Skip to main content

Negative Bias Temperature Instability in (Si)Ge pMOSFETs

  • Chapter
  • First Online:
  • 1424 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 47))

Abstract

A comprehensive analysis of the NBTI reliability of SiGe channel pMOSFETs is reported in this chapter. First the impact of individual gate stack parameters on the device reliability is discussed. The experimental learning is then combined to propose a reliability-oriented gate stack optimization, which is shown to enable ultrathin EOT devices with sufficient reliability, i.e., 10 years of continuous operation at nominal V DD. The demonstrated results are shown to be process- and architecture-independent and as such, directly transferable to other device technologies such as pure Ge channel and wrapped SiGe channel finFETs. A detailed experimental analysis of the NBTI kinetics on SiGe channel devices is proposed and compared with Si channel reference devices. The interplay between NBTI and Body Biasing on Si and SiGe devices is discussed, showing that it can yield further benefit for the novel technology. A model capable of explaining all the experimental observations is proposed. Finally, some considerations about the correlation of device performance and reliability are made.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.-Å. Ragnarsson et al., Ultra low-EOT (5Å) gate-first and gate-last high performance CMOS achieved by gate-electrode optimization, in IEEE Proceedings IEDM (2009), pp. 663–666

    Google Scholar 

  2. S. Markov et al., Si-SiO2 interface band-gap transition–effects on MOS inversion layer. Phys. Stat. Sol. 205(6), 1290–1295 (2008)

    Article  ADS  Google Scholar 

  3. M. Cho et al., Insight into N/PBTI mechanisms in sub-1 nm EOT devices. IEEE Trans. Electron Dev. 59(8), 2042–2048 (2012)

    Article  ADS  Google Scholar 

  4. International technology roadmap for semiconductors, http://public.itrs.net

  5. T. Chiarella et al., Benchmarking SOI and bulk FinFET alternatives for PLANAR CMOS scaling succession. Solid-State El. 54(9), 855–860 (2010)

    Article  ADS  Google Scholar 

  6. M.M. Frank et al., Aggressive SiGe channel gate stack scaling by remote oxygen scavenging: pFET performance and reliability, in Proceedings of the ECS Fall meeting in ECS Trans (2012), vol. 50

    Google Scholar 

  7. X. Gong et al., Negative bias temperature instability study on Ge0.97 Sn0.03 p-MOSFETs with Si2H6 passivation, HfO2 High-k dielectric and TaN metal gate, in Proceedings ECS fall meeting in ECS Trans (2012) vol. 50, No. 9

    Google Scholar 

  8. S. Krishnan et al., A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications, in IEEE Proceedings IEDM (2011) pp. 634–637

    Google Scholar 

  9. V. Huard, M. Denais, C. Parthasarathy, NBTI degradation: from physical mechanism to modeling. Microelect. Reliab. 46(1), 1–23 (2006)

    Article  Google Scholar 

  10. B. Kaczer et al., Ubiquitous relaxation in BTI stressing–new evaluation and insights, in IEEE Proceedings IRPS (2008), pp. 20–27

    Google Scholar 

  11. T. Grasser, B. Kaczer, Negative bias temperature instability: recoverable versus permanent degradation, in Proceedings of the ESSDERC (2007), pp. 127–130

    Google Scholar 

  12. T. Grasser et al., Simultaneous extraction of recoverable and permanent components contributing to Bias-Temperature Instability, in IEEE Proceedings IEDM (2007), pp. 801–804

    Google Scholar 

  13. G. Groeseneken, H.E. Maes, N. Beltran, R.F. De Keersmaecker, A reliable approach to charge pumping measurements in MOS transistors. IEEE Trans. Electron Dev. 31(1), 42–53 (1984)

    Article  Google Scholar 

  14. H. Reisinger et al., Analysis of NBTI degradation- and recovery-behavior based on ultra fast VT-measurements, in IEEE Proceedings IRPS (2006) pp. 448–456

    Google Scholar 

  15. J.W. Tschanz et al., Dynamic sleep transistors and body bias for active leakage power control of microprocessors. IEEE J Solid-state Circ. 38(11), 1838–1845 (2003)

    Article  Google Scholar 

  16. Y. He, Effect of variable body bias technique on pMOSFET NBTI recovery. Elect. Lett. 45(18). 956–957 (2009)

    Google Scholar 

  17. Y. Mitani, H. Satake, A. Toriumi, Influence of nitrogen on negative bias temperature instability in ultrathin SiON. IEEE Trans. Dev. Mat. Rel. 8(1), 6–13 (2008)

    Google Scholar 

  18. Taurus MEDICI user guide, A-2007.12 ed., (2007)

    Google Scholar 

  19. S.M. Martin, K. Flautner, T. Mudge, D. Blauw, Dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads, in IEEE Proceedings ICCAD (2002) pp. 721–725

    Google Scholar 

  20. T. Grasser et al., Recent advances in understanding the bias temperature instability, in IEEE Proceedings IEDM (2010) pp. 82–85

    Google Scholar 

  21. A.E. Islam, J.H. Lee, W.-H. Wu, A. Oates, M.A. Alam, Universality of interface trap generation and its impact on ID degradation in strained/unstrained PMOS transistors under NBTI stress, in IEEE Proceedings IEDM (2008), pp. 107–110

    Google Scholar 

  22. A. Hikavyy et al., SiGe SEG growth for buried channel p-MOS devices. ECS Trans. 25(7), 201–210 (2009)

    Article  Google Scholar 

  23. T. Grasser et al., The paradigm shift in understanding the bias temperature instability: from reaction-diffusion to switching oxide traps. IEEE Trans. Electron Dev. 58(11), 3652–3666 (2011)

    Article  ADS  Google Scholar 

  24. T. Grasser, Stochastic charge trapping in oxides: from random telegraph noise to bias temperature instabilities. Microelect. Reliab. 52(1), 39–70 (2012)

    Article  Google Scholar 

  25. M. Toledano-Luque et al., Response of a single trap to AC negative bias temperature stress, in IEEE Proceedings IRPS (2011), pp. 364–371

    Google Scholar 

  26. M.V. Fischetti, S.E. Laux, Band Structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80(4), 2234–2252 (1996)

    Article  ADS  Google Scholar 

  27. A. Stesmans, V. Afanas’ev, ESR of interfaces and nanolayers in semiconductor heterostructures, in Characterization of semiconductor heterostructures and nanostructures (Elsevier, 2008) pp. 435–489

    Google Scholar 

  28. J. Mitard et al., Impact of epi-si growth temperature on ge-pFET performance, in Proceedings ESSDERC (2009), pp. 411–414

    Google Scholar 

  29. M. Caymax et al., The influence of the epitaxial growth process parameters on layer characteristics and device performance in Si-passivated Ge pMOSFETs. J. Electrochem. Soc. 156(12), H979–H985 (2009)

    Article  Google Scholar 

  30. W. Gös, Hole trapping and the negative bias temperature instability, Ph.D. Dissertation, T.U. Wien (2011) http://www.iue.tuwien.ac.at/ phd/goes/dissse19.html

  31. A.S. Foster, F. Lopez Gejo, A.L. Shluger, R.M. Nieminen, Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002)

    Article  ADS  Google Scholar 

  32. R. Degraeve et al., Trap Spectroscopy by Charge Injection and Sensing (TSCIS): a quantitative electrical technique for studying defects in dielectric stacks, in IEEE Proceedings IEDM (2008), pp. 775–778

    Google Scholar 

  33. B. Kaczer, A. Veloso, M. Aoulaiche, G. Groeseneken, Significant reduction of positive bias temperature instability in high-k/metal-gate nFETs by incorporation of rare earth metals. Microelectron. Eng. 86(7–9), 1894–1896 (2009)

    Article  Google Scholar 

  34. D. Liu, J. Robertson, Passivation of oxygen vacancy states and suppression of Fermi pinning in HfO2 by La addition. Appl. Phys. Lett. 94, 042904.1–042904.4 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Franco .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franco, J., Kaczer, B., Groeseneken, G. (2014). Negative Bias Temperature Instability in (Si)Ge pMOSFETs. In: Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications. Springer Series in Advanced Microelectronics, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7663-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7663-0_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7662-3

  • Online ISBN: 978-94-007-7663-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics