Skip to main content

Overview of Robotic Cardiac Surgery

  • Chapter
  • First Online:
Robotic Cardiac Surgery

Abstract

It has been the dream of cardiac surgeons to perform cardiac procedures in the closed chest that would offer patients the same benefits as those that open-incision procedures do. The revolutionary minimally invasive surgery has certainly satisfied some of the desires of cardiac surgeons but they have never been as satisfactory as what cardiac surgical robots can ever have been.

Minimally invasive cardiac surgery has grown in popularity over the past two decades. And minimally invasive videoscope has been the most used approach. Minimally invasive techniques can provide patients with more advantages in recovery process than open procedures. The 2-D camera of endoscope causes impaired visualization, absence of the depth of the surgical field, and difficulty for complete precise manipulation by surgeons. The drive for robotic surgery is rooted in the desire to overcome the shortcomings of endoscopic surgery and expand the benefits. Robotic technology was introduced into the cardiac surgical field in 1998. AESOP (Automated Endoscopic System for Optimal Positioning) and ZEUS, two surgical robotic systems, were approved by the FDA for clinical use in 1994 and 2001 respectively. In January 1999, Intuitive launched the da Vinci Surgical System, and in 2000, it became the first robotic surgical system cleared by the FDA for general laparoscopic surgery. In the following years, the FDA cleared the da Vinci Surgical System for cardiac procedures. The robotic technique has been successfully used in atrial septal defect repair on arrest or beating heart, mitral valve repair or replacement, coronary bypass graft, myxomas resection, atrial fibrillation ablation, left ventricular epicardial lead placemen and aortic surgery. Early results are encouraging with evidence that patients experience little blood transfusion, shorter hospital stay, sooner return to preoperative function levels and improve quality of life with robotic surgery than with sternotomy. However, long-term results are needed to determine if robotic techniques could become the new standards in cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vernick W, Atluri P. Robotic and minimally invasive cardiac surgery. Anesthesiol Clin. 2013;31(2):299–320.

    Article  PubMed  Google Scholar 

  2. Reynolds Jr W. The first laparoscopic cholecystectomy. JSLS. 2001;5(1):89–94.

    PubMed Central  PubMed  Google Scholar 

  3. Mouret P. Celioscopic surgery. Evolution or revolution. Chirurgie. 1990;116(10):829–32.

    CAS  PubMed  Google Scholar 

  4. Cuschieri A, Dubois F, Mouiel J, et al. The European experience with laparoscopic cholecystectomy. Am J Surg. 1991;161(3):385–7.

    Article  CAS  PubMed  Google Scholar 

  5. Delaitre B, Testas P, Dubois F. Complications of cholecystectomy by laparoscopic approach. Apropos of 6512 cases. Chirurgie. 1992;118(1–2):92–9.

    CAS  PubMed  Google Scholar 

  6. Nocks L. The robot: the life story of a technology. Westport: Greenwood Press; 2007.

    Google Scholar 

  7. Kwoh YS, Hou J, Jonckheere EA, Hayall S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  8. Davies BL, Hibberd RD, Coptcoat MJ, Wickham JEA. A surgeon robot prostatectomy – a laboratory evaluation. J Med Eng Technol. 1989;13(6):273–7.

    Article  CAS  PubMed  Google Scholar 

  9. Cowley G. Introducing “Robodoc”. A robot finds his calling – in the operating room. Newsweek. 1992;120(21):86.

    CAS  PubMed  Google Scholar 

  10. Satava RM. Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech. 2002;12:6–16.

    Article  PubMed  Google Scholar 

  11. Marescaux J, Rubino F. The ZEUS robotic system: experimental and clinical applications. Surg Clin North Am. 2003;83(6):1305–15.

    Article  PubMed  Google Scholar 

  12. Satava RM. Robotic surgery: from past to future – a personal journey. Surg Clin North Am. 2003;83(6):1491–500.

    Article  PubMed  Google Scholar 

  13. Kypson AP, Chitwood WR. Robotic application in cardiac surgery. Int J Adv Robot Syst. 2003;1(2):87–92.

    Google Scholar 

  14. Carpentier A, Loulmet D, Aupecle B, et al. Computer assisted open heart surgery. First case operated on with success. C R Acad Sci III. 1998;321(5):437–42.

    Article  CAS  PubMed  Google Scholar 

  15. Nifong LW, Chu VF, Bailey BM, Maziarz DM, Sorrell VL, Holbert D, Chitwood Jr WR. Robotic mitral valve repair: experience with the da Vinci system. Ann Thorac Surg. 2003;75:438–42; discussion 43.

    Article  PubMed  Google Scholar 

  16. Nifong LW, Chitwood WR, Pappas PS, Smith CR, Argenziano M, Starnes VA, Shah PM. Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129:1395–404.

    Article  PubMed  Google Scholar 

  17. Reichenspurner H, Detter C, Deuse T, et al. Video and robotic-assisted minimally invasive mitral valve surgery: a comparison of the Port-Access and transthoracic clamp techniques. Ann Thorac Surg. 2005;79:485–90.

    Article  PubMed  Google Scholar 

  18. Jones B, Krueger S, Howell D, et al. Robotic mitral valve repair: a community hospital experience. Tex Heart Inst J. 2005;32:143–6.

    PubMed Central  PubMed  Google Scholar 

  19. Smith JM, Stein H, Engel AM, et al. Totally endoscopic mitral valve repair using a robotic-controlled atrial retractor. Ann Thorac Surg. 2007;84:633–7.

    Article  PubMed  Google Scholar 

  20. Lawrie G. Mitral valve: toward complete repairability. Surg Technol Int. 2006;15:189–97.

    PubMed  Google Scholar 

  21. Chu M, Gersch K, Rodriguez E, et al. Robotic ‘haircut’ mitral valve repair: posterior leaflet-plasty. Ann Thorac Surg. 2008;85:1460–2.

    Article  PubMed  Google Scholar 

  22. Smith JM, Stein H. Endoscopic placement of multiple artificial chordae with robotic assistance and nitinol clip fixation. J Thorac Cardiovasc Surg. 2008;135:610–14.

    Article  PubMed  Google Scholar 

  23. Mihaljevic T, Jarrett CM, Gillinov AM, Blackstone EH. A novel running annuloplasty suture technique for robotically assisted mitral valve repair. J Thorac Cardiovasc Surg. 2010;139:1343–4.

    Article  PubMed  Google Scholar 

  24. Mohr FW, Falk V, Diegeler A, Autschbach R. Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg. 1999;117:1212–15.

    Article  CAS  PubMed  Google Scholar 

  25. Loulmet D, Carpentier A, d’Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–10.

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava S, Gadasalli S, Agusala M, et al. Beating heart totally endoscopic coronary artery bypass. Ann Thorac Surg. 2010;89:1873–80.

    Article  PubMed  Google Scholar 

  27. Bonatti J, Schachner T, Wiedemann D, Weidinger F, et al. Factors -influencing blood transfusion requirements in robotic totally endoscopic coronary artery bypass grafting on the arrested heart. Eur J Cardiothorac Surg. 2011;39:262–7.

    Google Scholar 

  28. Eric JL, Rodriguez E, Chitwood WR. Robotic cardiac surgery. Curr Opin Anaesthesiol. 2011;24(1):77–85.

    Article  Google Scholar 

  29. Torracca L, Ismeno G, Alfieri O. Totally endoscopic computer-enhanced atrial septal defect closure in six patients. Ann Thorac Surg. 2001;72:1354–7.

    Article  CAS  PubMed  Google Scholar 

  30. Argenziano M, Oz MC, Kohmoto T, Morgan J, Dimitui J, Mongero L, Beck J, Smith CR. Totally endoscopic atrial septal defect repair with robotic assistance. Circulation. 2003;108 Suppl 1:II191–4.

    PubMed  Google Scholar 

  31. Suematsu Y, Mora B, Mihaljevic T, del Nido P. Totally endoscopic robotic-assisted repair of patent ductus arteriosus and vascular ring in children. Ann Thorac Surg. 2005;80:2309–13.

    Article  PubMed  Google Scholar 

  32. Gao C, Yang M, Wang G, Wang J, Xiao C, Wu Y, Li J. Total endoscopic robotic atrial septal defect repair on the beating heart. Heart Surg Forum. 2010;13:E155–8.

    Article  PubMed  Google Scholar 

  33. Gao C, Yang M, Wang G, et al. Totally endoscopic robotic ventricular septal defect repair. Innovations. 2010;5(4):278–80.

    PubMed  Google Scholar 

  34. Gao C, Yang M, Wang G, et al. Excision of atrial myxoma using robotic technology. J Thorac Cardiovasc Surg. 2010;139:1282–5.

    Article  PubMed  Google Scholar 

  35. Woo Y, Grand T, Weiss S. Robotic resection of an aortic valve papillary fibroelastoma. Ann Thorac Surg. 2005;80:1100–2.

    Article  PubMed  Google Scholar 

  36. Lehr EJ, Rodriguez E, Chitwood WR. Robotic cardiac surgery. Curr Opin Anaesthesiol. 2011;24(1):77–85.

    Article  PubMed  Google Scholar 

  37. Derose Jr JJ, Belsley S, Swistel DG, et al. Robotically assisted left ventricular epicardial lead implantation for biventricular pacing: the posterior approach. Ann Thorac Surg. 2004;77(4):1472–4.

    Article  PubMed  Google Scholar 

  38. Navia JL, Atik FA, Grimm RA, et al. Minimally invasive left ventricular epicardial lead placement: surgical techniques for heart failure resynchronization therapy. Ann Thorac Surg. 2005;79(5):1536–44.

    Article  PubMed  Google Scholar 

  39. Folliguet T, Vanhuyse F, Konstantinos Z, Laborde F. Early experience with robotic aortic valve replacement. Eur J Cardiothorac Surg. 2005;28:172–3.

    Article  PubMed  Google Scholar 

  40. Suri RM, Burkhart HM, Schaff HV. Robot-assisted aortic valve replacement using a novel sutureless bovine pericardial prosthesis: proof of concept as an alternative to percutaneous implantation. Innovations (Phila). 2010;5(6):419–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Gao MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, C. (2014). Overview of Robotic Cardiac Surgery. In: Gao, C. (eds) Robotic Cardiac Surgery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7660-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7660-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7659-3

  • Online ISBN: 978-94-007-7660-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics