Skip to main content

Anesthesia for Robotic Cardiac Surgery

  • Chapter
  • First Online:
Robotic Cardiac Surgery
  • 1199 Accesses

Abstract

Robotic cardiac surgery presents anesthesiologists with new challenges and requires a necessary learning curve. The key issues of anesthesia for robotic cardiac surgery are respiratory and cardiovascular changes associated with the patient’s single-lung ventilation and CO2 pneumothorax, which may reduce cardiac output, increase pulmonary vascular resistance, resulting in hypoxemia and hemodynamic compromise. The magnitude of the physiological disturbances is influenced by the patient’s age, the patient’s underlying myocardial and respiratory function and the anesthetic agents administered. In addition, transesophageal echocardiography is needed for guidance of central venous cannula in establishing peripheral cardiopulmonary bypass. Undoubtedly, anesthesiologist plays a more important role in robotic cardiac surgery than in any other surgeries. This chapter describes anesthetic strategies and clinical experience for robotic cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deeba S, Aggarwal R, Sain P, et al. Cardiac robotics: a review and St. Mary’s experiences. Int J Med Robot Comput Assist Surg. 2006;2:16–20.

    Article  CAS  Google Scholar 

  2. Boehm D, Reichenspurner H, Gulbins H, et al. Early experience with robotic technology for coronary artery surgery. Ann Thorac Surg. 1999;68:1542–6.

    Article  CAS  PubMed  Google Scholar 

  3. LaPietra A, Grossi EA, Derivaux C, et al. Robotic-assisted instruments enhance minimally invasive mitral valve surgery. Ann Thorac Surg. 2000;70:835–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wang G, Gao C, Zhou Q, et al. Anesthesia management of totally endoscopic atrial septal defect repair with a robotic surgical system. J Clin Anesth. 2011;23:621–5.

    Article  PubMed  Google Scholar 

  5. Haynes SR, Bonner S. Anaesthesia for thoracic surgery in children. Paediatr Anaesth. 2000;10:237–51.

    Article  CAS  PubMed  Google Scholar 

  6. Peden CJ, Prys-Roberts C. Capnothorax: implications for the anaesthetist. Anaesthesia. 1993;48:664–6.

    Article  CAS  PubMed  Google Scholar 

  7. Tobias JD. Anaesthetic implications of thoracoscopic surgery in children. Paediatr Anaesth. 1999;9:103–10.

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Gao C, Zhou Q, et al. Anesthesia management for robotically assisted endoscopic coronary artery bypass grafting on beating heart. Innovations (Phila). 2010;5:291–4.

    Article  CAS  Google Scholar 

  9. Gibbs NM, Weightman WM, Thrackray NM, et al. The effects of recent aspirin ingestion on platelet function in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2001;15:55–9.

    Article  CAS  PubMed  Google Scholar 

  10. Weightman WM, Gibbs NM, Weidmann CR, et al. The effect of preoperative aspirin-free interval on red blood cell transfusion requirements in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2002;16:54–68.

    Article  PubMed  Google Scholar 

  11. Murkin JM. Anesthesia for robotic heart surgery: an overview. Heart Surg Forum. 2001;4:311–14.

    CAS  PubMed  Google Scholar 

  12. Mishra YK, Wasir H, Sharma KK, et al. Totally endoscopic coronary artery bypass surgery. Asian Cardiovasc Thorac Ann. 2006;14:447–51.

    Article  PubMed  Google Scholar 

  13. Buggeskov KB, Wetterslev J, Secher NH, et al. Pulmonary perfusion with oxygenated blood or custodiol HTK solution during cardiac surgery for postoperative pulmonary function in COPD patients: a trial protocol for the randomized, clinical, parallel group, assessor and data analyst blinded Pulmonary Protection Trial. Trails. 2013;14:1–11.

    Google Scholar 

  14. Ku CM, Slinger P, Waddell T. A novel method of treating hypoxemia during one-lung ventilation for thoracoscopic surgery. J Cardiothorac Vasc Anesth. 2009;23:850–2.

    Article  PubMed  Google Scholar 

  15. Beck DH, Doepfmer UR, Sinemus C, et al. Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001;86:38–43.

    Article  CAS  PubMed  Google Scholar 

  16. Sfez M. Basic physiology and anesthesia. In: Bax NMA, Georgeson KE, Naimaldin A, Valla JS, editors. Endoscopic surgery in children. 1st ed. Berlin: Springer; 1999. p. 53–70.

    Chapter  Google Scholar 

  17. Wasnick JD, Hoffman WJ, Acuff T, et al. Anesthetic management of coronary artery bypass via minithoracotomy with video assistance. J Cardiothorac Vasc Anesth. 1995;9:731–3.

    Article  CAS  PubMed  Google Scholar 

  18. Pfitzner J, Peacock MJ, McAleer PT. Gas movement in the nonventilated lung at the onset of single-lung ventilation for video-assisted thoracoscopy. Anaesthesia. 1999;54:437–43.

    Article  CAS  PubMed  Google Scholar 

  19. Dalibon N, Moutafis M, Liu N, et al. Treatment of hypoxemia during one-lung ventilation using intravenous almitrine. Anesth Analg. 2004;98:590–4.

    Article  CAS  PubMed  Google Scholar 

  20. Silva-Costa-Gomes T, Gallart L, Valles J, et al. Low- vs high-dose almitrine combined with nitric oxide to prevent hypoxia during open-chest one-lung ventilation. Br J Anaesth. 2005;95:410–16.

    Article  CAS  PubMed  Google Scholar 

  21. Waheedullah K, Konrad S. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110:1402–11.

    Article  Google Scholar 

  22. Hickling KG. Permissive hypercapnia. Respir Care Clin N Am. 2002;8:155–69.

    Article  PubMed  Google Scholar 

  23. Laffey JG, O’Croinin D, McLoughlin P, et al. Permissive hypercapnia role in protective lung ventilator strategies. Intensive Care Med. 2004;30:347–56.

    Article  PubMed  Google Scholar 

  24. Petrat G, Weyandt D, Klein U. Anesthetic considerations in pediatric laparoscopic and thoracoscopic surgery. Eur J Pediatr Surg. 1999;9:282–5.

    Article  CAS  PubMed  Google Scholar 

  25. Tobias JD. Anaesthesia for minimally invasive surgery in children. Best Pract Res Clin Anaesthesiol. 2002;16:115–30.

    Article  PubMed  Google Scholar 

  26. Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104:1029–33.

    Article  PubMed  Google Scholar 

  27. Benumof JL. Anesthesia for thoracic surgery. 2nd ed. Philadelphia: WB Saunders Company; 1995.

    Google Scholar 

  28. Nagendran J, Stewart K, Hoskinson M, et al. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34–43.

    Article  PubMed  Google Scholar 

  29. Sato M, Muraji T, Asai T, et al. Hemodynamic effects of carbon dioxide insufflation of the thoracic cavity during thoracoscopic surgery. Pediatr Endosurg Innov Tech. 2002;6:185–9.

    Article  Google Scholar 

  30. Tobias JD. Anesthetic management for pediatric laparoscopy and thoracoscopy. In: Lobe TE, Schropp KP, editors. Pediatric laparoscopy and thoracoscopy. 1st ed. Philadelphia: WB Saunders Company; 1994. p. 59–66.

    Google Scholar 

  31. Jones DR, Greaber GM, Tanguilig GG, et al. Effects of insufflation on hemodynamics during thoracoscopy. Ann Thorac Surg. 1993;55:1379–82.

    Article  CAS  PubMed  Google Scholar 

  32. Hammer GB, Harrison TK, Vricella LA, et al. Single lung ventilation in children using a new paediatric bronchial blocker. Paediatr Anaesth. 2002;12:69–72.

    Article  PubMed  Google Scholar 

  33. Brock H, Rieger R, Gabriel C, et al. Hemodynamic changes during thoracoscopic surgery. Anaesthesia. 2000;55:10–6.

    Article  CAS  PubMed  Google Scholar 

  34. Gentili A, Lima M, Derose R, et al. Thoracoscopy in children: anaesthesiological implications and case reports. Minerva Anestesiol. 2007;73:161–71.

    CAS  PubMed  Google Scholar 

  35. Hammer GB, Fitzmaurice BG, Brodsky JB. Methods for single-lung ventilation in pediatric patients. Anesth Analg. 2000;91:248–52.

    Google Scholar 

  36. D’Attellis N, Loulmet D, Carpentier A. Robotic-assisted cardiac surgery: anesthetic and postoperative considerations. J Cardiothorac Vasc Anesth. 2002;16:397–400.

    Article  PubMed  Google Scholar 

  37. Sugantha G. Anaesthesia for minimally invasive cardiac surgery. Best Pract Clin Anaesthesiol. 2002;16:63–80.

    Article  Google Scholar 

  38. Chauhan S, Sukesan S. Anesthesia for robotic cardiac surgery: an amalgam of technology and skill. Ann Card Anaesth. 2010;13:169–75.

    Article  PubMed  Google Scholar 

  39. Reves JG, Glass PS, Lubarsky DA, et al. Intravenous anesthetics. In: Miller RD, Eriksson LI, Fleisher LA, et al., editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingstone; 2009. p. 719–68.

    Google Scholar 

  40. Howie MB, Gravlee GP. Induction of anesthesia. In: Hansler Jr FA, Martin DE, Gravlee GP, editors. A practical approach to cardiac anesthesia. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 164–75.

    Google Scholar 

  41. Thomson IR, Harging G, Hudson RJ. A comparison of fentanyl and sufentail in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2002;14:652–6.

    Article  Google Scholar 

  42. Howie MB, Cheng D, Newman MF, et al. A randomized double-blinded multicenter comparison of remifentanil versus fentanyl when combined with isoflurane/propofol for early extubation in coronary artery bypass graft surgery. Anesth Analg. 2001;92:1084–93.

    Article  CAS  PubMed  Google Scholar 

  43. Howie MB, Michelson LG, Hug Jr CC, et al. Comparison of three remifentanil dose-finding regimens for coronary artery surgery. J Cardiothorac Vasc Anesth. 2003;17:51–9.

    Article  PubMed  Google Scholar 

  44. Geisler FE, de Lange S, Royston D, et al. Efficacy and safety of remifentanil on coronary artery bypass graft surgery: a randomized, double-blind dose comparison study. J Cardiothorac Vasc Anesth. 2003;17:60–8.

    Article  PubMed  Google Scholar 

  45. Cheng DC, Newman MF, Duke P, et al. The efficacy and resource utilization of remifentanil and fentanyl in fast-track coronary artery bypass graft surgery: a prospective randomized, double-blinded controlled, multi-center trial. Anesth Analg. 2001;92:1093–102.

    Google Scholar 

  46. Myles PS, Hunt JO, Fletcher H, et al. Remifentanil, fentanyl, and cardiac surgery: a double-blinded, randomized controlled trial of costs and outcomes. Anesth Analg. 2002;95:805–12.

    CAS  PubMed  Google Scholar 

  47. Maitre PO, Funk B, Crevoisier C, et al. Pharmacokinetics of midazolam in patients recovering from cardiac surgery. Eur J Clin Pharmacol. 1989;37:161–6.

    Article  CAS  PubMed  Google Scholar 

  48. Engoren MC, Kraras C, Garzia F. Propofol-based versus fentanyl-isoflurane-bases anesthesia for cardiac surgery. J Cardiothorac Vasc Anesth. 1998;12:177–81.

    Article  CAS  PubMed  Google Scholar 

  49. Cason BA, Gamperl AK, Slocum RE, et al. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 1997;87:1182–90.

    Article  CAS  PubMed  Google Scholar 

  50. Landoni G, Bignami E, Oliviero F, et al. Halogenated anesthetics and cardiac protection in cardiac and non-cardiac anesthesia. Ann Cardiac Anesthesia. 2009;12:4–9.

    Article  Google Scholar 

  51. Landoni G, Calabrò MG, Marchetti C, et al. Desflurane versus propofol in patients undergoing mitral valve surgery. J Cardiothorac Vasc Anesth. 2007;21:672–7.

    Article  CAS  PubMed  Google Scholar 

  52. London MJ, Mittnacht A, Kaplan JA. Anesthesia for myocardial revascularization. In: Kaplan JA, editor. Essentials of cardiac anesthesia. Philadelphia: Saunders Elsevier; 2008. p. 293–326.

    Chapter  Google Scholar 

  53. Berntman L, Rosberg B, Shweikh I, et al. Atracurium and pancuronium in renal insufficiency. Acta Anaesthesiol Scand. 1989;33:48–52.

    Article  CAS  PubMed  Google Scholar 

  54. Campos JH. Progress in lung separation. Thorac Surg Clin. 2005;15:71–83.

    Article  PubMed  Google Scholar 

  55. Gao C, Yang M, Wang G, et al. Totally robotic resection of myxoma and atrial septal defect repair. Interact Cardiovasc Thorac Surg. 2008;7:947–50.

    Article  PubMed  Google Scholar 

  56. Lehr EJ, Rodriguez E, Chitwood WR. Robotic cardiac surgery. Curr Opin Anaesthesiol. 2011;24:77–85.

    Article  PubMed  Google Scholar 

  57. Nifong LW, Chu VF, Bailey B, et al. Robotic mitral valve repair: experience with the da Vinci system. Ann Thorac Surg. 2003;75:438–43.

    Article  PubMed  Google Scholar 

  58. Pandey R, Garg R, Chandralekha R. Robot-assisted thoracoscopic thymectomy: perianaesthetic concerns. Eur J Anaesthesiol. 2010;27:473–7.

    Article  CAS  PubMed  Google Scholar 

  59. Campos JH. An update on robotic thoracic surgery and anesthesia. Curr Opin Anaesthesiol. 2010;23:1–6.

    Article  PubMed  Google Scholar 

  60. Geddes LA, Tacker WA, Rosborough J, et al. Electrical dose for ventricular defibrillation of small and large animals using precordial electrodes. J Clin Invest. 1974;53:310–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zipes DP, Fischer J, King RM, et al. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol. 1975;36:37–44.

    Article  CAS  PubMed  Google Scholar 

  62. Lateef F, Lim SH, Anantharaman V, et al. Changes in chest electrode impedance. Am J Emerg Med. 2000;18:381–4.

    Article  CAS  PubMed  Google Scholar 

  63. Deakin CD, McLaren RM, Petley GW, et al. Effects of positive end-expiratory pressure on transthoracic impedance-implications for defibrillation. Resuscitation. 1998;37:9–12.

    Article  CAS  PubMed  Google Scholar 

  64. Furman S. Defibrillation threshold and pneumothorax. Pacing Clin Electrophysiol. 1998;21:337–8.

    Article  CAS  PubMed  Google Scholar 

  65. Schuchert A, Hoffmann M, Steffgen F, et al. Several unsuccessful internal and external defibrillations during active can ICD implantation in a patient with pneumothorax. Pacing Clin Electrophysiol. 1998;21:471–3.

    Article  CAS  PubMed  Google Scholar 

  66. Luria D, Stanton M, Eldar M, et al. Pneumothorax: an unusual cause of ICD defibrillation failure. Pacing Clin Electrophysiol. 1998;21:474–5.

    Article  CAS  PubMed  Google Scholar 

  67. Cohen TJ, Lowenkron DD. The effects of pneumothorax on defibrillation thresholds during pectoral implantation of an active can implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 1998;21:468–70.

    Article  CAS  PubMed  Google Scholar 

  68. Hatton KW, Kilinski LC, Ramaiah C, et al. Multiple failed External defibrillation attempts during robot-assisted internal mammary harvest for myocardial revascularization. Anesth Analg. 2006;103:1113–14.

    Article  PubMed  Google Scholar 

  69. Parr KG, Talamini MA. Anesthetic implications of the addition of an operative robot for endoscopic surgery: a case report. J Clin Anesth. 2002;14:228–33.

    Article  PubMed  Google Scholar 

  70. Loulmet D, Carpentier A, D’Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic-assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–11.

    Article  CAS  PubMed  Google Scholar 

  71. Ascione R, Lloyd CT, Underwood MJ, et al. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg. 2000;69:1198–204.

    Article  CAS  PubMed  Google Scholar 

  72. Mack MJ. Minimally invasive and robotic surgery. JAMA. 2001;285:568–72.

    Article  CAS  PubMed  Google Scholar 

  73. Srivastava S, Gadasalli S, Agusala M, et al. Robotically assisted beating heart totally endoscopic coronary artery bypass (TECAB). Is there a future? Innovations (Phila). 2008;3:52–8.

    Article  Google Scholar 

  74. Argenziano M, Katz M, Bonatti J, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg. 2006;81:1666–75.

    Article  PubMed  Google Scholar 

  75. Kappert U, Cichon R, Schneider J, et al. Technique of closed chest coronary artery surgery on the beating heart. Eur J Cardiothorac Surg. 2001;20:765–9.

    Article  CAS  PubMed  Google Scholar 

  76. Murry CE, Richard VJ, Relmer KA, et al. Ischemlc preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66:913–31.

    Article  CAS  PubMed  Google Scholar 

  77. Vassiliades Jr TA. The cardiopulmonary effects of single-lung ventilation and carbon dioxide insufflation during thoracoscopic internal mammary artery harvesting. Heart Surg Forum. 2002;5:22–4.

    PubMed  Google Scholar 

  78. Dogan S, Aybek T, Andreen E, et al. Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: report of forty-five cases. J Thorac Cardiovasc Surg. 2002;123:1125–31.

    Article  CAS  PubMed  Google Scholar 

  79. Vassiliades Jr TA, Rogers EW, Nielsen JL, et al. Minimally invasive direct coronary artery bypass grafting: Intermediate-term results. Ann Thorac Surg. 2000;70:1063–5.

    Article  PubMed  Google Scholar 

  80. Athanasiou T, Ashrafian H, Rowland SP, et al. Robotic cardiac surgery: advanced minimally invasive technology hindered by barriers to adoption. Future Cardiol. 2011;7:511–22.

    Article  PubMed  Google Scholar 

  81. Suri RM, Burkhart HM, Rehfeldt KH, et al. Robotic mitral valve repair for all categories of leaflet prolapse: improving patient appeal and advancing standard of care. Mayo Clin Proc. 2011;86:838–44.

    Article  PubMed  Google Scholar 

  82. Kypson AP, Nifong LW, Chitwood WR. Robotic mitral valve surgery. Surg Clin North Am. 2003;83:1387–403.

    Article  PubMed  Google Scholar 

  83. Suri RM, Antiel RM, Burkhart HM, et al. Quality of life after early mitral valve repair using conventional and robotic approaches. Ann Thorac Surg. 2012;93:761–9.

    Article  PubMed  Google Scholar 

  84. Rodriguez E, Chitwood WR. Robotics in cardiac surgery. Scand J Surg. 2009;98:120–4.

    CAS  PubMed  Google Scholar 

  85. Slinger P, Suissa S, Triolet W. Predicting arterial oxygenation during one lung anaesthesia. Can J Anaesth. 1992;39:1030–5.

    Article  CAS  PubMed  Google Scholar 

  86. Schwarzkopf K, Klein U, Schreiber T, et al. Oxygenation during one-lung ventilation: The effects of inhaled nitric oxide and increasing levels of inspired fraction of oxygen. Anesth Analg. 2001;92:842–7.

    Article  CAS  PubMed  Google Scholar 

  87. Marshall BE, Marshall C, Frasch F, et al. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange 1: Physiological concepts. Intensive Care Med. 1994;20:291–7.

    Article  CAS  PubMed  Google Scholar 

  88. Benumof J. Conventional and differential lung management of one-lung ventilation. In: Anesthesia for thoracic surgery. 2nd ed. Philadelphia: Saunders; 1994. p. 413–24.

    Google Scholar 

  89. Brodsky J, Fitzmaurice B. Modern anesthetic techniques for thoracic operations. World J Surg. 2001;25:162–6.

    Article  CAS  PubMed  Google Scholar 

  90. Cheng W, Fontana GP, De Robertis MA, et al. Is robotic mitral valve repair a reproducible approach? J Thorac Cardiovasc Surg. 2010;139:628–33.

    Article  PubMed  Google Scholar 

  91. Vernick WJ, Woo JY. Anesthetic considerations during minimally invasive mitral valve surgery. Semin Cardiothorac Vasc Anesth. 2012;16:11–24.

    Article  PubMed  Google Scholar 

  92. Nuttall GA, Cook DJ, Fulgham JR, et al. The relationship between cerebral blood flow and transcranial Doppler blood flow velocity during hypothermic cardiopulmonary bypass in adults. Anesth Analg. 1996;82:1146–51.

    CAS  PubMed  Google Scholar 

  93. Apostolakis E, Filos KS, Koletsis E, et al. Lung dysfunction following cardiopulmonary bypass. J Card Surg. 2010;25:47–55.

    Article  PubMed  Google Scholar 

  94. Siepe M, Goebel U, Mecklenburg A, et al. Pulsatile pulmonary perfusion during cardiopulmonary bypass reduces the pulmonary inflammatory response. Ann Thorac Surg. 2008;86:115–22.

    Article  PubMed  Google Scholar 

  95. Kottenberg-Assenmacher E, Kamler M, Peters J. Minimally invasive endoscopic port-access intracardiac surgery with one lung ventilation: impact on gas exchange and anaesthesia resources. Anaesthesia. 2007;62:231–8.

    Article  CAS  PubMed  Google Scholar 

  96. Hill GE, Whitten CW, Landers DF. The influence of cardiopulmonary bypass on cytokines and cell-cell communication. J Cardiothorac Vasc Anesth. 1997;11:367–75.

    Article  CAS  PubMed  Google Scholar 

  97. Shastri KA, Logue GL, Stern MP, et al. Complement activation by heparin-protamine complexes during cardiopulmonary bypass: effect of C4A null allele. J Thorac Cardiovasc Surg. 1997;114:482–8.

    Article  CAS  PubMed  Google Scholar 

  98. Yadav R, Chaturvedi A, Rath GP, et al. Application of indigenous continuous positive airway pressure during one lung ventilation for thoracic surgery. Saudi J Anaesth. 2011;5:438–9.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation prediction, prevention, and treatment. Anesthesiology. 2009;110:1402–11.

    Article  PubMed  Google Scholar 

  100. Gamoso MG, Phillips-Bute B, Landolfo KP, et al. Off-pump versus on-pump coronary artery bypass surgery and postoperative renal dysfunction. Anesth Analg. 2000;91:1080–4.

    CAS  PubMed  Google Scholar 

  101. Mourisse J, Booil L. Bispectral index detects period of cerebral hypoperfusion during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17:76–8.

    Article  PubMed  Google Scholar 

  102. Sebel PS. Central venous system monitoring during open heart surgery: an update. J Cardiothorac Vasc Anesth. 1998;12:3–8.

    Article  CAS  PubMed  Google Scholar 

  103. Schachner T, Bonaros N, Bonatti J, et al. Near infrared spectroscopy for controlling the quality of distal leg perfusion in remote access cardiopulmonary bypass. Eur J Cardiothorac Surg. 2008;34:1253–4.

    Article  PubMed  Google Scholar 

  104. Sobieski MA, Slaughter MS, Hart DE, et al. Peripheral cardiopulmonary bypass with modified assisted venous drainage and transthoracic aortic crossclamp: optimal management for robotic mitral valve repair. Perfusion. 2003;18:307–11.

    Article  PubMed  Google Scholar 

  105. Bonatti J, Garcia J, Rehman A, et al. On-pump beating-heart with axillary artery perfusion: a solution for robotic totally endoscopic coronary artery bypass grafting? Heart Surg Forum. 2009;12:E131–3.

    Article  PubMed  Google Scholar 

  106. Nifong LW, Chitwood WR, Pappas PS, et al. Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129:1395–404.

    Article  PubMed  Google Scholar 

  107. Casselman F, Van Slycke S, Wellens F, et al. Mitral valve surgery can now routinely be performed endoscopically. Circulation. 2003;108 Suppl 1:II48–54.

    PubMed  Google Scholar 

  108. Greelish J, Cohn L, Leacche M, et al. Minimally invasive mitral valve repair suggests earlier operations for mitral valve disease. J Thorac Cardiovasc Surg. 2003;126:365–71.

    Article  PubMed  Google Scholar 

  109. Muhs B, Galloway A, Lombino M, et al. Arterial injuries from femoral artery cannulation with port access cardiac surgery. Vasc Endovascular Surg. 2005;39:153–8.

    Article  PubMed  Google Scholar 

  110. Kiaii B, Bainbridge D, Fernandes P. Surgical, anesthetic, perfusion-related advances in minimal access surgery. Semin Cardiothorac Vasc Anesth. 2007;11:282–7.

    PubMed  Google Scholar 

  111. Colangelo N, Torracca L, Lapenna E, et al. Vacuum-assisted venous drainage in extrathoracic cardiopulmonary bypass management during minimally invasive cardiac surgery. Perfusion. 2006;21:361–5.

    Article  PubMed  Google Scholar 

  112. Munster K, Anderson U, Mikkelsen J, et al. Vacuum assisted venous drainage (VAVD). Perfusion. 1999;14:419–23.

    Article  CAS  PubMed  Google Scholar 

  113. Tatooles AJ, Pappas PS, Gordon PJ, et al. Minimally invasive mitral valve repair using the da Vinci robotic system. Ann Thorac Surg. 2004;77:1978–84.

    Article  PubMed  Google Scholar 

  114. Cirri S, Negri L, Babbini M, et al. Haemolysis due to active venous drainage during cardiopulmonary bypass: comparison of two different techniques. Perfusion. 2001;16:313–18.

    Article  CAS  PubMed  Google Scholar 

  115. Wilcox T, Mitchell S, Gorman D. Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum-assisted drainage. Ann Thorac Surg. 1999;68:1285–9.

    Article  Google Scholar 

  116. Almany DK, Sistino JJ. Laboratory evaluation of the limitations of positive pressure safety valves on hardshell venous reservoirs. J Extra Corpor Technol. 2002;34:115–17.

    PubMed  Google Scholar 

  117. LaPietra A, Grossi EA, Pua BB, et al. Assisted venous drainage presents risk of undetected air microembolism. J Thorac Cardiovasc Surg. 2000;120:856–63.

    Article  CAS  PubMed  Google Scholar 

  118. Jones TJ, Deal DD, Vernon JC, et al. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74:2132–7.

    Article  PubMed  Google Scholar 

  119. Markus H. Transcranial Doppler detection of circulating cerebral emboli. A review. Stroke. 1993;24:1246–50.

    Article  CAS  PubMed  Google Scholar 

  120. Mathan HJ, Parlea L, Dupuis JY, et al. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: a randomized trial. J Thorac Cardiovasc Surg. 2004;127:1270–5.

    Article  Google Scholar 

  121. Colangelo N, Torracca L, Lapenna E, et al. Vacuum assisted venous drainage during peripheral cardiopulmonary bypass. Presented at the eleventh European Congress on extra-corporeal circulation technology. Orosei, Italy, 8–11 June 2005, abstract book, p. 31.

    Google Scholar 

  122. Wang S, Undar A. Vacuum-assisted venous drainage and gaseous microemboli in cardiopulmonary bypass. J Extra Corpor Technol. 2008;40:249–56.

    PubMed  Google Scholar 

  123. Carrier M, Cyr A, Voisine P, et al. Vacuum-assisted venous drainage does not increase the neurological risk. Heart Surg Forum. 2002;5:285–8.

    PubMed  Google Scholar 

  124. Nifong LW, Chitwood WR. Challenges for the anesthesiologist: robotics? Anesth Analg. 2003;96:1–2.

    PubMed  Google Scholar 

  125. Reichenspurner H, Detter C, Deuse T, et al. Video and robotic-assisted minimally invasive mitral valve surgery: a comparison of the port-access and transthoracic clamp techniques. Ann Thorac Surg. 2005;79:485–90.

    Article  PubMed  Google Scholar 

  126. Mohr FW, Falk V, Diegeler A, et al. Minimally invasive port-access mitral valve surgery. J Thorac Cardiovasc Surg. 1998;115:567–76.

    Article  CAS  PubMed  Google Scholar 

  127. Gao C, Yang M, Xiao C, et al. Robotically assisted mitral valve replacement. J Thorac Cardiovasc Surg. 2012;143:S64–7.

    Article  PubMed  Google Scholar 

  128. Gao C, Yang M, Wang G, et al. Totally endoscopic robotic atrial septal defect repair on the beating heart. Heart Surg Forum. 2010;13:E155–8.

    Article  PubMed  Google Scholar 

  129. Reichenspurner H, Boehm DH, Gulbins H, et al. Three-dimensional video and robot-assisted port-access mitral valve operation. Ann Thorac Surg. 2000;69:1176–81.

    Article  CAS  PubMed  Google Scholar 

  130. Wimmer-Greinecker G, Dzemali O, Aybek T, et al. Perfusion strategies for totally endoscopic cardiac surgery. Multimedia manual of cardiothoracic surgery 2006, October 9 (http://mmcts.ctsnetjournals.org/).

  131. Goswami S, Nishanian E, Mets B. Anesthesia for robotic surgery. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingstone; 2009. p. 2389–403.

    Google Scholar 

  132. Jones B, Krueger S, Howell D, et al. Robotic mitral valve repair: a community hospital experience. Tex Heart Inst J. 2005;32:143–6.

    PubMed Central  PubMed  Google Scholar 

  133. Webb WR, Harrison Jr LH, Helmcke FR, et al. Carbon dioxide field flooding minimizes residual intracardiac air after open heart operations. Ann Thorac Surg. 1997;64:1489–91.

    Article  CAS  PubMed  Google Scholar 

  134. Woo YJ, Nacke EA. Robotic minimally invasive mitral reconstruction yields less blood product transfusion and shorter length of stay. Surgery. 2006;140:263–7.

    Article  PubMed  Google Scholar 

  135. Toomasian J, Peters W, Siegel L, et al. Extracorporeal circulation for port-access cardiac surgery. Perfusion. 1997;12:83–91.

    Article  CAS  PubMed  Google Scholar 

  136. Toomasian J, Williams D, Colvin S, et al. Perfusion during coronary and mitral valve surgery utilizing minimally invasive port-access technology. J Extra Corpor Technol. 1997;29:67–72.

    Google Scholar 

  137. Reichenspurner H, Boehm DH, Welz A, et al. Minimally invasive coronary artery bypass grafting: port-access approach versus off-pump techniques. Ann Thorac Surg. 1998;66:1036–40.

    Article  CAS  PubMed  Google Scholar 

  138. Kernstine KH, DeArmond DT, Shamoun DM, et al. The first series of completely robotic esophagectomies with three-field lymphadenectomy: initial experience. Surg Endosc. 2007;21:2285–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Gao MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, G., Gao, C. (2014). Anesthesia for Robotic Cardiac Surgery. In: Gao, C. (eds) Robotic Cardiac Surgery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7660-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7660-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7659-3

  • Online ISBN: 978-94-007-7660-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics