Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1407 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 47))

Abstract

In this introductory chapter we review the latest trends in CMOS technology scaling, focusing in particular on the transition from the conventional geometrical scaling (evolutionary era) to the ultimate scaling by engineering and innovation (revolutionary era). We outline the main advantages offered by high mobility channel technologies which are currently under development for possible implementation in future CMOS nodes. We discuss how ultimate device scaling and stochastic device-to-device variability in nanoscale technologies pose significant reliability constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Moore, Cramming more components onto integrated circuits. Electron. 38(8), 114-ff (1965)

    Google Scholar 

  2. M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era, in IEEE Proceedings of the IEDM. pp.1–6, 2011

    Google Scholar 

  3. E. Nowak, Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J. Res. Dev. 46(2–3), 169–180 (2002)

    Article  Google Scholar 

  4. Y. Taur, E. Nowak, CMOS devices below 0.1 μm: how high will performance go?, in IEEE Proceedings of the IEDM. pp. 215–218, 1997

    Google Scholar 

  5. R. Chau et al., Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications, in IEEE Proceedings of the ICSICT. pp. 26–30, 2004

    Google Scholar 

  6. E.P. Gusev, V. Narayanan, M.M. Frank, Advanced high-k dielectric stacks with polySi and metal gates: recent progress and current challenges. IBM J. Res. Dev. 50(4–5), 387–410 (2006)

    Article  Google Scholar 

  7. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron. Dev. 59(7), 1813–1828 (2012)

    Article  ADS  Google Scholar 

  8. J. Mitard et al., High-mobility 0.85 nm-EOT Si0.45Ge0.55-pFETs: delivering high performance at scaled VDD, in IEEE Proceedings. IEDM. pp. 10.6.1–4, 2010

    Google Scholar 

  9. H.R. Harris et al., Band-engineered low pMOS VT high-k/metal gates featured in dual channel CMOS integration scheme, in Proceedings of the VLSI. pp. 154–155, 2007

    Google Scholar 

  10. M. Heyns et al., “Advancing CMOS beyond the Si roadmap with Ge and III/V devices”, in IEEE Proc. IEDM, pp. 299-302, 2010

    Google Scholar 

  11. G. Hellings et al., Implant-Free SiGe quantum well pFET: a novel highly scalable and low thermal budget device, featuring raised source/drain and high-mobility channel, in IEEE Proceedings of the IEDM, pp. 10.4.1–4, 2010

    Google Scholar 

  12. G. Groeseneken, R. Degraeve, B. Kaczer, K. Martens, Trends and perspectives for electrical characterization and reliability assessment in advanced CMOS technologies, in Proceedings of the ESSDERC. pp. 64–72, 2010

    Google Scholar 

  13. E. Cartier et al., Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-scaling, in IEEE Proceedings of the IEDM. pp. 442–444, 2011

    Google Scholar 

  14. T. Grasser et al., The paradigm shift in understanding the bias temperature instability: from reaction-diffusion to switching oxide traps. IEEE Trans. Electron. Dev. 58(11), 3652–3666 (2011)

    Article  ADS  Google Scholar 

  15. B. Kaczer, J. Franco, “Method for enhancing the reliability of a P-channel semiconductor device and a P-channel semiconductor device made thereof”, US Patent 8062962, Nov. 22 2011; EP 2309543 B1, JP2010000229445, May 9 2012

    Google Scholar 

  16. A. Asenov et al., Advanced simulation of statistical variability and reliability in nano CMOS transistors, in IEEE Proceedings of the IEDM. pp. 1, 2008

    Google Scholar 

  17. T. Grasser et al., Recent advances in understanding the bias temperature instability in IEEE Proceedings of the IEDM. pp. 4.4.1–4, 2010

    Google Scholar 

  18. M. Toledano-Luque et al., From mean values to distributions of BTI lifetime of deeply scaled FETs through atomistic understanding of the degradation, in Proceedings of the VLSI. pp. 152–153, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Franco .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franco, J., Kaczer, B., Groeseneken, G. (2014). Introduction. In: Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications. Springer Series in Advanced Microelectronics, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7663-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7663-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7662-3

  • Online ISBN: 978-94-007-7663-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics