Skip to main content

Durability and Testing – Physical Processes

  • Chapter
  • First Online:
Alkali Activated Materials

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 13))

Abstract

Concrete is well known to be strong in compression but weak in flexion and tension. However, by the use of steel reinforcing, often in combination with techniques such as pretensioning, and through appropriate structural engineering design methodologies, it is possible to compensate for this weakness by ensuring that the binder and aggregate of the concrete are subjected to minimal tensile load. This means that the relationship between compressive strength, flexural strength and other mechanical properties of concrete is used as an essential basis for civil and structural engineering design purposes. In practice, and with the current almost-universal use of Portland cement-based concretes in civil infrastructure applications, many of these relationships are codified in standards as empirical power-law relationships involving the 28-day compressive strength of the material, sometimes as the sole property used in the predictive equations or sometimes along with a small number of additional physical parameters. For example, the American Concrete Institute [1] specifies the prediction of elastic modulus as a function of compressive strength and concrete density, but an equation solely based on compressive strength is also provided, and is probably more widely used in practice. More sophisticated and more detailed theoretical models, or empirical correlations involving larger numbers of parameters, are often published in the academic literature, but are not in widespread application. An excellent discussion of phenomena and models for Portland cement concrete is presented by Neville [2], and the reader is referred to that text for further information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Concrete Institute: Building Code Requirements for Structural Concrete and (ACI 318-08). Farmington Hills (2008)

    Google Scholar 

  2. Neville, A.M.: Properties of Concrete, 4th edn. Wiley, Harlow (1996)

    Google Scholar 

  3. Ozyildirim, C., Carino, N.J.: Concrete strength testing. In: Lamond, J.F., Pielert, J.H. (eds.) Significance of Tests and Properties of Concrete and Concrete-Making Materials, pp. 125–140. ASTM International, West Conshohocken (2006)

    Chapter  Google Scholar 

  4. ASTM International: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C39/C39M – 10). West Conshohocken (2010)

    Google Scholar 

  5. ASTM International: Standard Practice for Making and Curing Concrete Test Specimens in the Field (ASTM C31/C31M – 09). West Conshohocken (2009)

    Google Scholar 

  6. Mehta, P.K., Monteiro, P.J.M.: Concrete: Microstructure, Properties and Materials, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  7. Pernica, D., Reis, P.N.B., Ferreira, J.A.M., Louda, P.: Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J. Mater. Sci. 45(3), 744–749 (2010)

    Article  Google Scholar 

  8. Khandelwal, M., Ranjith, P., Pan, Z., Sanjayan, J.: Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition. Arabian J. Geosci. 6(7), 2383–2389 (2013)

    Article  Google Scholar 

  9. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 2. Technical properties and theoretical examinations. Cem. Concr. Res. 23(3), 518–530 (1993)

    Article  Google Scholar 

  10. European Committee for Standardization (CEN): Testing Hardened Concrete. Compressive Strength of Test Specimens (EN 12390-3). Brussels (2002)

    Google Scholar 

  11. European Committee for Standardization (CEN): Testing Hardened Concrete. Making and Curing Specimens for Strength Tests (EN 12390-2). Brussels (2000)

    Google Scholar 

  12. ASTM International: Standard Test Method for Compressive Strength of Hydraulic cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (ASTM C109/C109M – 11). West Conshohocken (2011)

    Google Scholar 

  13. Gaynor, R.D.: Cement strength and concrete strength – an apparition or a dichotomy? Cem. Concr. Aggr. 15(2), 135–144 (1993)

    Google Scholar 

  14. Struble, L.J.: Hydraulic cements – physical properties. In: Lamond, J.F., Pielert, J.H. (eds.) Significance of Tests and Properties of Concrete and Concrete-Making Materials, pp. 435–449. ASTM International, West Conshohocken (2006)

    Chapter  Google Scholar 

  15. Popovics, S.: Strength and Related Properties of Concrete: A Quantitative Approach. Wiley, New York (1998)

    Google Scholar 

  16. European Committee for Standardization (CEN): Methods of Testing Cement – Part 1: Determination of Strength (EN 196-1). Brussels (2005)

    Google Scholar 

  17. ASTM International: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure) (ASTM C349 – 08). West Conshohocken (2008)

    Google Scholar 

  18. ASTM International: Standard Test Method for Compressive (Crushing) Strength of Fired Whiteware Materials (ASTM C773 – 88, reapproved 2011). West Conshohocken (2011)

    Google Scholar 

  19. Malhotra, V.M., Carino, N.J. (eds.): Handbook on Nondestructive Testing of Concrete, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  20. Popovics, J.S., Zemajtis, J., Shkolni, I.: ACI-CRC Final Report: A Study of Static and Dynamic Modulus of Elasticity of Concrete (2008)

    Google Scholar 

  21. Komlos̆, K., Popovics, S., Nürnbergerová, T., Babál, B., Popovics, J.S.: Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem. Concr. Compos. 18(5), 357–364 (1996)

    Article  Google Scholar 

  22. ASTM International: Standard Test Method for Pulse Velocity Through Concrete (ASTM C597 – 09). West Conshohocken (2009)

    Google Scholar 

  23. Wang, S.-D., Scrivener, K.L., Pratt, P.L.: Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24(6), 1033–1043 (1994)

    Article  Google Scholar 

  24. Fernández-Jiménez, A., Palomo, J.G., Puertas, F.: Alkali-activated slag mortars. Mechanical strength behaviour. Cem. Concr. Res. 29, 1313–1321 (1999)

    Article  Google Scholar 

  25. Lloyd, R.R.: Accelerated ageing of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 139–166. Woodhead, Cambridge (2009)

    Chapter  Google Scholar 

  26. Lloyd, R.R.: The durability of inorganic polymer cements. Ph.D. thesis, University of Melbourne, Australia (2008)

    Google Scholar 

  27. Shi, C., Li, Y.: Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem. Concr. Res. 19(4), 527–533 (1989)

    Article  Google Scholar 

  28. Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A 292(1), 8–20 (2007)

    Article  Google Scholar 

  29. Wang, S.D.: Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43(154), 29–35 (1991)

    Article  Google Scholar 

  30. Diaz-Loya, E.I., Allouche, E.N., Vaidya, S.: Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108(3), 300–306 (2011)

    Google Scholar 

  31. Bernal, S.A., Mejía de Gutierrez, R., Pedraza, A.L., Provis, J.L., Rodríguez, E.D., Delvasto, S.: Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1–8 (2011)

    Article  Google Scholar 

  32. Bernal, S.A., Mejía de Gutiérrez, R., Provis, J.L.: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr. Build. Mater. 33, 99–108 (2012)

    Article  Google Scholar 

  33. Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon (2006)

    Book  Google Scholar 

  34. Talling, B., Krivenko, P.V.: Blast furnace slag – the ultimate binder. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 235–289. Noyes Publications, Park Ridge (1997)

    Google Scholar 

  35. Šmilauer, V., Hlaváček, P., Škvára, F., Šulc, R., Kopecký, L., Němeček, J.: Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J. Mater. Sci. 46(20), 6545–6555 (2011)

    Article  Google Scholar 

  36. Xu, Z., Deng, Y., Wu, X., Tang, M., Beaudoin, J.J.: Influence of various hydraulic binders on performance of very low porosity cementitious systems. Cem. Concr. Res. 23(2), 462–470 (1993)

    Article  Google Scholar 

  37. Rangan, B.V.: Engineering properties of geopolymer concrete. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structure, Processing, Properties and Industrial Applications, pp. 213–228. Woodhead, Cambridge (2009)

    Google Scholar 

  38. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., Rangan, B.V.: On the development of fly ash-based geopolymer concrete. ACI Mater. J. 101(6), 467–472 (2004)

    Google Scholar 

  39. Sumajouw, D.M.J., Hardjito, D., Wallah, S.E., Rangan, B.V.: Fly ash-based geopolymer concrete: study of slender reinforced columns. J. Mater. Sci. 42(9), 3124–3130 (2007)

    Article  Google Scholar 

  40. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 29(10), 1619–1625 (1999)

    Article  Google Scholar 

  41. Standards Australia: Concrete Structures (AS 3600-2009). Sydney (2009)

    Google Scholar 

  42. American Concrete Institute: Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). Farmington Hills (2002)

    Google Scholar 

  43. Hardjito, D., Rangan, B.V.: Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University of Technology. Perth, Australia (2005)

    Google Scholar 

  44. Yost, J.R., Radlińska, A., Ernst, S., Salera, M.: Structural behavior of alkali activated fly ash concrete. Part 1: mixture design, material properties and sample fabrication. Mater. Struct. 46(3), 435–447 (2013)

    Article  Google Scholar 

  45. Yost, J.R., Radlińska, A., Ernst, S., Salera, M., Martignetti, N.J.: Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings. Mater. Struct. 46(3), 449–462 (2013)

    Article  Google Scholar 

  46. Kukko, H., Mannonen, R.: Chemical and mechanical properties of alkali-activated blast furnace slag (F-concrete). Nord. Concr. Res. 1, 16.1–16.16 (1982)

    Google Scholar 

  47. Sumajouw, D.M.J., Rangan, B.V.: Low-Calcium Fly Ash-Based Geopolymer Concrete: Reinforced Beams and Columns. Curtin University of Technology. Perth, Australia (2006)

    Google Scholar 

  48. Sofi, M., van Deventer, J.S.J., Mendis, P.A., Lukey, G.C.: Engineering properties of inorganic polymer concretes (IPCs). Cem. Concr. Res. 37(2), 251–257 (2007)

    Article  Google Scholar 

  49. Husbands, T.B., Malone, P.G., Wakeley, L.D.: Performance of Concretes Proportioned with Pyrament Blended Cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2 (1994)

    Google Scholar 

  50. Fernández-Jiménez, A.M., Palomo, A., López-Hombrados, C.: Engineering properties of alkali-activated fly ash concrete. ACI Mater. J. 103(2), 106–112 (2006)

    Google Scholar 

  51. Bernal, S., de Gutierrez, R., Delvasto, S., Rodriguez, E.: Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24(2), 208–214 (2010)

    Article  Google Scholar 

  52. Collins, F.G., Sanjayan, J.G.: Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 29(3), 455–458 (1999)

    Article  Google Scholar 

  53. Douglas, E., Bilodeau, A., Brandstetr, J., Malhotra, V.M.: Alkali activated ground granulated blast-furnace slag concrete: preliminary investigation. Cem. Concr. Res. 21(1), 101–108 (1991)

    Article  Google Scholar 

  54. Wu, Y., Cai, L., Fu, Y.: Durability of green high performance alkali-activated slag pavement concrete. Appl. Mech. Mater. 99–100, 158–161 (2011)

    Article  Google Scholar 

  55. Paultre, P., Mitchell, D.: Code provisions for high-strength concrete – an international perspective. Concr. Int. 25(5), 76–90 (2003)

    Google Scholar 

  56. Dattatreya, J.K., Rajamane, N.P., Sabitha, D., Ambily, P.S., Nataraja, M.C.: Flexural behaviour of reinforced geopolymer concrete beam. Int. J. Civil. Struct. Eng. 2(1), 138–159 (2011)

    Google Scholar 

  57. Bureau of Indian Standards: Plain and Reinforced concrete – Code of Practice (IS 456:2000). New Delhi (2000)

    Google Scholar 

  58. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater. J. 108(1), 64–72 (2011)

    Google Scholar 

  59. Lawson, J.L.: On the determination of the elastic properties of geopolymeric materials using non-destructive ultrasonic techniques. MSc thesis, Rochester Institute of Technology (2009)

    Google Scholar 

  60. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269(1–3), 47–58 (2005)

    Article  Google Scholar 

  61. Wongpa, J., Kiattikomol, K., Jaturapitakkul, C., Chindaprasirt, P.: Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31(10), 4748–4754 (2010)

    Article  Google Scholar 

  62. Douglas, E., Bilodeau, A., Malhotra, V.M.: Properties and durability of alkali-activated slag concrete. ACI Mater. J. 89(5), 509–516 (1992)

    Google Scholar 

  63. Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011)

    Article  Google Scholar 

  64. Němeček, J., Šmilauer, V., Kopecký, L.: Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cem. Concr. Compos. 33(2), 163–170 (2011)

    Article  Google Scholar 

  65. Oh, J.E., Moon, J., Mancio, M., Clark, S.M., Monteiro, P.J.M.: Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers. Cem. Concr. Res. 41(1), 107–112 (2011)

    Article  Google Scholar 

  66. Oh, J.E., Clark, S.M., Monteiro, P.J.M.: Does the Al substitution in C-S-H(I) change its mechanical property? Cem. Concr. Res. 41(1), 102–106 (2011)

    Article  Google Scholar 

  67. Collins, M.P., Mitchell, D., Macgregor, J.G.: Structural design considerations for high strength concrete. Concr. Int. 15(5), 27–34 (1993)

    Google Scholar 

  68. Sarker, P.K.: Analysis of geopolymer concrete columns. Mater. Struct. 42(6), 715–724 (2009)

    Article  Google Scholar 

  69. Goodwin, F.: Volume change. In: Lamond, J.F., Pielert, J.H. (eds.) Significance of Tests and Properties of Concrete and Concrete-Making Materials, pp. 215–225. ASTM International, West Conshohocken (2006)

    Chapter  Google Scholar 

  70. Chen, W., Brouwers, H.: The hydration of slag, part 1: reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)

    Article  Google Scholar 

  71. Thomas, J.J., Allen, A.J., Jennings, H.M.: Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cem. Concr. Res. 42(2), 377–383 (2012)

    Article  Google Scholar 

  72. ASTM International: Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete (ASTM C157/C157M – 08). West Conshohocken (2008)

    Google Scholar 

  73. ASTM International: Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (ASTM C596 – 09). West Conshohocken (2009)

    Google Scholar 

  74. Standards Australia: Methods of Testing Concrete – Determination of the Drying Shrinkage of Concrete for Samples Prepared in the Field or in the Laboratory (AS 1012.13). Sydney (1992)

    Google Scholar 

  75. Sanjayan, J.: Non-Portland based cements and concretes. Concr. Austr. 38(1), 34–39 (2012)

    Google Scholar 

  76. ASTM International: Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage (ASTM C1581/C1581M – 09a). West Conshohocken (2009)

    Google Scholar 

  77. ASTM International: Standard Test Method for Change in Height at Early Ages of Cementitious Mixtures (ASTM C827/C827M – 10). West Conshohocken (2010)

    Google Scholar 

  78. ASTM International: Standard Test Method for Measuring Changes in Height of Cylindrical Specimens of Hydraulic-Cement Grout (ASTM C1090 – 10). West Conshohocken (2010)

    Google Scholar 

  79. Häkkinen, T.: The microstructure of high strength blast furnace slag concrete. Nord. Concr. Res. 11(1), 67–82 (1992)

    Google Scholar 

  80. Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties. Cem. Concr. Res. 23(2), 407–421 (1993)

    Article  Google Scholar 

  81. Melo Neto, A.A., Cincotto, M.A., Repette, W.: Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 38, 565–574 (2008)

    Article  Google Scholar 

  82. Sakulich, A.R., Bentz, D.P.: Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. 46(8), 1355–1367 (2013)

    Google Scholar 

  83. Wang, S.-D., Pu, X.-C., Scrivener, K.L., Pratt, P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7(27), 93–102 (1995)

    Article  Google Scholar 

  84. Duran Atiş, C., Bilim, C., Çelik, Ö., Karahan, O.: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 23(1), 548–555 (2009)

    Article  Google Scholar 

  85. Collins, F., Sanjayan, J.G.: Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30(9), 1401–1406 (2000)

    Article  Google Scholar 

  86. Krizan, D., Zivanovic, B.: Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 32(8), 1181–1188 (2002)

    Article  Google Scholar 

  87. Cincotto, M.A., Melo, A.A., Repette, W.L.: Effect of different activators type and dosages and relation to autogenous shrinkage of activated blast furnace slag cement. In: Grieve, G., Owens, G. (eds.) Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa, pp. 1878–1887. Tech Books International, New Delhi, India (2003)

    Google Scholar 

  88. Collins, F., Sanjayan, J.G.: Numerical modeling of alkali-activated slag concrete beams subjected to restrained shrinkage. ACI Mater. J. 97(5), 594–602 (2000)

    Google Scholar 

  89. Collins, F., Sanjayan, J.G.: Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 30(5), 791–798 (2000)

    Article  Google Scholar 

  90. Collins, F., Sanjayan, J.G.: Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem. Concr. Res. 29(4), 607–610 (1999)

    Article  Google Scholar 

  91. Yong, C.Z.: Shrinkage behaviour of geopolymers. M.Eng.Sci. thesis, University of Melbourne (2010)

    Google Scholar 

  92. Lee, N.P.: Creep and Shrinkage of Inorganic Polymer Concrete, BRANZ Study Report 175, BRANZ (2007)

    Google Scholar 

  93. Guo, X.L., Shi, H.S., Dick, W.A.: Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32(2), 142–147 (2010)

    Article  Google Scholar 

  94. Rüscher, C.H., Mielcarek, E., Lutz, W., Ritzmann, A., Kriven, W.M.: Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy. J. Am. Ceram. Soc. 93(9), 2585–2590 (2010)

    Article  Google Scholar 

  95. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Carbonate mineral addition to metakaolin-based geopolymers. Cem. Concr. Compos. 30(10), 979–985 (2008)

    Article  Google Scholar 

  96. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem. Concr. Res. 37(6), 933–941 (2007)

    Article  Google Scholar 

  97. Elimbi, A., Tchakoute, H.K., Njopwouo, D.: Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 25(6), 2805–2812 (2011)

    Article  Google Scholar 

  98. Justnes, H., Ardoullie, B., Hendrix, E., Sellevold, E.J., Van Gemert, D.: The chemical shrinkage of pozzolanic reaction products. In: Malhotra, V.M. (ed.) 6th CANMET Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Bangkok, Thailand. Vol. 1, pp. 191–205. ACI SP178. Detroit, MI (1998)

    Google Scholar 

  99. Brouwers, H.: The work of Powers and Brownyard revisited: Part 1. Cem. Concr. Res. 34(9), 1697–1716 (2004)

    Article  Google Scholar 

  100. Schlitter, J.L., Senter, A.H., Bentz, D.P., Nantung, T., Weiss, W.J.: A dual concentric ring test for evaluating residual stress development due to restrained volume change. J. ASTM Int. 7(9), JAI103118 (2010)

    Google Scholar 

  101. Standardization Administration of the People’s Republic of China: Standard Test Method for Drying Shinkage of Mortar (JC/T 603-2004). Beijing (2004)

    Google Scholar 

  102. Raoufi, K., Pour-Ghaz, M., Poursaee, A., Weiss, W.J.: Restrained shrinkage cracking in concrete elements: role of substrate bond on crack development. J. Mater. Civil. Eng. 23(6), 895–902 (2011)

    Article  Google Scholar 

  103. Bisschop, J., van Mier, J.G.M.: How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy? Cem. Concr. Res. 32(2), 279–287 (2002)

    Article  Google Scholar 

  104. Nemati, K.M.: Preserving microstructure of concrete under load using the Wood’s metal technique. Int. J. Rock Mech. Mining Sci. 37(1–2), 133–142 (2000)

    Article  Google Scholar 

  105. Nemati, K.M., Monteiro, P.J.M., Cook, N.G.W.: A new method for studying stress-induced microcracks in concrete. J. Mater. Civil. Eng. 10(3), 128–134 (1998)

    Article  Google Scholar 

  106. Byfors, K., Klingstedt, G., Lehtonen, H.P., Romben, L.: Durability of concrete made with alkali-activated slag. In: Malhotra, V.M. (ed.) 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP114, Trondheim, Norway, pp. 1429–1444. American Concrete Institute. Detroit, MI (1989)

    Google Scholar 

  107. Häkkinen, T.: The permeability of high strength blast furnace slag concrete. Nord. Concr. Res. 11(1), 55–66 (1992)

    Google Scholar 

  108. Collins, F., Sanjayan, J.G.: Microcracking and strength development of alkali activated slag concrete. Cem. Concr. Compos. 23(4–5), 345–352 (2001)

    Article  Google Scholar 

  109. Shen, W., Wang, Y., Zhang, T., Zhou, M., Li, J., Cui, X.: Magnesia modification of alkali-activated slag fly ash cement. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(1), 121–125 (2011)

    Article  Google Scholar 

  110. ASTM International: Standard Test Method for Creep of Concrete in Compression (ASTM C512/C512M – 10). West Conshohocken (2010)

    Google Scholar 

  111. International Organization for Standardization: Testing of Concrete – Part 9: Determination of Creep of Concrete Cylinders in Compression (ISO 1920-9:2009), Geneva (2009)

    Google Scholar 

  112. Bissonnette, B., Pigeon, M., Vaysburd, A.M.: Tensile creep of concrete: study of its sensitivity to various parameters. ACI Mater. J. 104(4), 360–368 (2007)

    Google Scholar 

  113. Garas, V.Y., Kahn, L.F., Kurtis, K.E.: Tensile creep test of fiber-reinforced ultra-high performance concrete. J. Testing Eval. 38(6), JTE102666 (2010)

    Google Scholar 

  114. Gourley, J.T., Johnson, G.B.: Developments in geopolymer precast concrete. In: Davidovits, J. (ed.) Proceedings of the World Congress Geopolymer 2005 – Geopolymer, Green Chemistry and Sustainable Development Solutions, Saint-Quentin, France, pp. 139–143. Institut Géopolymère (2005)

    Google Scholar 

  115. Wallah, S.E., Rangan, B.V.: Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties, Curtin University of Technology, Research Report GC2 (2006)

    Google Scholar 

  116. Standards Australia: Methods of Testing Concrete – Determination of Creep of Concrete Cylinders in Compression (AS 1012.16). Sydney (1996)

    Google Scholar 

  117. Gilbert, R.I.: AS3600 creep and shrinkage models for normal and high strength concrete. In: Gardner, N.J., Weiss, W.J. (eds.) Shrinkage and Creep of Concrete, ACI SP 227, Farmington Hills, MI, pp. 21–40. American Concrete Institute (2005)

    Google Scholar 

  118. Gilbert, R.I.: Creep and shrinkage models for high strength concrete – proposals for inclusion in AS3600. Aust. J. Struct. Eng. 4(2), 95–106 (2002)

    Google Scholar 

  119. ASTM International: Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing (ASTM C666/C666M – 03(2008)). West Conshohocken (2008)

    Google Scholar 

  120. Canadian Standards Association: Precast Concrete Pavers (CSA 231.2-06). Mississauga (2006)

    Google Scholar 

  121. Canadian Standards Association: Precast Concrete Paving Slabs (CSA 231.1-06). Mississauga (2006)

    Google Scholar 

  122. ASTM International: Standard Test Method for Freeze-Thaw and De-icing Salt Durability of Solid Concrete Interlocking Paving Units (ASTM C1645 – 11). West Conshohocken (2011)

    Google Scholar 

  123. ASTM International: Standard Test Method for Measuring the Resistance of Ceramic Tile to Freeze-Thaw Cycling (ASTM C1026 – 10). West Conshohocken (2010)

    Google Scholar 

  124. International Organization for Standardization: Ceramic tiles – Part 12: Determination of frost resistance (ISO/NP 10545-12). Geneva (2012)

    Google Scholar 

  125. ASTM International: Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile (ASTM C67 – 11). West Conshohocken (2011)

    Google Scholar 

  126. Ghafoori, N., Smith, D.R.: Comparison of ASTM and Canadian freeze-thaw durability tests. In: Fifth International Conference on Concrete Block Paving (Pave Israel 96), Tel-Aviv, Israel, pp. 93–101. Dan Knassim Limited (1996)

    Google Scholar 

  127. European Committee for Standardization (CEN): Concrete – Part 1: Specification, Performance, Production and Conformity (EN 206-1). Brussels (2010)

    Google Scholar 

  128. Setzer, M., Heine, P., Kasparek, S., Palecki, S., Auberg, R., Feldrappe, V., Siebel, E.: Test methods of frost resistance of concrete: CIF-test: capillary suction, internal damage and freeze thaw test – reference method and alternative methods A and B. Mater. Struct. 37(10), 743–753 (2004)

    Article  Google Scholar 

  129. Setzer, M., Fagerlund, G., Janssen, D.: CDF test – test method for the freeze-thaw resistance of concrete-tests with sodium chloride solution (CDF). Mater. Struct. 29(9), 523–528 (1996)

    Article  Google Scholar 

  130. European Committee for Standardization (CEN): Testing Hardened Concrete. Freeze-Thaw Resistance. Scaling (DD CEN/TS 12390-9:2006). Brussels (2006)

    Google Scholar 

  131. ASTM International: Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals (ASTM C672/C672M – 03) (withdrawn 2012). West Conshohocken (2003)

    Google Scholar 

  132. Boos, P., Eriksson, B.E., Giergiczny, Z., Haerdtl, R.: Laboratory testing of frost resistance – do these tests indicate the real performance of blended cements? In: Beaudoin, J.J. (ed.) 12th International Congress on the Chemistry of Cement, Montreal, Canada. CD-ROM. National Research Council of Canada. Ottawa, Canada (2007)

    Google Scholar 

  133. Janssen, D.J., Snyder, M.B.: Resistance of Concrete to Freezing and Thawing, SHRP-C-391, Strategic Highway Research Program. National Research Council. Washington DC (1994)

    Google Scholar 

  134. Valenza, J.J., Scherer, G.W.: Mechanism for salt scaling. J. Am. Ceram. Soc. 89(4), 1161–1179 (2006)

    Article  Google Scholar 

  135. Powers, T.C., Brownyard, T.L.: Studies of the physical properties of hardened Portland cement paste. J. Am. Concr. Inst. 18(8), 933–992 (1947)

    Google Scholar 

  136. Krivenko, P.V.: Alkaline cements: Structure, properties, aspects of durability. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 3–43. ORANTA (1999)

    Google Scholar 

  137. Davidovits, J.: Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin (2008)

    Google Scholar 

  138. Rostovskaya, G., Ilyin, V., Blazhis, A.: The service properties of the slag alkaline concretes. In: Ertl, Z. (ed.) Proceedings of the International Conference on Alkali Activated Materials – Research, Production and Utilization, Prague, Czech Republic, pp. 593–610. Česká rozvojová agentura (2007)

    Google Scholar 

  139. Bin, X., Pu, X.: Study on durability of solid alkaline AAS cement. In: Krivenko, P.V. (ed.) Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, pp. 64–71. ORANTA (1999)

    Google Scholar 

  140. Häkkinen, T.: Durability of alkali-activated slag concrete. Nord. Concr. Res. 6(1), 81–94 (1987)

    Google Scholar 

  141. Gifford, P.M., Gillott, J.E.: Freeze-thaw durability of activated blast furnace slag cement concrete. ACI Mater. J. 93(3), 242–245 (1996)

    Google Scholar 

  142. Škvára, F., Jílek, T., Kopecký, L.: Geopolymer materials based on fly ash. Ceram.-Silik. 49(3), 195–204 (2005)

    Google Scholar 

  143. Weil, M., Dombrowski, K., Buchwald, A.: Sustainable design of geopolymers – evaluation of raw materials by the consideration of economical and environmental aspects in the early phases of material development. In: Weil, M., Buchwald, A., Dombrowski, K., Jeske, U., Buchgeister, J. (eds.) Materials Design and Systems Analysis, pp. 57–76. Shaker Verlag, Aachen (2007)

    Google Scholar 

  144. Weil, M., Jeske, U., Buchwald, A., Dombrowski, K.: Sustainable design of geopolymers – evaluation of raw materials by the integration of economic and environmental aspects in the early phases of material development. In: 14th CIRP International Conference on Life Cycle Engineering, Tokyo, pp. 278–284. Springer (2007)

    Google Scholar 

  145. Dombrowski, K., Buchwald, A., Weil, M.: Geopolymere Bindemittel. Teil 2: Entwicklung und Optimierung von Geopolymerbetonmischungen für feste und dauerhafte Außenwandbauteile (Geopolymer Binders. Part 2: Development and optimization of geopolymer concrete mixes for strong and durable external wall units). ZKG Int. 61(03), 70–82 (2008)

    Google Scholar 

  146. Weil, M., Dombrowski-Daube, K., Buchwald, A.: Geopolymerbinder – Teil 3: Ökologische und ökonomische Analysen von Geopolymerbeton-Mischungen für Außenbauteile (Geopolymer binders – Part 3: Ecological and economic analyses of geopolymer concrete mixes for external structural elements). ZKG Int. 7/8, 76–87 (2011)

    Google Scholar 

  147. Buchwald, A., Weil, M., Dombrowski, K.: Life cycle analysis incorporated development of geopolymer binders. Restor. Build. Monum. 14(4), 271–282 (2008)

    Google Scholar 

  148. Deutches Institut für Normung: Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 2: Beton – Festlegung, Eigenschaften, Herstellung und Konformität – Anwendungsregeln zu DIN EN 206-1 (DIN 1045-2:2008). Berlin (2008)

    Google Scholar 

  149. Setzer, M., Hartmann, V.: Verbesserung der Frost-Tausalz-Widerstandsprüfung. CDF-Test-Prüfvorschrift 9, 73–82 (1991)

    Google Scholar 

  150. Bilek, V., Szklorzova, H.: Freezing and thawing resistance of alkali-activated concretes for the production of building elements. In: Malhotra, V.M. (ed.) Proceedings of 10th CANMET/ACI Conference on Recent Advances in Concrete Technology, supplementary papers, Seville, Spain, pp. 661–670. American Concrete Institute, Detroit, MI (2009)

    Google Scholar 

  151. Copuroglu, O.: Freeze thaw de-icing salt resistance of blast furnace slag cement mortars – a factorial design study. In: Walraven, J. et al. (eds.) 5th International PhD Symposium in Civil Engineering, London, UK, pp. 175–182. Taylor & Francis (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Provis, J.L., Bílek, V., Buchwald, A., Dombrowski-Daube, K., Varela, B. (2014). Durability and Testing – Physical Processes. In: Provis, J., van Deventer, J. (eds) Alkali Activated Materials. RILEM State-of-the-Art Reports, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7672-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7672-2_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7671-5

  • Online ISBN: 978-94-007-7672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics