison of naturally and synthetically derived, potassium-based geopolymers. Ceram. Trans. 165, 95–106 (2005)

    Google Scholar 

  221. Cui, X.-M., Zheng, G.-J., Han, Y.-C., Su, F., Zhou, J.: A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geopolymer materials. J. Power Sourc. 184(2), 652–656 (2008)

    Google Scholar 

  222. Zheng, G., Cui, X., Zhang, W., Tong, Z.: Preparation of geopolymer precursors by sol–gel method and their characterization. J. Mater. Sci. 44, 3991–3996 (2009)

    Google Scholar 

  223. Fernández-Jiménez, A., Vallepu, R., Terai, T., Palomo, A., Ikeda, K.: Synthesis and thermal behavior of different aluminosilicate gels. J. Non-Cryst. Solids 352, 2061–2066 (2006)

    Google Scholar 

  224. García-Lodeiro, I., Fernández-Jiménez, A., Blanco, M.T., Palomo, A.: FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 45(1), 63–72 (2008)

    Google Scholar 

  225. Vallepu, R., Fernández-Jiménez, A.M., Terai, T., Mikuni, A., Palomo, A., MacKenzie, K.J.D., Ikeda, K.: Effect of synthesis pH on the preparation and properties of K-Al-bearing silicate gels from solution. J. Ceram. Soc. Japan 114(7), 624–629 (2006)

    Google Scholar 

  226. Phair, J.W., Smith, J.D., van Deventer, J.S.J.: Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers”. Mater. Lett. 57(28), 4356–4367 (2003)

    Google Scholar 

  227. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind. Eng. Chem. Res. 47(23), 9396–9405 (2008)

    Google Scholar 

  228. O’Connor, S.J., MacKenzie, K.J.D.: Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers. J. Mater. Sci. 45(14), 3707–3713 (2010)

    Google Scholar 

  229. O’Connor, S.J., MacKenzie, K.J.D.: A new hydroxide-based synthesis method for inorganic polymers. J. Mater. Sci. 45(12), 3284–3288 (2010)

    Google Scholar 

  230. Brew, D.R.M., MacKenzie, K.J.D.: Geopolymer synthesis using silica fume and sodium aluminate. J. Mater. Sci. 42(11), 3990–3993 (2007)

    Google Scholar 

  231. Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers: Part I – Cs-based geopolymer. J. Am. Ceram. Soc. 92(1), 1–8 (2009)

    Google Scholar 

  232. Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer. J. Am. Ceram. Soc. 92(3), 607–615 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Provis, J.L., Fernández-Jiménez, A., Kamseu, E., Leonelli, C., Palomo, A. (2014). Binder Chemistry – Low-Calcium Alkali-Activated Materials. In: Provis, J., van Deventer, J. (eds) Alkali Activated Materials. RILEM State-of-the-Art Reports, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7672-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7672-2_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7671-5

  • Online ISBN: 978-94-007-7672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics