Skip to main content

Degradation Mechanisms

  • Chapter
  • First Online:

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 47))

Abstract

In this chapter, a general description of the main MOSFET degradation mechanisms considered in this work is given. In particular, models for the Negative Bias Temperature Instability are reviewed. The proposed dissertation, while not aiming to give a complete coverage of the wide literature available on the treated topics, is meant to provide the reader with a sufficient basis to follow the discussion of the original experimental work presented in the following chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.O. Jeppson, C.M. Svensson, Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. J. Appl. Phys. 48(5), 2004–2014 (1977)

    Google Scholar 

  2. B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon. J. Electrochem. Soc. 114(3), 266–274 (1967)

    Google Scholar 

  3. V. Huard, M. Denais, C. Parthasarathy, NBTI degradation: from physical mechanism to modeling. Microelect. Reliab. 46(1), 1–23 (2006)

    Google Scholar 

  4. S. Tsujikawa et al., Negative bias temperature instability of pMOSFETs with Ultra-thin SiON gate dielectrics, in IEEE Proceedings of IRPS 2003, pp. 183–188

    Google Scholar 

  5. G. Groeseneken, H.E. Maes, N. Beltran, R.F. De Keersmaecker, A reliable approach to charge pumping measurements in MOS transistors. IEEE Trans. Electron Dev. 31(1), 42–53 (1984)

    Google Scholar 

  6. M. Aoulaiche et al., Contribution of fast and slow states to negative bias temperature instabilities in HfxSi(1−x)ON/TaN based pMOSFETs. Microelect. Eng. 80, 134–137 (2005)

    Google Scholar 

  7. B. Kaczer et al., Ubiquitous relaxation in BTI stressing—new evaluation and insights, in IEEE Proceedings of IRPS (2008), pp. 20–27

    Google Scholar 

  8. H. Reisinger et al., Analysis of NBTI degradation- and recovery-behavior based on ultra-fast Vth-measurements. in IEEE Proceedings of IRPS (2006), pp. 448–453

    Google Scholar 

  9. M.A. Alam, A critical examination of the mechanics of dynamic NBTI for pMOSFETs, in IEEE Proceedings IEDM (2003), pp. 345–348

    Google Scholar 

  10. S. Chakravarthi, A.T. Krishnan, V. Reddy, C. F. Machala, S. Krishnan, A comprehensive framework for predictive modeling of negative bias temperature instability, in IEEE Proceedings of IRPS (2004), pp. 273–282

    Google Scholar 

  11. S. Mahapatra et al., Negative bias temperature instability in CMOS devices. Microelect. Eng. 80, 114–121 (2005)

    Google Scholar 

  12. H. Kufluoglu and M.A. Alam, A geometrical unification of the theories of NBTI and HCI time-exponents and its implications for ultra-scaled planar and surrounded-gate MOSFETs, in IEEE Proceedings of IEDM (2004), pp. 113–116

    Google Scholar 

  13. M.A. Alam, S. Mahapatra, A comprehensive Model of PMOS NBTI degradation. Microelect. Reliab. 45(71–81), 71–81 (2005)

    Google Scholar 

  14. T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer, “The universality of NBTI relaxation and its implications for modeling and characterization,” in IEEE Proc. IRPS, pp. 268–280, 2007

    Google Scholar 

  15. T. Grasser et al., The paradigm shift in understanding the bias temperature instability: from reaction-diffusion to switching oxide traps. IEEE Trans. Electron Dev. 58(11), 3652–3666, (2011)

    Google Scholar 

  16. T. Grasser et al., The ‘permanent’ component of NBTI: composition and annealing, in IEEE Proceedings of IRPS (2011), pp. 605–613

    Google Scholar 

  17. C. Shen et al., Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric, in IEEE Proceedings of IEDM (2006), pp. 1–4

    Google Scholar 

  18. T. Grasser and B. Kaczer, “Evidence that two couple mechanisms are responsible for Negative Bias Temperature Instability. IEEE Trans. Electron Dev. 56(5), 1056–1062 (2009)

    Google Scholar 

  19. T. Grasser et al., Recent advances in understanding the bias temperature instability, in IEEE Proceedings of IEDM (2010), pp. 82–85

    Google Scholar 

  20. V. Huard et al., NBTI Degradation: from transistor to SRAM arrays, in IEEE Proceedings of IRPS (2008), pp. 289–300

    Google Scholar 

  21. B. Kaczer et al., Origin of NBTI variability in deeply Scaled pFETs, in IEEE Proceedings of IRPS (2010), pp. 26–32

    Google Scholar 

  22. H. Reisinger, T. Grasser, W. Gustin, C. Schlünder, The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress, in IEEE Proceedings of IRPS (2010), pp. 7–15

    Google Scholar 

  23. B. Kaczer et al., NBTI from the perspective of defect states with widely distributed time scales, in IEEE Proceedings of IRPS (2009), pp. 55–60

    Google Scholar 

  24. A. Asenov, R. Balasubramaniam, A.R. Brown, J.H. Davies, RTS Amplitude in Decananometer MOSFETs: 3-D simulation study. IEEE Trans. Electron Dev. 50(3), 839–845 (2003)

    Google Scholar 

  25. http://www.ibiblio.org/e-notes/Perc/contour.htm

  26. T. Grasser et al., The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability, in IEEE Proceedings of IRPS (2010), pp. 16–25

    Google Scholar 

  27. H. Reisinger et al., Understanding and modeling AC NBTI, in Proceedings of IRPS (2011), pp. 597–604

    Google Scholar 

  28. T. Grasser et al., Analytic modeling of the bias temperature instability using capture and emission time maps, in Proceedings of IEDM (2011), pp. 618–621

    Google Scholar 

  29. R.N. Hall, Electron-hole recombination in Germanium, Phys. Rev. 87, 387 (1952)

    Google Scholar 

  30. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Google Scholar 

  31. A.L. McWhorter, 1/f noise and germanium surface properties, in Semiconductor Surface Physics. pp. 207–228 (1957)

    Google Scholar 

  32. T. Grasser, Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelect. Reliab. 52, 39–70 (2012)

    Google Scholar 

  33. P.M. Lenahan, Atomic scale defects involved in mos reliability problems. Microelect. Eng. 69, 173–181 (2003)

    Google Scholar 

  34. F. Schanovsky, W. Goes, T. Grasser, Multiphonon hole trapping from first principles. J. Vac. Sci. Technol. B 29(1), 01A2011–01A215 (2011)

    Google Scholar 

  35. T. Grasser, Charge trapping in oxides–from RTN to NBTI, IEEE IRPS Tutorial (2011)

    Google Scholar 

  36. J.F. Conley Jr., P.M. Lenahan, A.J. Lelis, T.R. Oldham, Electron spin resonance evidence that E′γ centers can behave as switching oxide traps. IEEE Trans. Nucl. Sci. 42(6), 1744–1749 (1995)

    Google Scholar 

  37. A.J. Lelis, T.R. Oldham, Time dependence of switching oxide traps. IEEE Trans. Nucl. Sci. 41(6), 1835–1843 (1994)

    Google Scholar 

  38. M. Uren, M.J. Kirton, S. Collins, Anomalous telegraph noise in small-area silicon metal-oxide-semiconductor field-effect transistors. Phys. Rev. B, 37(14), 8346–8350 (1988)

    Google Scholar 

  39. S. Rangan, N. Mielke, E.C.C. Yeh, Universal recovery behavior of negative bias temperature instability, in IEEE Proceedings of IEDM (2003), pp. 341–344

    Google Scholar 

  40. T. Grasser et al., A two-stage model for negative bias temperature instability, in IEEE Proceedings of IRPS (2009), pp. 33–44

    Google Scholar 

  41. K.R. Hofman, C. Werner, W. Weber, G. Dorda, Hot-Electron and hole-emission effects in Short n-channel MOSFETs. IEEE Trans. Electron Dev. 32(3), 691–699 (1985)

    Google Scholar 

  42. N. Arora, MOSFET modeling for VLSI simulation: theory and practice. (World Scientific Publishing Co. Pte. Ltd., 1992)

    Google Scholar 

  43. A. Lacaita, Why the effective temperature of the hot electron tail approaches the lattice temperature. App. Phys. Lett. 59(13), 1623–1625 (1991)

    Google Scholar 

  44. M.V. Fischetti and S.E. Laux, Monte Carlo study of sub-band-gap impact ionization in small Silicon field-effect transistors. in IEEE Proceedings of IEDM (1995), pp. 305–308

    Google Scholar 

  45. A. Bravaix et al., Hot-Carrier acceleration factors for low power management in DC-AC stressed 40 nm NMOS node at high temperature, in IEEE Proceedings of IRPS (2009), pp. 531–548

    Google Scholar 

  46. T.-C. Ong, P.K. Ko, C. Hu, Hot-carrier current modeling and device degradation in surface-channel p-MOSFETs. IEEE Trans. Electron Dev. 37, 1658–1666 (1990)

    Google Scholar 

  47. M.G. Ancona, N.S. Saks, D. McCarthy, Lateral distribution of hot-carrier-induced interface traps in MOSFETs. IEEE Trans. Electron Dev. 35(12), 2221–2228 (1988)

    Google Scholar 

  48. R. Bellens, P. Heremans, G. Groesenekn, H.E. Maes, On the channel length dependence of the Hot-Carrier degradation of n-channel MOSFETs. IEEE Electron Dev. Lett. 10(12), 553–555 (1989)

    Google Scholar 

  49. E. Takeda, N. Suzuki, An empirical model for device degradation due to Hot-Carrier injection. IEEE Electron Dev. Lett. 4(4), 111–113 (1983)

    Google Scholar 

  50. C. Hu et al., Hot-electron-induced MOSFET degradation–model, monitor, and improvement. IEEE Trans. Electron Dev. 32(2), 375–385 (1985)

    Google Scholar 

  51. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, H.E. Maes, A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides. in IEEE Proceedings of IEDM (1995), pp. 863–866

    Google Scholar 

  52. T. Kauerauf et al., Methodologies for sub-1 nm EOT evaluation, in IEEE Proceedings of IRPS (2011), pp. 2A.2.1–2A.2.10

    Google Scholar 

  53. B. Kaczer, FEOL reliability: BTI and TDDB in high-k/metal gate, finFET and Ge-based technologies, IEEE IEDM Short Course 27, 356–359 (2010)

    Google Scholar 

  54. R. Degraeve et al., A new model for the field dependence of intrinsic and extrinsic time-dependent dielectric breakdown. IEEE Trans. Electron Dev. 45(2), 472–481, (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Franco .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franco, J., Kaczer, B., Groeseneken, G. (2014). Degradation Mechanisms. In: Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications. Springer Series in Advanced Microelectronics, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7663-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7663-0_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7662-3

  • Online ISBN: 978-94-007-7663-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics