Skip to main content

Teaching About Thermal Phenomena and Thermodynamics: The Contribution of the History and Philosophy of Science

  • Chapter
  • First Online:
International Handbook of Research in History, Philosophy and Science Teaching

Abstract

Concerning the use of history and philosophy in science teaching, the topic of thermal phenomena and thermodynamics is fertile because it relates to various epistemological and philosophical themes, which can be accessible and useful for secondary education, and its history shows interesting debates among scientists and strong relationships between science, technology and socio-economic problems. Moreover, many students’ conceptions are similar to ideas and reasoning of ancient theories, and residues of these theories are still present in current scientific language and in textbooks. The debate about the meaning and implications of the second law of thermodynamics involved broad scientific and philosophical problems. Entropy was connected with the theory of information, and thermodynamic ideas were assumed in other fields, such as economy, ecology and sociology. After a general introduction on the role of history and philosophy in science teaching, the chapter presents the main results of research on students’ conceptions and difficulties about thermal phenomena, a review of research concerning the use of history and philosophy in teaching thermodynamics and a discussion of historical and philosophical themes having valuable conceptual and cognitive implications that can be appropriate for teaching. Philosophical themes of didactic interest are discussed together with their teaching and learning implications. These themes include the meaning, interpretations and implications of the second law (irreversibility, time arrow, statistical and probabilistic laws and determinism); the relationships between macroscopic properties and microscopic structures; the nature of thermodynamics, its characteristics, language and explanations and its relationships and differences with mechanics; and the relationships between science, technology and general cultural context in the case of thermodynamics. Some case histories useful for teaching are presented, including the theories on the nature of heat; the discovery of thermal radiation, the debate on its nature and the search for its law; the calorific and frigorific rays in thermal radiation; the discovery of the second law; the history of steam engines; the Carnot cycle and its connections with caloric theory and entropy; the history of the cooling law and the definition of a good temperature scale; and the construction of the physical quantity temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Arnold and Millar (1996), Besson et al. (2010), Chiou and Anderson (2010), Clough and Driver (1985), Cochran and Heron (2006), Cotignola et al. (2002), de Berg (2008), Erickson (1979, 1980), Erickson and Tiberghien (1985), Jasien and Oberem (2002), Leinonen et al. (2009), Lewis and Linn (1994), Sciarretta et al. (1990); Shayer and Wylam (1981), Stavy and Berkovitz (1980), Wiser and Amin (2001), and Wiser and Carey (1983).

  2. 2.

    All quotations that were in French or in Italian in the original have been translated into English by the author of the present paper.

References

  • Arnold, M. & Millar, R. (1996). Learning the Scientific Story: A Case Study in the Teaching and Learning of Elementary Thermodynamics, Science Education. 80(3), 249–281.

    Article  Google Scholar 

  • Bacon, F. (1620). Novum Organum, sive indicia vera de interpretatione naturae. Edited by T. Fowler (1889) Oxford, Clarendon Press. English translation by G.W. Kitchin (1855) Oxford, University Press.

    Google Scholar 

  • Baracca, A. & Besson, U. (1990). Introduzione storica al concetto di energia. Firenze: Le Monnier.

    Google Scholar 

  • Begoray, D.L. & Stinner, A. (2005). Representing Science through Historical Drama. Science & Education, 14, 457–471.

    Google Scholar 

  • Bénard, H. (1900). Étude expérimentale du mouvement des liquides propageant de la chaleur par convection. Régime permanente, tourbillons circulaires. Comptes Rendus de l’Académie des Sciences, 130, 1004–1007.

    Google Scholar 

  • Besson, U. (2001) Work and Energy in the Presence of Friction: The Need for a Mesoscopic Analysis. European Journal of Physics, 22, 613–622.

    Article  Google Scholar 

  • Besson, U. (2003). The distinction between heat and work: an approach based on a classical mechanical model. European Journal of Physics, 24, 245–252.

    Article  Google Scholar 

  • Besson, U. (2010). Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching. Science & Education, 19(3), 225–257.

    Google Scholar 

  • Besson, U. (2011). The cooling law and the search for a good temperature scale, from Newton to Dalton. European Journal of Physics, 32(2), 343–354.

    Article  Google Scholar 

  • Besson, U. (2012). The history of cooling law: when the search for simplicity can be an obstacle. Science & Education 21(8), 1085–1110.

    Google Scholar 

  • Besson, U. (2013). Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction. Science & Education 22(5), 1001–1042.

    Article  Google Scholar 

  • Besson, U., De Ambrosis., A. and Mascheretti, P. (2010). Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, 31, 375–388.

    Google Scholar 

  • Besson, U. & De Ambrosis A. (2013). Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value. Science & Education, DOI: 10.1007/s11191-013-9592-7.

  • Biot M. (1816) Sur la loi de Newton relative à la communication de la chaleur. Bulletin de la Société Philomatique, 21–24.

    Google Scholar 

  • Black, J. (1803). Lectures on the Elements of Chemistry. Edinburgh: John Robison.

    Google Scholar 

  • Boltzmann, L. (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Part II, 66, 275–370. English translation in Brush 2003, pp. 262–349.

    Google Scholar 

  • Boltzmann, L. (1897). Zu Hrn. Zermelo’s Abhandlung “Über die mechanische Erklärung irreversibler Vorgänge”. Annalen der Physik 296(2), 392–398. English translation in Brush (2003), pp. 412–419.

    Google Scholar 

  • Brace, D.B. (1901). The Laws of Radiation and Absorption. New York: American Book Company.

    Google Scholar 

  • Brenni, P, Giatti, A. & Barbacci, S. (2009). Steam, Work, Energy. http://hipstwiki.wetpaint.com/page/Case+Study+2

  • Brush, S.G. (1976). The kind of motion we call heat. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Brush, S.G. (2003). The Kinetic Theory of Gases: An Anthology of Classic Papers with Historical Commentary. London: Imperial College Press.

    Google Scholar 

  • Callender, C. (1999). Reducing Thermodynamics to Statistics Mechanics: The Case of Entropy. The Journal of Philosophy, 96(7), 348–373.

    Article  Google Scholar 

  • Campanaro, J.M. (2002). The parallelism between scientists’ and students’ resistance to new scientific ideas. International Journal of Science Education, 24(10), 1095–1110.

    Article  Google Scholar 

  • Cardwell, D.S.L. (1971). From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age. London: Heinemann.

    Google Scholar 

  • Carnot, S. (1824–1897). Réflexions sur la puissance motrice du feu. Paris: Mallet-Bachelier. English translation: (1897) New York: John Wiley & Sons.

    Google Scholar 

  • Carey, S. (1988). Reorganisation of Knowledge in the Course of Acquisition. In S. Strauss (Ed.) Ontogeny, Phylogeny and Historical Development (pp. 1–27). Norwood: Ablex.

    Google Scholar 

  • Cassidy, D., Holton, G. & Rutherford, J. (2002). Understanding Physics. New York: Springer Verlag.

    Book  Google Scholar 

  • Chang, H. (2002). Rumford and the reflection of radiant cold: Historical reflections and metaphysical reflexes. Physics in Perspective, 4, 127–169.

    Article  Google Scholar 

  • Chang, H. (2004). Inventing Temperature: Measurement and Scientific Progress. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Chang, H. (2011). How Historical Experiments Can Improve Scientific Knowledge and Science Education: The Cases of Boiling Water and Electrochemistry. Science & Education, 20, 317–341.

    Google Scholar 

  • Chiou, Guo-Li & Anderson, O.R. (2010). A study of undergraduate physics students’ understanding of heat conduction based on mental model theory and an ontology–process analysis. Science Education, 94(5), 825–854.

    Google Scholar 

  • Clapeyron, E. (1834). Mémoire sur la Puissance motrice de la chaleur. Journal de l’École Royale Polytechnique, Tome XIV, cahier 23, 153–190.

    Google Scholar 

  • Clausius, R. (1854). Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Annalen der Physik 169(12), 481–506. English translation in Clausius (1867), pp. 111–135.

    Google Scholar 

  • Clausius, R. (1862). Über die Anwendung des Satzes von der Äquivalenz der Verwandlungen auf die innere Arbeit. Annalen der Physik 192(5), 73–112. English translation in Clausius (1867), pp. 215–250.

    Google Scholar 

  • Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik 201(7), 353–400. English translation in Clausius (1867), pp. 327–365.

    Google Scholar 

  • Clausius, R. (1867). The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies. London: Archer Hirst.

    Google Scholar 

  • Clough, E. & Driver, R. (1985). Secondary students’ conceptions of the conduction of heat: Bringing together scientific and personal views. Physics Education, 20(4), 176–182.

    Article  Google Scholar 

  • Cochran, M.J. & Heron, P.R.L. (2006). Development and assessment of research-based tutorials on heat engines and the second law of thermodynamics. American Journal of Physics, 74, 734–741.

    Article  Google Scholar 

  • Collier, J.D. (1990). Two Faces of Maxwell’s Demon Reveal the Nature of Irreversibility. Studies in the History and Philosophy of Science, 21, 257–268.

    Article  Google Scholar 

  • Conant, J.B. (1957). Harvard Case Histories in Experimental Science. Cambridge MA: Harvard University Press.

    Book  Google Scholar 

  • Cornell, E.S. (1936). Early studies in radiant heat. Annals of Science, 1(2), 217–225.

    Article  Google Scholar 

  • Cotignola, M.I., Bordogna, C., Punte, G. & Cappannini, O.M. (2002). Difficulties in Learning Thermodynamic Concepts: Are They Linked to the Historical Development of this Field? Science & Education, 11, 279–291.

    Google Scholar 

  • Dalton, J. (1808). A new system of chemical philosophy. Manchester, vol. 1, pp. 1–140.

    Google Scholar 

  • Daub, E. (1970). Maxwell’s Demon. Studies in History and Philosophy of Science, 1, 213–227.

    Article  Google Scholar 

  • Davy, H. (1799). An essay on heat, light, and the combinations of light. In J. Davy (Ed.) (1839) The collected works of H. Davy (Vol. 2, pp. 5–86). London: Smith, Elder, and Co. Cornhill.

    Google Scholar 

  • de Berg, K. C. (2008). The Concepts of Heat and Temperature: The Problem of Determining the Content for the Construction of an Historical Case Study which is Sensitive to Nature of Science Issues and Teaching-Learning Issues. Science & Education, 17, 75–114.

    Google Scholar 

  • De Filippo, G. & Mayer, M. (1991). Riflessioni sul rapporto scienza – tecnologia: le macchine termiche e la termodinamica. In C. Tarsitani & M. Vicentini (Eds), Calore, energia, entropia (pp. 95–128). Milano: Franco Angeli.

    Google Scholar 

  • Delaroche, F. (1812). Observations sur le calorique rayonnant. Journal de Physique, XXV, 201–228.

    Google Scholar 

  • Doige, C.A. & Day, T. (2012). A Typology of Undergraduate Textbook Definitions of ‘Heat’ across Science Disciplines. International Journal of Science Education, 34(5), 677–700.

    Article  Google Scholar 

  • Duhem, P. (1908). Σωζειν τα Φαινομενα, Essai sur la notion de théorie physique de Platon à Galilée. Paris: Hermann. Reprint: 1990, Paris: Vrin.

    Google Scholar 

  • Dulong, P. & Petit, A. (1817). Recherches sur les Mesures des Température set sur les Lois de la communication de la chaleur. Annales de Chimie et de Physique (Paris: Clochard), VII, 113–154, 225–264, 337–367.

    Google Scholar 

  • Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2), 221–230.

    Article  Google Scholar 

  • Erickson, G. L. (1980). Children’s viewpoints of heat: A second look. Science Education, 64(3), 323–336.

    Article  Google Scholar 

  • Erickson, G. & Tiberghien, A. (1985). Heat and temperature. In R. Driver, E. Guesne & A. Tiberghien (Eds), Children’s ideas in science (pp. 52–84). Philadelphia: Open University Press.

    Google Scholar 

  • Fourier, J. (1822). Théorie Analytique de la Chaleur. Paris: Firmin Didot Père et Fils.

    Google Scholar 

  • Haglund, J., Jeppsson, F. & Strömdahl, H. (2010). Different senses of entropy - Implications for education. Entropy, 12(3), 490–515.

    Article  Google Scholar 

  • Holton, G. (2003a). What Historians of Science and Science Educators Can Do for One Another? Science & Education, 12, 603–616.

    Google Scholar 

  • Holton, G. (2003b). The Project Physics Course, Then and Now. Science & Education, 12, 779–786.

    Google Scholar 

  • Hutton, J. (1794). A Dissertation upon the Philosophy of Light, Heat and Fire. Edinburgh & London: Cadell and Davis.

    Google Scholar 

  • Jasien, P.G. & Oberem, G.E. (2002). Understanding of elementary concepts in heat and temperature among college students and K-12 teachers. Journal of Chemical Education, 79(7), 889–895.

    Article  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.

    Article  Google Scholar 

  • Joule, J.P. & Thomson, W. (1854). On the Thermal Effects of Fluids in Motion, Part 2. Philosophical Transactions of the Royal Society, 144, 321–364.

    Article  Google Scholar 

  • Kesidou, S. & Duit, R. (1993). Students’ conceptions of the second law of thermodynamics: An interpretive study. Journal of Research in Science Teaching, 30(1), 85–106.

    Article  Google Scholar 

  • Lambert, F.L. (2002). Disorder - A cracked crutch for supporting entropy discussions. Journal of Chemical Education, 79, 187–192.

    Article  Google Scholar 

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.

    Article  Google Scholar 

  • Lavoisier, A. (1789). Traité élémentaire de chimie. Paris: Cuchet.

    Google Scholar 

  • Lavoisier, A. & Laplace, P.S. (1780). Mémoire sur la chaleur, Mémoires de l’Académie Royale des sciences (pp. 355–408). Paris: Imprimerie Royale.

    Google Scholar 

  • Lebowitz, J.L. (1999). Microscopic Origins of Irreversible Macroscopic Behavior. Physica A, 263, 516–527.

    Article  Google Scholar 

  • Leinonen, R., Rasanen, E., Asikainen, M. & Hirvonen, P. (2009). Students’ pre-knowledge as a guideline in the teaching of introductory thermal physics at university. European Journal of Physics, 30, 593–604.

    Article  Google Scholar 

  • Leite, L. (1999). Heat and temperature: An analysis of how these concepts are dealt with in textbooks. European Journal of Teacher Education, 22(1), 75–88.

    Article  Google Scholar 

  • Leslie, J. (1804). An Experimental Inquiry into the Nature and Propagation of Heat. London: J. Mawman.

    Google Scholar 

  • Lewis, E. L. & Linn, M. C. (1994). Heat and temperature concepts of adolescents, adults, and experts: Implications for curriculum improvements. Journal of Research in Science Teaching, 31(6), 657–677.

    Article  Google Scholar 

  • Loverude, M.E., Kautz, C.H. & Heron, P.R.L. (2002). Student understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70, 137–148.

    Article  Google Scholar 

  • Mäntylä, T. & Koponen, I.T. (2007). Understanding the Role of Measurements in Creating Physical Quantities: A Case Study of Learning to Quantify Temperature in Physics Teacher Education. Science & Education, 16, 291–311.

    Google Scholar 

  • Matthews, M.R. (1994). Science Teaching. The Role of History and Philosophy of Science. New York – London: Routledge.

    Google Scholar 

  • Maxwell, J.C. (1871). Theory of heat. London: Longmans, Green & Co, 10th edition 1891.

    Google Scholar 

  • Maxwell, J.C. (1875). On the dynamical evidence of the molecular constitution of bodies. Nature 4, 357–359, 374–377.

    Google Scholar 

  • Meltzer, D. (2004). Investigation of Students’ Reasoning Regarding Heat, Work, and the First Law of Thermodynamics in an Introductory Calculus-based General Physics Course. American Journal of Physics, 73, 1432–1446.

    Article  Google Scholar 

  • Metz, D. & Stinner, A. (2006). A Role for Historical Experiments: Capturing the Spirit of the Itinerant Lecturers of the 18th Century. Science & Education, doi: 10.1007/s11191-006-9016-z.

  • National Science Education Standards (1996). National Academy Press. http://www.nap.edu/catalog/4962.html.

  • Nersessian, N. J. (1995). Opening the black box: Cognitive science and the history of science. Osiris, 10(1), 194–211.

    Article  Google Scholar 

  • Newburgh, R. (2009). Carnot to Clausius: caloric to entropy. European Journal of Physics, 30, 713–728.

    Article  Google Scholar 

  • Newton, I. (1701). Scala graduum caloris, Calorum Descriptiones & Signa (Scale of the Degrees of Heat). Philosophical Transactions, 22(270), 824–829. English translation in: Newton I. (1809) Philosophical Transactions of the Royal Society of London, Abridged, 4, 572–575.

    Google Scholar 

  • Oversby, J. (2009). Temperature – what can we find out when we measure it? http://hipst.eled.auth.gr/hipst_docs/instruments.pdf

  • Piaget, J. & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.

    Google Scholar 

  • Planck, M. (1882). Verdampfen, Schmelzen und Sublimiren. Annalen der Physik 251(3), 446–475.

    Article  Google Scholar 

  • Planck, M. (1897). Vorlesungen über Thermodynamik. Leipzig: Verlag von Veit & Comp.

    Google Scholar 

  • Poisson, S.D. (1835). Théorie Mathématique de la Chaleur. Paris: Bachelier.

    Google Scholar 

  • Prigogine, I. & Stengers, I. (1988). Entre le temps et l’éternité. Paris: Fayard.

    Google Scholar 

  • Project Physics Course (1970). New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Reif, F. (1965). Berkeley Physics Course, Vol. 5, Statistical Physics. New York: McGraw-Hill.

    Google Scholar 

  • Reif, F. (1999). Thermal physics in the introductory physics course: Why and how to teach it from a unified atomic perspective. American Journal of Physics, 67, 1051–1062.

    Article  Google Scholar 

  • Rozier, S. & Viennot, L. (1991). Students’ reasoning in thermodynamics. International Journal of Science Education, 13, 159–170.

    Article  Google Scholar 

  • Sciarretta, M.R., Stilli, R. & Vicentini, M. (1990). On the thermal properties of materials: common‐sense knowledge of Italian students and teachers. International Journal of Science Education, 12(4), 369–379.

    Article  Google Scholar 

  • Seroglou, F. & Koumaras, P. (2001). The contribution of the history of physics in physics education: A review. Science & Education, 10(1), 153–172.

    Google Scholar 

  • Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379–423 and 623–656.

    Google Scholar 

  • Shayer, M. & Wylam, H. (1981). The development of the concepts of heat and temperature in 10–13 years-olds. Journal of Research in Science Teaching, 5, 419–434.

    Article  Google Scholar 

  • Stavy, R. & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64(5), 679–692.

    Article  Google Scholar 

  • Stengers, I. (1997). Thermodynamique : la réalité physique en crise. Paris: La Découverte.

    Google Scholar 

  • Styer, D.F. (2000). Insight into entropy. American Journal of Physics, 68(12), 1090–1096.

    Article  Google Scholar 

  • Stinner, A. (1995). Contextual Settings, Science Stories, and Large Context Problems: Toward a More Humanistic Science Education. Science Education, 79(5), 555–581.

    Article  Google Scholar 

  • Stinner, A. & Teichmann, J. (2003). Lord Kelvin and the Age-of-the-Earth Debate: A Dramatization. Science & Education, 12, 213–228.

    Google Scholar 

  • Stinner, A., McMillan, B., Metz, D., Jilek, J. & Klassen, S. (2003). The Renewal of case studies in Science education. Science & Education, 12, 617–643.

    Google Scholar 

  • Teixeira, E.S., Greca, I.M. & Freire, O. (2012). The History and Philosophy of Science in Physics Teaching: A Research Synthesis of Didactic Interventions. Science & Education, 21(6), 771–796.

    Google Scholar 

  • Tarsitani, C. & Vicentini, M. (1996). Scientific Mental Representations of Thermodynamics. Science & Education, 5(1), 51–68.

    Google Scholar 

  • Thomson, B. (Rumford) (1804). An enquiry concerning the nature of heat and the mode of its communication. Philosophical Transactions of the Royal Society, 94, 77–182.

    Google Scholar 

  • Thomson, W. (Kelvin) (1851). On the Dynamical Theory of Heat. Transactions of the Royal Society of Edinburgh, March 1851, 174–210. Philosophical Magazine, 4(22, 23, 24, 27) 8–21, 105–117, 168–176, 424–434.

    Google Scholar 

  • Thomson, W. (Kelvin) (1852). On a Universal Tendency in Nature to the Dissipation of Mechanical Energy. Philosophical Magazine, 4(25) 304–306.

    Google Scholar 

  • Thomson, W. (Kelvin) (1874). The Kinetic Theory of the Dissipation of Energy. Proceedings of the Royal Society of Edinburgh, 8, 325–334.

    Google Scholar 

  • Viard, J. (2005). Using the history of science to teach thermodynamics at the university level: The case of the concept of entropy. Eighth International History, Philosophy, Sociology & Science Teaching Conference, http://www.ihpst2005.leeds.ac.uk/papers/Viard.pdf

  • Viglietta, L. (1990). Efficiency in the teaching of Energy. Physics Education, 25, 317–321.

    Article  Google Scholar 

  • Wang, H.A. & Marsh, D.D. (2002). Science Instruction with a Humanistic Twist. Science & Education, 11, 169–189.

    Google Scholar 

  • Welch, W.W. (1973). Review of the research and evaluation program of Harvard Project Physics. Journal of Research in Science Teaching, 10(4), 365–378.

    Article  Google Scholar 

  • Wiebe, R. & Stinner, A. (2010). Using Story to Help Student Understanding of Gas Behavior. Interchange, 41 (4), 347–361.

    Article  Google Scholar 

  • Wiser, M. & Amin, T. (2001). “Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4), 331–355.

    Article  Google Scholar 

  • Wiser, M. & Carey, S. (1983). When heat and temperature were one. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 267–297), Hillsdale: NJ: Erlbaum.

    Google Scholar 

  • Wicken, J.S. (1981). Causal Explanations in Classical and Statistical Thermodynamics. Philosophy of Science, 48(1), 65–77.

    Article  Google Scholar 

  • Zambrano, A.C. (2005). A curricular sequence based on a historical study of conceptual change in science. Eighth International History, Philosophy, Sociology & Science Teaching Conference, http://www.ihpst2005.leeds.ac.uk/papers/Zambrano.pdf

  • Zemanski M.W. (1968). Heat and Thermodynamics. New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgements

 I wish to thank Robyn Yucel from Latrobe University, Australia, who did the copyediting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Besson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Besson, U. (2014). Teaching About Thermal Phenomena and Thermodynamics: The Contribution of the History and Philosophy of Science. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_9

Download citation

Publish with us

Policies and ethics