Skip to main content

Historical Aspects and Overview

  • Chapter
  • First Online:
Alkali Activated Materials

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 13))

Abstract

Cement and concrete are critical to the world economic system; the construction sector as a whole contributed US$3.3 trillion to the global economy in 2008 [1]. The fraction of this figure which is directly attributable to materials costs varies markedly from country to country – particularly between developing and developed countries. Worldwide production of cement in 2008 was around 2.9 billion tonnes [2], making it one of the highest-volume commodities produced worldwide. Concrete is thus the second-most used commodity in the world, behind only water [3]. It is noted that there are certainly applications for cement-like binders beyond concrete production, including tiling grouts, adhesives, sealants, waste immobilisation matrices, ceramics, and other related areas; these will be discussed in more detail in Chaps. 12 and 13, while the main focus of this chapter will be large-scale concrete production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations: UN national accounts main aggregates database. http://unstats.un.org/unsd/snaama/dnllist.asp (2009)

  2. US Geological Survey: Mineral commodity summaries: cement. http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2009-cemen.pdf (2009)

  3. Aïtcin, P.-C.: Cements of yesterday and today; concrete of tomorrow. Cem. Concr. Res. 30, 1349–1359 (2000)

    Google Scholar 

  4. Scrivener, K.L., Kirkpatrick, R.J.: Innovation in use and research on cementitious material. Cem. Concr. Res. 38(2), 128–136 (2008)

    Google Scholar 

  5. Taylor, M., Tam, C., Gielen, D.: Energy efficiency and CO2 emissions from the global cement industry. International Energy Agency (2006)

    Google Scholar 

  6. Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34(9), 1489–1498 (2004)

    Google Scholar 

  7. Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E.: Sustainable development and climate change initiatives. Cem. Concr. Res. 38(2), 115–127 (2008)

    Google Scholar 

  8. Juenger, M.C.G., Winnefeld, F., Provis, J.L., Ideker, J.: Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–1243 (2011)

    Google Scholar 

  9. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in the development of ‘Green concrete’. Cem. Concr. Res. 37(12), 1590–1597 (2007)

    Google Scholar 

  10. von Weizsäcker, E., Hargroves, K., Smith, M.H., Desha, C., Stasinopoulos, P.: Factor Five: Transforming the Global Economy Through 80% Improvements in Resource Productivity. Earthscan, London (2009)

    Google Scholar 

  11. Tempest, B., Sansui, O., Gergely, J., Ogunro, V., Weggel, D.: Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. In: World of Coal Ash 2009, Lexington, KY. CD-ROM Proceedings (2009)

    Google Scholar 

  12. Buchwald, A., Dombrowski, K., Weil, M.: Evaluation of primary and secondary materials under technical, ecological and economic aspects for the use as raw materials in geopolymeric binders. In: Bilek, V., Kersner, Z. (eds.) 2nd International Symposium on Non-Traditional Cement and Concrete, Brno, Czech Republic, pp. 32–40 (2005)

    Google Scholar 

  13. Weil, M., Dombrowski, K., Buchwald, A.: Life-cycle analysis of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 194–212. Woodhead, Cambridge (2009)

    Google Scholar 

  14. Weil, M., Jeske, U., Dombrowski, K., Buchwald, A.: Sustainable design of geopolymers – evaluation of raw materials by the integration of economic and environmental aspects in the early phases of material development. In: Takata, S., Umeda, Y. (eds.) Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, Tokyo, Japan, pp. 279–283. Springer, London (2007)

    Google Scholar 

  15. McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A., Corder, G.D.: Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Cleaner Prod. 19(9–10), 1080–1090 (2011)

    Google Scholar 

  16. Stengel, T., Reger, J., Heinz, D.: Life cycle assessment of geopolymer concrete – what is the environmental benefit? In: Concrete Solutions 09, Sydney (2009)

    Google Scholar 

  17. Habert, G., d'Espinose de Lacaillerie, J.B., Roussel, N.: An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Cleaner Prod. 19(11), 1229–1238 (2011)

    Google Scholar 

  18. Manz, O.E.: Worldwide production of coal ash and utilization in concrete and other products. Fuel 76(8), 691–696 (1997)

    Google Scholar 

  19. vom Berg, W., Feuerborn, H.-J.: CCPs in Europe. In: Proceedings of Clean Coal Day in Japan 2001, Tokyo, Japan. ECOBA (European Coal Combustion Products Association). http://www.energiaskor.se/rapporter/ECOBA_paper.pdf (2001)

  20. Rai, A., Rao, D.B.N.: Utilisation potentials of industrial/mining rejects and tailings as building materials. Manag. Environ. Qual. Int. J. 16(6), 605–614 (2005)

    Google Scholar 

  21. Neville, A.M.: Properties of Concrete, 4th edn. Wiley, Harlow (1996)

    Google Scholar 

  22. Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Elsevier, Oxford (1998)

    Google Scholar 

  23. Zosin, A.P., Priimak, T.I., Avsaragov, K.B.: Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes. Atom. Energy 85(1), 510–514 (1998)

    Google Scholar 

  24. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42(9), 3073–3082 (2007)

    Google Scholar 

  25. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem. Concr. Res. 37(6), 933–941 (2007)

    Google Scholar 

  26. Gartner, E.M., Macphee, D.E.: A physico-chemical basis for novel cementitious binders. Cem. Concr. Res. 41(7), 736–749 (2011)

    Google Scholar 

  27. Shi, C., Fernández-Jiménez, A., Palomo, A.: New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem. Concr. Res. 41(7), 750–763 (2011)

    Google Scholar 

  28. Hooton, R.D.: Bridging the gap between research and standards. Cem. Concr. Res. 38(2), 247–258 (2008)

    Google Scholar 

  29. Alexander, M.J.: Durability indexes and their use in concrete engineering. In: Kovler, K., et al. (eds.) International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur, Evanston, IL. pp. 9–22. RILEM Publications, Bagneux, France (2004)

    Google Scholar 

  30. Sonafrank, C.: Investigating 21st century cement production in interior Alaska using Alaskan resources. Cold Climate Housing Research Center, Report 012409 (2010)

    Google Scholar 

  31. Glukhovsky, V.D.: Ancient, modern and future concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, vol. 1, pp. 1–9. VIPOL Stock Company (1994)

    Google Scholar 

  32. Krivenko, P.V.: Alkaline cements. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, vol. 1, pp. 11–129. VIPOL Stock Company (1994)

    Google Scholar 

  33. Krivenko, P.V.: Alkaline cements: structure, properties, aspects of durability. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 3–43. ORANTA (1999)

    Google Scholar 

  34. Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 62(9), 2318–2329 (2007)

    Google Scholar 

  35. Wang, S.D., Scrivener, K.L.: Hydration products of alkali-activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)

    Google Scholar 

  36. Brough, A.R., Atkinson, A.: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 32(6), 865–879 (2002)

    Google Scholar 

  37. Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) paste. Cem. Concr. Res. 24(5), 813–829 (1994)

    Google Scholar 

  38. Fernández-Jiménez, A., Vázquez, T., Palomo, A.: Effect of sodium silicate on calcium aluminate cement hydration in highly alkaline media: a microstructural characterization. J. Am. Ceram. Soc. 94(4), 1297–1303 (2011)

    Google Scholar 

  39. Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites? – a reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005)

    Google Scholar 

  40. Fernández-Jiménez, A., Monzó, M., Vicent, M., Barba, A., Palomo, A.: Alkaline activation of metakaolin–fly ash mixtures: obtain of zeoceramics and zeocements. Microporous Mesoporous Mater. 108(1–3), 41–49 (2008)

    Google Scholar 

  41. Glukhovsky, V.D.: Gruntosilikaty (Soil Silicates). Gosstroyizdat, Kiev (1959)

    Google Scholar 

  42. Bell, J.L., Sarin, P., Provis, J.L., Haggerty, R.P., Driemeyer, P.E., Chupas, P.J., van Deventer, J.S.J., Kriven, W.M.: Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem. Mater. 20(14), 4768–4776 (2008)

    Google Scholar 

  43. Richardson, I.G.: Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 34(9), 1733–1777 (2004)

    Google Scholar 

  44. Chen, W., Brouwers, H.: The hydration of slag, Part 1: reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)

    Google Scholar 

  45. Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011)

    Google Scholar 

  46. Puertas, F., Martínez-Ramírez, S., Alonso, S., Vázquez, E.: Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30, 1625–1632 (2000)

    Google Scholar 

  47. Puertas, F.: Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro. Mater. Constr. 45(239), 53–64 (1995)

    Google Scholar 

  48. Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17), 5294–5306 (2013)

    Google Scholar 

  49. Wang, S.D.: The role of sodium during the hydration of alkali-activated slag. Adv. Cem. Res. 12(2), 65–69 (2000)

    Google Scholar 

  50. Lothenbach, B., Gruskovnjak, A.: Hydration of alkali-activated slag: thermodynamic modelling. Adv. Cem. Res. 19(2), 81–92 (2007)

    Google Scholar 

  51. Bernal, S.A., Provis, J.L., Mejía de Gutierrez, R., Rose, V.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Google Scholar 

  52. Krivenko, P.V.: Alkaline cements: from research to application. In: Lukey, G.C. (ed.) Geopolymers 2002. Turn Potential into Profit, Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)

    Google Scholar 

  53. Goldich, S.S.: A study in rock-weathering. J. Geol. 46(1), 17–58 (1938)

    Google Scholar 

  54. Langmuir, D.: Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  55. Davidovits, J., Davidovits, F.: The Pyramids: An Enigma Solved. 2nd Revised Ed. Éditions J. Davidovits, Saint-Quentin, France (2001)

    Google Scholar 

  56. Davidovits, J.: Geopolymeric reactions in archaeological cements and in modern blended cements. In: Davidovits, J., Orlinski, J. (eds.) Proceedings of Geopolymer ‘88 – First European Conference on Soft Mineralurgy, Compeigne, France, vol. 1, pp. 93–106. Universite de Technologie de Compeigne (1988)

    Google Scholar 

  57. Barsoum, M.W., Ganguly, A., Hug, G.: Microstructural evidence of reconstituted limestone blocks in the Great Pyramids of Egypt. J. Am. Ceram. Soc. 89(12), 3788–3796 (2006)

    Google Scholar 

  58. MacKenzie, K.J.D., Smith, M.E., Wong, A., Hanna, J.V., Barry, B., Barsoum, M.W.: Were the casing stones of Senefru’s Bent Pyramid in Dahshour cast or carved?: multinuclear NMR evidence. Mater. Lett. 65(2), 350–352 (2011)

    Google Scholar 

  59. Vitruvius: The Ten Books of Architecture. Dover, Trans M.H. Morgan. New York (1960)

    Google Scholar 

  60. Gotti, E., Oleson, J.P., Bottalico, L., Brandon, C., Cucitore, R., Hohlfelder, R.L.: A comparison of the chemical and engineering characteristics of ancient Roman hydraulic concrete with a modern reproduction of Vitruvian hydraulic concrete. Archaeometry 50, 576–590 (2008)

    Google Scholar 

  61. Brandon, C., Hohlfelder, R.L., Oleson, J.P., Stern, C.: The Roman Maritime Concrete Study (ROMACONS): the harbour of Chersonisos in Crete and its Italian connection. Rev. Geogr. Pays Méditerr. 104, 25–29 (2005)

    Google Scholar 

  62. Sánchez-Moral, S., Luque, L., Cañaveras, J.-C., Soler, V., Garcia-Guinea, J., Aparicio, A.: Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration. Cem. Concr. Res. 35(8), 1555–1565 (2005)

    Google Scholar 

  63. Abe, H., Aoki, M., Konno, H.: Synthesis of analcime from volcanic sediments in sodium silicate solution. Contrib. Mineral. Petrol. 42(2), 81–92 (1973)

    Google Scholar 

  64. Roy, D.M., Langton, C.A.: Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff, Report LA-11527-MS. Los Alamos National Laboratory (1989)

    Google Scholar 

  65. Nguyen, B.Q., Leming, M.L.: Limits on alkali content in cement – results from a field study. Cem. Concr. Aggr. 22(1) (2000). CCA10462J

    Google Scholar 

  66. Smaoui, N., Bérubé, M.A., Fournier, B., Bissonnette, B., Durand, B.: Effects of alkali addition on the mechanical properties and durability of concrete. Cem. Concr. Res. 35(2), 203–212 (2005)

    Google Scholar 

  67. Chen, W., Brouwers, H.J.H.: Alkali binding in hydrated Portland cement paste. Cem. Concr. Res. 40(5), 716–722 (2010)

    Google Scholar 

  68. Jiang, S., Kim, B.-G., Aïtcin, P.-C.: Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility. Cem. Concr. Res. 29(1), 71–78 (1999)

    MATH  Google Scholar 

  69. Way, S.J., Shayan, A.: Early hydration of a Portland cement in water and sodium hydroxide solutions: composition of solutions and nature of solid phases. Cem. Concr. Res. 19(5), 759–769 (1989)

    Google Scholar 

  70. Martínez-Ramírez, S., Palomo, A.: OPC hydration with highly alkaline solutions. Adv. Cem. Res. 13(3), 123–129 (2001)

    Google Scholar 

  71. Kirchheim, A.P., Dal Molin, D.C., Fischer, P., Emwas, A.-H., Provis, J.L., Monteiro, P.J.M.: Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates. Inorg. Chem. 50(4), 1203–1212 (2011)

    Google Scholar 

  72. Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41(12), 1224–1231 (2011)

    Google Scholar 

  73. Ramlochan, T., Thomas, M., Gruber, K.A.: The effect of metakaolin on alkali-silica reaction in concrete. Cem. Concr. Res. 30(3), 339–344 (2000)

    Google Scholar 

  74. Krivenko, P.V., Petropavlovsky, O., Gelevera, A., Kavalerova, E.: Alkali-aggregate reaction in the alkali-activated cement concretes. In: Bilek, V., Keršner, Z. (eds.) Proceedings of the 4th International Conference on Non-Traditional Cement & Concrete, Brno, Czech Republic. ZPSV, a.s. (2011)

    Google Scholar 

  75. Chappex, T., Scrivener, K.L.: The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction. Cem. Concr. Res. 42(12), 1645–1649 (2012)

    Google Scholar 

  76. Provis, J.L.: Activating solution chemistry for geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 50–71. Woodhead, Cambridge (2009)

    Google Scholar 

  77. Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)

    Google Scholar 

  78. Monnin, C., Dubois, M.: Thermodynamics of the LiOH+H2O system. J. Chem. Eng. Data 50(4), 1109–1113 (2005)

    Google Scholar 

  79. Pickering, S.U.: The hydrates of sodium, potassium and lithium hydroxides. J. Chem. Soc. Trans. 63, 890–909 (1893)

    Google Scholar 

  80. Kurt, C., Bittner, J.: Sodium hydroxide. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag, Weinheim (2006)

    Google Scholar 

  81. Gurvich, L.V., Bergman, G.A., Gorokhov, L.N., Iorish, V.S., Leonidov, V.Y., Yungman, V.S.: Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. J. Phys. Chem. Ref. Data 25(4), 1211–1276 (1996)

    Google Scholar 

  82. Gurvich, L.V., Bergman, G.A., Gorokhov, L.N., Iorish, V.S., Leonidov, V.Y., Yungman, V.S.: Thermodynamic properties of alkali metal hydroxides. Part 2. Potassium, rubidium, and cesium hydroxides. J. Phys. Chem. Ref. Data 26(4), 1031–1110 (1997)

    Google Scholar 

  83. Simonson, J.M., Mesmer, R.E., Rogers, P.S.Z.: The enthalpy of dilution and apparent molar heat capacity of NaOH(aq) to 523 K and 40 MPa. J. Chem. Thermodyn. 21, 561–584 (1989)

    Google Scholar 

  84. Brown, P.W.: The system Na2O-CaO-SiO2-H2O. J. Am. Ceram. Soc. 73(11), 3457–3561 (1990)

    Google Scholar 

  85. Weldes, H.H., Lange, K.R.: Properties of soluble silicates. Ind. Eng. Chem. 61(4), 29–44 (1969)

    Google Scholar 

  86. Wills, J.H.: A review of the system Na2O-SiO2-H2O. J. Phys. Colloid Chem. 54(3), 304–310 (1950)

    Google Scholar 

  87. Vail, J.G.: Soluble Silicates: Their Properties and Uses. Reinhold, New York (1952)

    Google Scholar 

  88. Knight, C.T.G., Balec, R.J., Kinrade, S.D.: The structure of silicate anions in aqueous alkaline solutions. Angew. Chem. Int. Ed. 46, 8148–8152 (2007)

    Google Scholar 

  89. Provis, J.L., Duxson, P., Lukey, G.C., Separovic, F., Kriven, W.M., van Deventer, J.S.J.: Modeling speciation in highly concentrated alkaline silicate solutions. Ind. Eng. Chem. Res. 44(23), 8899–8908 (2005)

    Google Scholar 

  90. Engelhardt, G., Jancke, H., Hoebbel, D., Wieker, W.: Strukturuntersuchungen an Silikatanionen in wäßriger Lösung mit Hilfe der 29Si-NMR-Spektroskopie. Z. Chem. 14(3), 109–110 (1974)

    Google Scholar 

  91. Harris, R.K., Knight, C.T.G.: Silicon-29 nuclear magnetic resonance studies of aqueous silicate solutions. Part 5. First-order patterns in potassium silicate solutions enriched with silicon-29. J. Chem. Soc. Faraday Trans. II 79(10), 1525–1538 (1983)

    Google Scholar 

  92. Harris, R.K., Knight, C.T.G.: Silicon-29 nuclear magnetic resonance studies of aqueous silicate solutions. Part 6. Second-order patterns in potassium silicate solutions enriched with silicon-29. J. Chem. Soc. Faraday Trans. II 79(10), 1539–1561 (1983)

    Google Scholar 

  93. Cho, H., Felmy, A.R., Craciun, R., Keenum, J.P., Shah, N., Dixon, D.A.: Solution state structure determination of silicate oligomers by 29Si NMR spectroscopy and molecular modeling. J. Am. Chem. Soc. 128(7), 2324–2335 (2006)

    Google Scholar 

  94. Pelster, S.A., Schrader, W., Schüth, F.: Monitoring temporal evolution of silicate species during hydrolysis and condensation of silicates using mass spectrometry. J. Am. Chem. Soc. 128(13), 4310–4317 (2006)

    Google Scholar 

  95. Petry, D.P., Haouas, M., Wong, S.C.C., Aerts, A., Kirschhock, C.E.A., Martens, J.A., Gaskell, S.J., Anderson, M.W., Taulelle, F.: Connectivity analysis of the clear sol precursor of silicalite: are nanoparticles aggregated oligomers or silica particles? J. Phys. Chem. C 113(49), 20827–20836 (2009)

    Google Scholar 

  96. Halasz, I., Agarwal, M., Li, R., Miller, N.: Monitoring the structure of water soluble silicates. Catal. Today 126, 196–202 (2007)

    Google Scholar 

  97. Halasz, I., Agarwal, M., Li, R., Miller, N.: Vibrational spectra and dissociation of aqueous Na2SiO3 solutions. Catal. Lett. 117(1–2), 34–42 (2007)

    Google Scholar 

  98. Halasz, I., Agarwal, M., Li, R.B., Miller, N.: What can vibrational spectroscopy tell about the structure of dissolved sodium silicates? Microporous Mesoporous Mater. 135(1–3), 74–81 (2010)

    Google Scholar 

  99. White, C.E., Provis, J.L., Kearley, G.J., Riley, D.P., van Deventer, J.S.J.: Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 40(6), 1348–1355 (2011)

    Google Scholar 

  100. Nordström, J., Nilsson, E., Jarvol, P., Nayeri, M., Palmqvist, A., Bergenholtz, J., Matic, A.: Concentration- and pH-dependence of highly alkaline sodium silicate solutions. J. Colloid Interface Sci. 356(1), 37–45 (2011)

    Google Scholar 

  101. Phair, J.W., van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Proc. 66(1–4), 121–143 (2002)

    Google Scholar 

  102. Yang, X., Zhu, W., Yang, Q.: The viscosity properties of sodium silicate solutions. J. Solut. Chem. 37(1), 73–83 (2008)

    Google Scholar 

  103. Kostick, D.S.: Mineral Commodity Summaries – Soda Ash. U.S. Geological Survey (2011)

    Google Scholar 

  104. Hill, A.E., Bacon, L.R.: Ternary systems. VI. Sodium carbonate, sodium bicarbonate, and water. J. Am. Chem. Soc. 49(10), 2487–2495 (1927)

    Google Scholar 

  105. Ozdemir, O., Çelik, M.S., Nickolov, Z.S., Miller, J.D.: Water structure and its influence on the flotation of carbonate and bicarbonate salts. J. Colloid Interface Sci. 314(2), 545–551 (2007)

    Google Scholar 

  106. Byfors, K., Klingstedt, G., Lehtonen, H.P., Romben, L.: Durability of concrete made with alkali-activated slag. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway, pp. 1429–1444. American Concrete Institute (1989)

    Google Scholar 

  107. Kostick, D.S.: Mineral Commodity Summaries – Sodium Sulfate. U.S. Geological Survey (2011)

    Google Scholar 

  108. Abdulagatov, I.M., Zeinalova, A., Azizov, N.D.: Viscosity of aqueous Na2SO4 solutions at temperatures from 298 to 573 K and at pressures up to 40 MPa. Fluid Phase Equilib. 227(1), 57–70 (2005)

    Google Scholar 

  109. Steiger, M., Asmussen, S.: Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress. Geochim. Cosmochim. Acta 72(17), 4291–4306 (2008)

    Google Scholar 

  110. Rostovskaya, G., Ilyin, V., Blazhis, A.: The service properties of the slag alkaline concretes. In: Ertl, Z. (ed.) Alkali Activated Materials – Research, Production and Utilization, Prague, Czech Republic, pp. 593–610. Česká Rozvojová Agentura (2007)

    Google Scholar 

  111. Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008)

    Google Scholar 

  112. Talling, B., Krivenko, P.V.: Blast furnace slag – the ultimate binder. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 235–289. Noyes, Park Ridge (1997)

    Google Scholar 

  113. Krivenko, P.V.: Alkali-activated aluminosilicates: past, present and future. Chem. List. 102, s273–s277 (2008)

    Google Scholar 

  114. Wang, S.-D., Pu, X.-C., Scrivener, K.L., Pratt, P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7(27), 93–102 (1995)

    Google Scholar 

  115. Krivenko, P.V. (ed.): Proceedings of the First International Conference on Alkaline Cements and Concretes. VIPOL Stock Company, Kiev (1994)

    Google Scholar 

  116. Krivenko, P.V. (ed.): Proceedings of the Second International Conference on Alkaline Cements and Concretes. Oranta, Kiev (1999)

    Google Scholar 

  117. Ertl, Z. (ed.): Proceedings of the International Conference on Alkali Activated Materials – Research, Production and Utilization. Česká rozvojová agentura, Prague (2007)

    Google Scholar 

  118. Talling, B., Brandstetr, J.: Present state and future of alkali-activated slag concretes. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway, vol. 2, pp. 1519–1546. American Concrete Institute (1989)

    Google Scholar 

  119. Slota, R.J.: Utilization of water glass as an activator in the manufacturing of cementitious materials from waste by-products. Cem. Concr. Res. 17(5), 703–708 (1987)

    Google Scholar 

  120. Deja, J., Małolepszy, J.: Long-term resistance of alkali-activated slag mortars to chloride solution. In: 3rd International Conference on Durability of Concrete, Nice, France, pp. 657–671 (1994)

    Google Scholar 

  121. Małolepszy, J., Deja, J.: The influence of curing conditions on the mechanical properties of alkali-activated slag binders. Silic. Ind. 53(11–12), 179–186 (1988)

    Google Scholar 

  122. Mozgawa, W., Deja, J.: Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 924–926, 434–441 (2009)

    Google Scholar 

  123. Brylicki, W., Małolepszy, J., Stryczek, S.: Alkali activated slag cementitious material for drilling operation. In: 9th International Congress on the Chemistry of Cement, New Delhi, India, vol. 3, pp. 3/312–3/316 (1992)

    Google Scholar 

  124. Deja, J.: Carbonation aspects of alkali activated slag mortars and concretes. Silic. Ind. 67(1), 37–42 (2002)

    Google Scholar 

  125. Małolepszy, J., Deja, J., Brylicki, W.: Industrial application of slag alkaline concretes. In: Krivenko, P.V. (ed.) Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, vol. 2, pp. 989–1001. VIPOL Stock Company (1994)

    Google Scholar 

  126. Dziewański, J., Brylicki, W., Pawlikowski, M.: Utilization of slag-alkaline cement as a grouting medium in hydrotechnical construction. Bull. Eng. Geol. Environ. 22(1), 65–70 (1980)

    Google Scholar 

  127. Deja, J.: Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 32(12), 1971–1979 (2002)

    Google Scholar 

  128. Kukko, H., Mannonen, R.: Chemical and mechanical properties of alkali-activated blast furnace slag (F-concrete). Nord. Concr. Res. 1, 16.1–16.16 (1982)

    Google Scholar 

  129. Metso, J.: The alkali reaction of alkali-activated Finnish blast furnace slag. Silic. Ind. 47(3–4), 123–127 (1982)

    Google Scholar 

  130. Forss, B.: Experiences from the use of F-cement – a binder based on alkali-activated blastfurnace slag. In: Idorn, G.M., Rostam, S. (eds.) Alkalis in Concrete, Copenhagen, Denmark, pp. 101–104. Danish Concrete Association (1983)

    Google Scholar 

  131. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties. Cem. Concr. Res. 23(2), 407–421 (1993)

    Google Scholar 

  132. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 2. Technical properties and theoretical examinations. Cem. Concr. Res. 23(3), 518–530 (1993)

    Google Scholar 

  133. Häkkinen, T.: Durability of alkali-activated slag concrete. Nord. Concr. Res. 6(1), 81–94 (1987)

    Google Scholar 

  134. Kutti, T.: Hydration products of alkali activated slag. In: 9th International Congress on the Chemistry of Cement, New Delhi, India, vol. 4, pp. 4/468–4/474 (1992)

    Google Scholar 

  135. Douglas, E., Bilodeau, A., Brandstetr, J., Malhotra, V.M.: Alkali activated ground granulated blast-furnace slag concrete: preliminary investigation. Cem. Concr. Res. 21(1), 101–108 (1991)

    Google Scholar 

  136. Douglas, E., Brandstetr, J.: A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem. Concr. Res. 20(5), 746–756 (1990)

    Google Scholar 

  137. Škvára, F., Bohuněk, J.: Chemical activation of substances with latent hydraulic properties. Ceram.-Silik. 43(3), 111–116 (1999)

    Google Scholar 

  138. Škvára, F., Bohuněk, J., Marková, A.: Alkali-activated fly-ash. In: Proceedings of 14th IBAUSIL, Weimar, Germany, vol. 1, pp. 523–533 (2000)

    Google Scholar 

  139. Minaříková, M., Škvára, F.: Fixation of heavy metals in geopolymeric materials based on brown coal fly ash. Ceram.-Silik. 50(4), 200–207 (2006)

    Google Scholar 

  140. Allahverdi, A., Škvára, F.: Nitric acid attack on hardened paste of geopolymeric cements – Part 1. Ceram.-Silik. 45(3), 81–88 (2001)

    Google Scholar 

  141. Allahverdi, A., Škvára, F.: Nitric acid attack on hardened paste of geopolymeric cements – Part 2. Ceram.-Silik. 45(4), 143–149 (2001)

    Google Scholar 

  142. Bilek, V., Szklorzova, H.: Freezing and thawing resistance of alkali-activated concretes for the production of building elements. In: Malhotra, V.M. (ed.) Proceedings of 10th CANMET/ACI Conference on Recent Advances in Concrete Technology, Supplementary Papers, Seville, Spain, pp. 661–670 (2009)

    Google Scholar 

  143. Bilek, V.: Alkali-activated slag concrete for the production of building elements. In: Ertl, Z. (ed.) Proceedings of the International Conference on Alkali Activated Materials – Research, Production and Utilization, Prague, Czech Republic, pp. 71–82. Česká rozvojová agentura (2007)

    Google Scholar 

  144. Bilek, V., Urbanova, M., Brus, J., Kolousek, D.: Alkali-activated slag development and their practical use. In: Beaudoin, J.J. (ed.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. CD-ROM Proceedings (2007)

    Google Scholar 

  145. Rovnaník, P., Bayer, P., Rovnaníková, P.: Properties of alkali-activated aluminosilicate composite after thermal treatment. In: Bílek, V., Keršner, Z. (eds.) Proceedings of the 2nd International Conference on Non-Traditional Cement and Concrete, Brno, Czech Republic, pp. 48–54. Brno University of Technology & ZPSV Uhersky Ostroh, a.s. (2005)

    Google Scholar 

  146. Rovnaník, P., Bayer, P., Rovnaníková, P.: Role of fiber reinforcement in alkali-activated aluminosilicate composites subjected to elevated temperature. In: Bílek, V., Keršner, Z. (eds.) Proceedings of the 2nd International Conference on Non-Traditional Cement and Concrete, Brno, Czech Republic, pp. 55–60. Brno University of Technology & ZPSV Uhersky Ostroh, a.s. (2005)

    Google Scholar 

  147. Majersky, D.: Removal and solidification of the high contaminated sludges into the aluminosilicate matrix SIAL during decommissioning activities. In: CEG Workshop on Methods and Techniques for Radioactive Waste Management Applicable for Remediation of Isolated Nuclear Sites, Petten. IAEA (2004)

    Google Scholar 

  148. Teoreanu, I., Volceanov, A., Stoleriu, S.: Non Portland cements and derived materials. Cem. Concr. Compos. 27, 650–660 (2005)

    Google Scholar 

  149. Bílek, V., Keršner, Z. (eds.): Proceedings of the 1st International Conference on Non-Traditional Cement and Concrete, Brno, Czech Republic (2002)

    Google Scholar 

  150. Bílek, V., Keršner, Z. (eds.): Proceedings of the 2nd International Conference on Non-Traditional Cement and Concrete. Brno University of Technology & ZPSV Uhersky Ostroh, a.s., Brno (2005)

    Google Scholar 

  151. Bílek, V., Keršner, Z. (eds.): Proceedings of the 3rd International Conference on Non-Traditional Cement and Concrete. ZPSV a.s., Brno (2008)

    Google Scholar 

  152. Bílek, V., Keršner, Z. (eds.): Proceedings of the 4th International Conference on Non-Traditional Cement and Concrete, Brno, Czech Republic (2011)

    Google Scholar 

  153. Dong, J.: A review of research and application of alkaline slag cement and concrete in China. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 705–711. ORANTA (1999)

    Google Scholar 

  154. Wang, S.D.: Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43(154), 29–35 (1991)

    Google Scholar 

  155. Pan, Z., Yang, N.: Updated review on AAM research in China. In: Shi, C., Shen, X. (eds.) First International Conference on Advances in Chemically-Activated Materials, Jinan, China, pp. 45–55. RILEM (2010)

    Google Scholar 

  156. Zhang, Z., Yao, X., Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl. Clay Sci. 49(1–2), 1–6 (2010)

    MATH  Google Scholar 

  157. Zhang, Z., Yao, X., Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism. Appl. Clay Sci. 49(1–2), 7–12 (2010)

    Google Scholar 

  158. APP China Cement Task Force: Status report of China cement industry. In: 8th CTF Meeting, Vancouver (2010)

    Google Scholar 

  159. Rogers, A.: Chapter 8: Waste. In: Taking Action: An Environmental Guide for You and Your Community. United Nations, New York (1996)

    Google Scholar 

  160. Barnes, I., Moedinger, F.: Novel products – from concept to market. In: Cox, M., Nugteren, H., Janssen-Jurkovičová, M. (eds.) Combustion Residues: Current, Novel and Renewable Applications, pp. 379–418. Wiley, Chichester (2008)

    Google Scholar 

  161. Sprung, S.: Cement. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2000)

    Google Scholar 

  162. ACI Committee 233: Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete. American Concrete Institute (2000)

    Google Scholar 

  163. Davis, R.E., Carlson, R.W., Kelly, J.W., Davis, H.E.: Properties of cements and concretes containing fly ash. J. Am. Concr. Inst. 33, 577–612 (1937)

    Google Scholar 

  164. Kühl, H.: Slag cement and process of making the same. U.S. Patent 900,939 (1908)

    Google Scholar 

  165. Chassevent, L.: Hydraulicity of slags. Compt. Rend. 205, 670–672 (1937)

    Google Scholar 

  166. Purdon, A.O.: The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. Trans. Commun. 59, 191–202 (1940)

    Google Scholar 

  167. Davidovits, J.: Mineral polymers and methods of making them. U.S. Patent 4,349,386 (1982)

    Google Scholar 

  168. Davidovits, J.: The need to create a new technical language for the transfer of basic scientific information. In: Gibb, J.M., Nicolay, D. (eds.) Transfer and Exploitation of Scientific and Technical Information, EUR 7716, pp. 316–320. Commission of the European Communities, Luxembourg (1982)

    Google Scholar 

  169. Davidovits, J.: Synthetic mineral polymer compound of the silicoaluminates family and preparation process. U.S. Patent 4,472,199 (1984)

    Google Scholar 

  170. Davidovits, J., Sawyer, J.L.: Early high-strength mineral polymer. U.S. Patent 4,509,985 (1985)

    Google Scholar 

  171. Davidovits, J.: Geopolymers – inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)

    Google Scholar 

  172. Malone, P.G., Randall, C.J., Kirkpatrick, T.: Potential applications of alkali-activated aluminosilicate binders in military operations. Geotechnical Laboratory, Department of the Army, GL-85-15 (1985)

    Google Scholar 

  173. Davidovits, J.: Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin (2008)

    Google Scholar 

  174. Davidovits, J. (ed.): Proceedings of the World Congress Geopolymer 2005 – Geopolymer, Green Chemistry and Sustainable Development Solutions. Institut Géopolymère (2005)

    Google Scholar 

  175. Davidovits, J., Davidovits, R., James, C. (eds.): Proceedings of Second International Conference Geopolymer ‘99. Institut Géopolymère (1999)

    Google Scholar 

  176. Davidovits, J., Orlinski, J. (eds.): Proceedings of Geopolymer ‘88 – First European Conference on Soft Mineralurgy. Universite de Technologie de Compeigne (1988)

    Google Scholar 

  177. Lukey, G.C. (ed.): Geopolymers 2002. Turn Potential into Profit, Melbourne, Australia. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)

    Google Scholar 

  178. Bennett, D.F.H.: Innovations in Concrete. Thomas Telford, London (2002)

    Google Scholar 

  179. Wheat, H.G.: Corrosion behavior of steel in concrete made with Pyrament® blended cement. Cem. Concr. Res. 22, 103–111 (1992)

    Google Scholar 

  180. Husbands, T.B., Malone, P.G., Wakeley, L.D.: Performance of concretes proportioned with Pyrament blended cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2 (1994)

    Google Scholar 

  181. MaGrath, A.J.: Ten timeless truths about pricing. J. Bus. Ind. Mark. 6(3–4), 15–23 (1991)

    Google Scholar 

  182. Geopolymer Institute: PYRAMENT cement good for heavy traffic after 25 years. http://www.geopolymer.org/news/pyrament-cement-good-for-heavy-traffic-after-25-years (2011)

  183. Smith, M.A., Osborne, G.J.: Slag/fly ash cements. World Cem. Technol. 1(6), 223–233 (1977)

    Google Scholar 

  184. Bijen, J., Waltje, H.: Alkali activated slag-fly ash cements. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway, vol. 2, pp. 1565–1578. American Concrete Institute (1989)

    Google Scholar 

  185. Langton, C.A., Roy, D.M.: Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials. In: McVay, G. (ed.) Materials Research Society Symposium Proceedings, vol. 26, Scientific Basis for Nuclear Waste Management, pp. 543–549. North Holland, New York (1986)

    Google Scholar 

  186. Roy, D.: Alkali-activated cements – opportunities and challenges. Cem. Concr. Res. 29(2), 249–254 (1999)

    Google Scholar 

  187. Roy, D.M.: New strong cement materials: chemically bonded ceramics. Science 235(4789), 651–658 (1987)

    Google Scholar 

  188. Roy, A., Schilling, P.J., Eaton, H.C.: Alkali activated class C fly ash cement. U.S. Patent 5,565,028 (1996)

    Google Scholar 

  189. Roy, A., Schilling, P.J., Eaton, H.C., Malone, P.G., Brabston, W.N., Wakeley, L.D.: Activation of ground blast-furnace slag by alkali-metal and alkaline-earth hydroxides. J. Am. Ceram. Soc. 75(12), 3233–3240 (1992)

    Google Scholar 

  190. Palomo, A., Glasser, F.P.: Chemically-bonded cementitious materials based on metakaolin. Br. Ceram. Trans. J. 91(4), 107–112 (1992)

    Google Scholar 

  191. Douglas, E., Bilodeau, A., Malhotra, V.M.: Properties and durability of alkali-activated slag concrete. ACI Mater. J. 89(5), 509–516 (1992)

    Google Scholar 

  192. Cheng, Q.-H., Tagnit-Hamou, A., Sarkar, S.L.: Strength and microstructural properties of water glass activated slag. Mater. Res. Soc. Symp. Proc. 245, 49–54 (1991)

    Google Scholar 

  193. Gifford, P.M., Gillott, J.E.: Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem. Concr. Res. 26(1), 21–26 (1996)

    Google Scholar 

  194. Gifford, P.M., Gillott, J.E.: Freeze-thaw durability of activated blast furnace slag cement concrete. ACI Mater. J. 93(3), 242–245 (1996)

    Google Scholar 

  195. Gifford, P.M., Gillott, J.E.: Behaviour of mortar and concrete made with activated blast furnace slag cement. Can. J. Civil Eng. 24(2), 237–249 (1997)

    Google Scholar 

  196. Shi, C., Day, R.L.: Acceleration of the reactivity of fly ash by chemical activation. Cem. Concr. Res. 25(1), 15–21 (1995)

    Google Scholar 

  197. Shi, C., Day, R.L.: Selectivity of alkaline activators for the activation of slags. Cem. Concr. Aggr. 18(1), 8–14 (1996)

    Google Scholar 

  198. Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996)

    Google Scholar 

  199. Shi, C.: Corrosion resistance of alkali-activated slag cement. Adv. Cem. Res. 15(2), 77–81 (2003)

    Google Scholar 

  200. Shi, C., Stegemann, J.A.: Acid corrosion resistance of different cementing materials. Cem. Concr. Res. 30(5), 803–808 (2000)

    Google Scholar 

  201. Day, R.L., Moore, L.M., Nazir, M.N.: Applications of chemically activated blended cements with very high proportions of fly ash. In: Beaudoin, J.J. (ed.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. CD-ROM Proceedings (2007)

    Google Scholar 

  202. Fernández-Jiménez, A., Puertas, F.: Alkali-activated slag cements: kinetic studies. Cem. Concr. Res. 27(3), 359–368 (1997)

    Google Scholar 

  203. Fernández-Jiménez, A., Puertas, F.: Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag. Mater. Constr. 47(246), 31–42 (1997)

    Google Scholar 

  204. Palomo, A., Grutzeck, M.W., Blanco, M.T.: Alkali-activated fly ashes – a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999)

    Google Scholar 

  205. Fernández-Jiménez, A., Palomo, J.G., Puertas, F.: Alkali-activated slag mortars. Mechanical strength behaviour. Cem. Concr. Res. 29, 1313–1321 (1999)

    Google Scholar 

  206. Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater. 91(1–3), 111–119 (2006)

    Google Scholar 

  207. Fernández-Jiménez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35(6), 1204–1209 (2005)

    Google Scholar 

  208. Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003)

    Google Scholar 

  209. Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34(1), 139–148 (2004)

    Google Scholar 

  210. Fernández-Jiménez, A., Vallepu, R., Terai, T., Palomo, A., Ikeda, K.: Synthesis and thermal behavior of different aluminosilicate gels. J. Non-Cryst. Solids 352, 2061–2066 (2006)

    Google Scholar 

  211. Palomo, A., Alonso, S., Fernández-Jiménez, A., Sobrados, I., Sanz, J.: Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 87(6), 1141–1145 (2004)

    Google Scholar 

  212. Palacios, M., Puertas, F.: Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem. Concr. Res. 35(7), 1358–1367 (2005)

    Google Scholar 

  213. Wang, S.-D., Scrivener, K.L., Pratt, P.L.: Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24(6), 1033–1043 (1994)

    Google Scholar 

  214. Wang, S.-D., Scrivener, K.L.: 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33(5), 769–774 (2003)

    Google Scholar 

  215. Richardson, I.G., Groves, G.W.: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J. Mater. Sci. 27, 6204–6212 (1992)

    Google Scholar 

  216. Richardson, I.G., Brough, A.R., Brydson, R., Groves, G.W., Dobson, C.M.: Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J. Am. Ceram. Soc. 76(9), 2285–2288 (1993)

    Google Scholar 

  217. Rahier, H., van Mele, B., Biesemans, M., Wastiels, J., Wu, X.: Low-temperature synthesized aluminosilicate glasses. 1. Low-temperature reaction stoichiometry and structure of a model compound. J. Mater. Sci. 31(1), 71–79 (1996)

    Google Scholar 

  218. Rahier, H., van Mele, B., Wastiels, J.: Low-temperature synthesized aluminosilicate glasses. 2. Rheological transformations during low-temperature cure and high-temperature properties of a model compound. J. Mater. Sci. 31(1), 80–85 (1996)

    Google Scholar 

  219. Rahier, H., Simons, W., van Mele, B., Biesemans, M.: Low-temperature synthesized aluminosilicate glasses. 3. Influence of the composition of the silicate solution on production, structure and properties. J. Mater. Sci. 32(9), 2237–2247 (1997)

    Google Scholar 

  220. Rahier, H., Denayer, J.F., van Mele, B.: Low-temperature synthesized aluminosilicate glasses. Part IV. Modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses. J. Mater. Sci. 38(14), 3131–3136 (2003)

    Google Scholar 

  221. Rahier, H., Wastiels, J., Biesemans, M., Willem, R., van Assche, G., van Mele, B.: Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci. 42(9), 2982–2996 (2007)

    Google Scholar 

  222. Faignet, S., Bauweraerts, P., Wastiels, J., Wu, X.: Mineral polymer system for making prototype fibre reinforced composite parts. J. Mater. Proc. Technol. 48, 757–764 (1995)

    Google Scholar 

  223. Patfoort, G., Wastiels, J., Bruggeman, P., Stuyck, L.: Mineral polymer matrix composites. In: Brandt, A.M., Marshall, I.H. (eds.) Proceedings of Brittle Matrix Composites 2 (BMC 2), Cedzyna, Poland, pp. 587–592. Elsevier (1989)

    Google Scholar 

  224. Wastiels, J., Wu, X., Faignet, S., Patfoort, G.: Mineral polymer based on fly ash. J. Resour. Manag. Technol. 22(3), 135–141 (1994)

    Google Scholar 

  225. Buchwald, A., Hilbig, H., Kaps, C.: Alkali-activated metakaolin-slag blends – performance and structure in dependence on their composition. J. Mater. Sci. 42(9), 3024–3032 (2007)

    Google Scholar 

  226. Buchwald, A., Schulz, M.: Alkali-activated binders by use of industrial by-products. Cem. Concr. Res. 35(5), 968–973 (2005)

    Google Scholar 

  227. Kaps, C., Buchwald, A.: Property controlling influences on the generation of geopolymeric binders based on clay. In: Lukey, G.C. (ed.) Geopolymers 2002. Turn Potential into Profit, Melbourne. CD-ROM Proceedings. Siloxo Pty. Ltd. (2002)

    Google Scholar 

  228. Buchwald, A., Kaps, C., Hohmann, M.: Alkali-activated binders and pozzolan cement binders – complete binder reaction or two sides of the same story? In: Grieve, G., Owens, G. (eds.) Proceedings of the 11th International Conference on the Chemistry of Cement, Durban, South Africa, pp. 1238–1246 (2003)

    Google Scholar 

  229. Buchwald, A.: What are geopolymers? Current state of research and technology, the opportunities they offer, and their significance for the precast industry. Betonw. Fert. Technol. 72(7), 42–49 (2006)

    Google Scholar 

  230. Buchwald, A., Wierckx, J.: ASCEM cement technology – alkali-activated cement based on synthetic slag made from fly ash. In: Shi, C., Shen, X. (eds.) First International Conference on Advances in Chemically-Activated Materials, Jinan, China, pp. 15–21. RILEM (2010)

    Google Scholar 

  231. Gruskovnjak, A., Lothenbach, B., Holzer, L., Figi, R., Winnefeld, F.: Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv. Cem. Res. 18(3), 119–128 (2006)

    Google Scholar 

  232. Winnefeld, F., Leemann, A., Lucuk, M., Svoboda, P., Neuroth, M.: Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr. Build. Mater. 24(6), 1086–1093 (2010)

    Google Scholar 

  233. Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011)

    Google Scholar 

  234. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: effect of MgO. Cem. Concr. Res. 41(9), 955–963 (2011)

    Google Scholar 

  235. Le Saoût, G., Ben Haha, M., Winnefeld, F., Lothenbach, B.: Hydration degree of alkali-activated slags: a 29Si NMR study. J. Am. Ceram. Soc. 94(12), 4541–4547 (2011)

    Google Scholar 

  236. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: effect of Al2O3. Cem. Concr. Res. 42(1), 74–83 (2012)

    Google Scholar 

  237. Beleña, I., Tendero, M.J.L., Tamayo, E.M., Vie, D.: Study and optimizing of the reaction parameters for geopolymeric material manufacture. Bol. Soc. Esp. Cerám. Vidr. 43(2), 569–572 (2004)

    Google Scholar 

  238. Querol, X., Moreno, N., Alastuey, A., Juan, R., Andrés, J.M., López-Soler, A., Ayora, C., Medinaceli, A., Valero, A.: Synthesis of high ion exchange zeolites from coal fly ash. Geol. Acta 5(1), 49–57 (2005)

    Google Scholar 

  239. Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H., Fernández-Pereira, C.: Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J. Hazard. Mater. 166(1), 561–566 (2009)

    Google Scholar 

  240. Kamseu, E., Leonelli, C., Perera, D.S., Melo, U.C., Lemougna, P.N.: Investigation of volcanic ash based geopolymers as potential building materials. Interceram 58(2–3), 136–140 (2009)

    Google Scholar 

  241. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Properties of tungsten mine waste geopolymeric binder. Constr. Build. Mater. 22(6), 1201–1211 (2008)

    Google Scholar 

  242. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Tungsten mine waste geopolymeric binder: preliminary hydration products investigations. Constr. Build. Mater. 23(1), 200–209 (2009)

    Google Scholar 

  243. Giancaspro, J., Balaguru, P.N., Lyon, R.E.: Use of inorganic polymer to improve the fire response of balsa sandwich structures. J. Mater. Civil Eng. 18(3), 390–397 (2006)

    Google Scholar 

  244. Lyon, R.E., Balaguru, P.N., Foden, A., Sorathia, U., Davidovits, J., Davidovics, M.: Fire-resistant aluminosilicate composites. Fire Mater. 21(2), 67–73 (1997)

    Google Scholar 

  245. Papakonstantinou, C.G., Balaguru, P., Lyon, R.E.: Comparative study of high temperature composites. Compos. B 32(8), 637–649 (2001)

    Google Scholar 

  246. Papakonstantinou, C.G., Balaguru, P.: Fatigue behavior of high temperature inorganic matrix composites. J. Mater. Civil Eng. 19(4), 321–328 (2007)

    Google Scholar 

  247. Comrie, D.C., Kriven, W.M.: Composite cold ceramic geopolymer in a refractory application. Ceram. Trans. 153, 211–225 (2003)

    Google Scholar 

  248. Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceram. Trans. 153, 227–250 (2003)

    Google Scholar 

  249. Bell, J.L., Gordon, M., Kriven, W.M.: Use of geopolymeric cements as a refractory adhesive for metal and ceramic joins. Ceram. Eng. Sci. Proc. 26(3), 407–413 (2005)

    Google Scholar 

  250. Gordon, M., Bell, J.L., Kriven, W.M.: Comparison of naturally and synthetically derived, potassium-based geopolymers. Ceram. Trans. 165, 95–106 (2005)

    Google Scholar 

  251. Kriven, W.M., Kelly, C.A., Comrie, D.C.: Geopolymers for structural ceramic applications, Air Force Office of Scientific Research Report FA9550-04-C-0063 (2006)

    Google Scholar 

  252. Bao, Y., Kwan, S., Siemer, D.D., Grutzeck, M.W.: Binders for radioactive waste forms made from pretreated calcined sodium bearing waste. J. Mater. Sci. 39(2), 481–488 (2003)

    Google Scholar 

  253. Bao, Y., Grutzeck, M.W., Jantzen, C.M.: Preparation and properties of hydroceramic waste forms made with simulated Hanford low-activity waste. J. Am. Ceram. Soc. 88(12), 3287–3302 (2005)

    Google Scholar 

  254. Brenner, P., Bao, Y., DiCola, M., Grutzeck, M.W.: Evaluation of new tank fill materials for radioactive waste management at Hanford and Savannah River. The Pennsylvania State University. http://www.personal.psu.edu/gur/Second%20tank%20fill%20report.pdf (2006)

  255. Siemer, D.D.: Hydroceramics, a “new” cementitious waste form material for US defense-type reprocessing waste. Mater. Res. Innov. 6(3), 96–104 (2002)

    Google Scholar 

  256. Rostami, H., Brendley, W.: Alkali ash material: a novel fly ash-based cement. Environ. Sci. Technol. 37(15), 3454–3457 (2003)

    Google Scholar 

  257. Miller, S.A., Sakulich, A.R., Barsoum, M.W., Jud Sierra, E.: Diatomaceous earth as a pozzolan in the fabrication of an alkali-activated fine-aggregate limestone concrete. J. Am. Ceram. Soc. 93(9), 2828–2836 (2010)

    Google Scholar 

  258. Sakulich, A.R., Miller, S., Barsoum, M.W.: Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J. Am. Ceram. Soc. 93(6), 1741–1748 (2010)

    Google Scholar 

  259. Diaz, E.I., Allouche, E.N.: Recycling of fly ash into geopolymer concrete: creation of a database. In: Green Technologies Conference 2010, IEEE, Grapevine, TX, USA. CD-ROM Proceedings (2010)

    Google Scholar 

  260. Diaz, E.I., Allouche, E.N., Eklund, S.: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89, 992–996 (2010)

    Google Scholar 

  261. Diaz-Loya, E.I., Allouche, E.N., Vaidya, S.: Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108(3), 300–306 (2011)

    Google Scholar 

  262. Chancey, R.T., Stutzman, P., Juenger, M.C.G., Fowler, D.W.: Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem. Concr. Res. 40(1), 146–156 (2010)

    Google Scholar 

  263. van Jaarsveld, J.G.S., van Deventer, J.S.J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29(8), 1189–1200 (1999)

    Google Scholar 

  264. van Jaarsveld, J.G.S., van Deventer, J.S.J., Lorenzen, L.: The potential use of geopolymeric materials to immobilise toxic metals. 1. Theory and applications. Miner. Eng. 10(7), 659–669 (1997)

    Google Scholar 

  265. van Jaarsveld, J.G.S., van Deventer, J.S.J., Schwartzman, A.: The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Miner. Eng. 12(1), 75–91 (1999)

    Google Scholar 

  266. Lee, W.K.W., van Deventer, J.S.J.: Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf. A 211(1), 49–66 (2002)

    Google Scholar 

  267. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23(15), 8170–8179 (2007)

    Google Scholar 

  268. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles. J. Mater. Sci. 44(2), 608–619 (2009)

    Google Scholar 

  269. Provis, J.L., Yong, C.Z., Duxson, P., van Deventer, J.S.J.: Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf. A 336(1–3), 57–63 (2009)

    Google Scholar 

  270. Sofi, M., van Deventer, J.S.J., Mendis, P.A., Lukey, G.C.: Engineering properties of inorganic polymer concretes (IPCs). Cem. Concr. Res. 37(2), 251–257 (2007)

    Google Scholar 

  271. Duxson, P., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44(4), 832–839 (2005)

    Google Scholar 

  272. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269(1–3), 47–58 (2005)

    Google Scholar 

  273. White, C.E., Provis, J.L., Proffen, T., Riley, D.P., van Deventer, J.S.J.: Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys. Chem. Chem. Phys. 12(13), 3239–3245 (2010)

    Google Scholar 

  274. Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 1. In situ energy dispersive X-ray diffractometry. Chem. Eng. Sci. 62(9), 2309–2317 (2007)

    Google Scholar 

  275. Provis, J.L., Rose, V., Bernal, S.A., van Deventer, J.S.J.: High resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali activated fly ash. Langmuir 25(19), 11897–11904 (2009)

    Google Scholar 

  276. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J. Colloid Interface Sci. 357(2), 384–392 (2011)

    Google Scholar 

  277. Provis, J.L., Rose, V., Winarski, R.P., van Deventer, J.S.J.: Hard X-ray nanotomography of amorphous aluminosilicate cements. Scr. Mater. 65(4), 316–319 (2011)

    Google Scholar 

  278. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17), 9076–9082 (2007)

    Google Scholar 

  279. White, C.E., Provis, J.L., Proffen, T., van Deventer, J.S.J.: The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J. Am. Ceram. Soc. 93(10), 3486–3492 (2010)

    Google Scholar 

  280. Collins, F., Sanjayan, J.G.: Early age strength and workability of slag pastes activated by NaOH and Na2CO3. Cem. Concr. Res. 28(5), 655–664 (1998)

    Google Scholar 

  281. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 29(10), 1619–1625 (1999)

    Google Scholar 

  282. Collins, F.G., Sanjayan, J.G.: Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 29(3), 455–458 (1999)

    Google Scholar 

  283. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 30(9), 1367–1374 (2000)

    Google Scholar 

  284. Collins, F., Sanjayan, J.: Prediction of capillary transport of alkali activated slag cementitious binders under unsaturated conditions by elliptical pore shape modeling. J. Porous. Mater. 17(4), 435–442 (2010)

    Google Scholar 

  285. Bakharev, T.: Geopolymer materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 35(6), 1224–1232 (2005)

    Google Scholar 

  286. Guerrieri, M., Sanjayan, J., Collins, F.: Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 33(1), 51–62 (2009)

    Google Scholar 

  287. Hardjito, D., Rangan, B.V.: Development and properties of low-calcium fly ash-based geopolymer concrete. Curtin University of Technology, Research Report GC1 (2005)

    Google Scholar 

  288. Wallah, S.E., Rangan, B.V.: Low-calcium fly ash-based geopolymer concrete: Long-term properties. Curtin University of Technology, Research Report GC2 (2006)

    Google Scholar 

  289. Sumajouw, D.M.J., Rangan, B.V.: Low-calcium fly ash-based geopolymer concrete: Reinforced beams and columns, Research Report GC3. Curtin University of Technology (2006)

    Google Scholar 

  290. Rangan, B.V.: Engineering properties of geopolymer concrete. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 213–228. Woodhead, Cambridge (2009)

    Google Scholar 

  291. Chen-Tan, N.W., Van Riessen, A., Ly, C.V., Southam, D.C.: Determining the reactivity of a fly ash for production of geopolymer. J. Am. Ceram. Soc. 92(4), 881–887 (2009)

    Google Scholar 

  292. Temuujin, J., Van Riessen, A.: Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164(2–3), 634–639 (2009)

    Google Scholar 

  293. Rickard, W.D.A., Williams, R., Temuujin, J., van Riessen, A.: Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 528(9), 3390–3397 (2011)

    Google Scholar 

  294. Williams, R.P., Hart, R.D., van Riessen, A.: Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J. Am. Ceram. Soc. 94(8), 2663–2670 (2011)

    Google Scholar 

  295. Singh, P.S., Trigg, M., Burgar, I., Bastow, T.: Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Mater. Sci. Eng. A 396(1–2), 392–402 (2005)

    Google Scholar 

  296. De Silva, P., Sagoe-Crentsil, K., Sirivivatnanon, V.: Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem. Concr. Res. 37, 512–518 (2007)

    Google Scholar 

  297. De Silva, P., Sagoe-Crentsil, K.: Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem. Concr. Res. 38(6), 870–876 (2008)

    Google Scholar 

  298. Blackford, M.G., Hanna, J.V., Pike, K.J., Vance, E.R., Perera, D.S.: Transmission electron microscopy and nuclear magnetic resonance studies of geopolymers for radioactive waste immobilization. J. Am. Ceram. Soc. 90(4), 1193–1199 (2007)

    Google Scholar 

  299. Perera, D.S., Cashion, J.D., Blackford, M.G., Zhang, Z., Vance, E.R.: Fe speciation in geopolymers with Si/Al molar ratio of ~2. J. Eur. Ceram. Soc. 27(7), 2697–2703 (2007)

    Google Scholar 

  300. Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2(4), 309–317 (2000)

    Google Scholar 

  301. Barbosa, V.F.F., MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38(2), 319–331 (2003)

    Google Scholar 

  302. Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 25(9), 1471–1477 (2005)

    Google Scholar 

  303. MacKenzie, K.J.D., Brew, D.R.M., Fletcher, R.A., Vagana, R.: Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J. Mater. Sci. 42(12), 4667–4674 (2007)

    Google Scholar 

  304. Nicholson, C.L., Murray, B.J., Fletcher, R.A., Brew, D.R.M., MacKenzie, K.J.D., Schmücker, M.: Novel geopolymer materials containing borate structural units. In: Davidovits, J. (ed.) World Congress Geopolymer 2005, Saint-Quentin, France, pp. 31–33. Geopolymer Institute (2005)

    Google Scholar 

  305. van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz. 1(1), 145–155 (2010)

    Google Scholar 

  306. Lukey, G.C., Mendis, P.A., van Deventer, J.S.J., Sofi, M.: Advances in inorganic polymer concrete technology. In: Day, K.W. (ed.) Concrete Mix Design, Quality Control and Specification, 3rd edn. Routledge, London (2006). Appendix A

    Google Scholar 

  307. Duxson, P., Provis, J.L.: Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91(12), 3864–3869 (2008)

    Google Scholar 

  308. Provis, J.L., Duxson, P., van Deventer, J.S.J.: The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 21(1), 2–7 (2010)

    Google Scholar 

  309. Oliveira, C.T.A., John, V.M., Agopyan, V.: Pore water composition of clinker free granulated blast furnace slag cements pastes. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 109–119. ORANTA (1999)

    Google Scholar 

  310. Silva, F.J., Thaumaturgo, C.: Fibre reinforcement and fracture response in geopolymeric mortars. Fatigue Fract. Eng. Mater. Struct. 26(2), 167–172 (2003)

    Google Scholar 

  311. Penteado Dias, D., Thaumaturgo, C.: Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 27(1), 49–54 (2005)

    Google Scholar 

  312. Puertas, F., Mejía de Gutierrez, R., Fernández-Jiménez, A., Delvasto, S., Maldonado, J.: Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater. Constr. 52, 55–71 (2002)

    Google Scholar 

  313. Rodríguez, E., Bernal, S., Mejía de Gutierrez, R., Puertas, F.: Alternative concrete based on alkali-activated slag. Mater. Constr. 58(291), 53–67 (2008)

    Google Scholar 

  314. Bernal, S.A., Mejía de Gutierrez, R., Pedraza, A.L., Provis, J.L., Rodríguez, E.D., Delvasto, S.: Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1–8 (2011)

    Google Scholar 

  315. Escalante-Garcia, J.I., Gorokhovsky, A.V., Mendoza, G., Fuentes, A.F.: Effect of geothermal waste on strength and microstructure of alkali-activated slag cement mortars. Cem. Concr. Res. 33(10), 1567–1574 (2003)

    Google Scholar 

  316. Escalante García, J.I., Campos-Venegas, K., Gorokhovsky, A., Fernández, A.: Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus. Adv. Appl. Ceram. 105(4), 201–208 (2006)

    Google Scholar 

  317. Marín-López, C., Reyes Araiza, J., Manzano-Ramírez, A., Rubio Avalos, J., Perez-Bueno, J., Muñiz-Villareal, M., Ventura-Ramos, E., Vorobiev, Y.: Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorg. Mater. 45(12), 1429–1432 (2009)

    Google Scholar 

  318. Chatterjee, A.K.: Indian fly ashes: their characteristics and potential for mechanochemical activation for enhanced usability. J. Mater. Civil Eng. 23(6), 783–788 (2011)

    Google Scholar 

  319. Sharma, R.C., Jain, N.K., Ghosh, S.N.: Semi-theoretical method for the assessment of reactivity of fly ashes. Cem. Concr. Res. 23(1), 41–45 (1993)

    MATH  Google Scholar 

  320. Kumar, S., Kumar, R., Alex, T.C., Bandopadhyay, A., Mehrotra, S.P.: Influence of reactivity of fly ash on geopolymerisation. Adv. Appl. Ceram. 106(3), 120–127 (2007)

    Google Scholar 

  321. Kumar, R., Kumar, S., Mehrotra, S.P.: Towards sustainable solutions for fly ash through mechanical activation. Resour. Conserv. Recycl. 52(2), 157–179 (2007)

    Google Scholar 

  322. Kumar, S., Kumar, R.: Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram. Int. 37(2), 533–541 (2011)

    Google Scholar 

  323. Kumar, S., Sahoo, D.P., Nath, S.K., Alex, T.C., Kumar, R.: From grey waste to green geopolymer. Sci. Cult. 78(11–12), 511–516 (2012)

    Google Scholar 

Download references

Acknowledgement

The authors thank Professor Jan Wastiels for useful discussions regarding the early development of fly ash-based AAMs, and for supplying Fig. 2.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Provis, J.L. et al. (2014). Historical Aspects and Overview. In: Provis, J., van Deventer, J. (eds) Alkali Activated Materials. RILEM State-of-the-Art Reports, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7672-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7672-2_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7671-5

  • Online ISBN: 978-94-007-7672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics