Skip to main content

Teaching Energy Informed by the History and Epistemology of the Concept with Implications for Teacher Education

  • Chapter
  • First Online:
International Handbook of Research in History, Philosophy and Science Teaching

Abstract

In this article, we put forward a new strategy for teaching the concept of energy. In the first section, we discuss how the concept is currently treated in educational programmes at primary and secondary level (taking the case of France), the learning difficulties that arise as well as the main teaching strategies presented in science education literature. In the second section, we argue that due to the complexity of the concept of energy, rethinking how it is taught should involve teacher training specifically developed for the concept. In our view, Epistemology and the History of Science and Technology (EHST) is the best method for a full understanding of the concept of energy and should thus be included in the teacher training programme. In the third section, we provide a general framework for a teacher training programme on energy, based on the history and epistemology of the concept and structured on the following three questions: ‘What is the origin of the concept of energy?’, ‘What is energy?’ and ‘What purpose does the concept of energy serve?’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Solomon (1982, 1983, 1985), Watts (1983), Gilbert and Watts (1983), Duit (1984), Driver and Warrington (1985), Agabra (1985, 1986), Gilbert and Pope (1986), Trellu and Toussaint (1986), Trumper (1993), Ballini et al. (1997), and Bruguière et al. (2002).

  2. 2.

    Fact sheet for Cycle 2 (basic learning in first years of primary school) and Cycle 3 (further learning in last years of primary school) (MEN 2002, p. 29)

  3. 3.

    This expression comes from Michel Hulin (1992) in his book entitled Le mirage et la nécessité: pour une redéfinition de la formation scientifique de base.

  4. 4.

    Instituts de Recherche sur l’Enseignement des Mathématiques (Research Institutes for Teaching Mathematics).

  5. 5.

    Société Française d’Histoire des Sciences et des Techniques (French Society of the History of Science and Technology).

  6. 6.

    P. J. Kennedy was professor at the University of Edinburgh.

  7. 7.

    University of New South Wales, Sydney.

  8. 8.

    The core skills are those considered essential to master by the end of compulsory education. The section dedicated to scientific and technological knowledge emphasises: ‘The presentation of the history and the development of concepts, drawing from resources in all the disciplines concerned, is an opportunity to tackle complexity: the historical perspective contributes to providing a coherent vision of science and technology as well as their joint development’ (pp. 12–13).

  9. 9.

    Secondary school teachers should be able to ‘situate their discipline(s) within its history, its epistemological issues, its didactic problems and the debates that affect it’. Framework of reference for teachers’ professional skills (extract from the decree of 19 December 2006 containing guidelines for teacher training, MEN 2007).

  10. 10.

    Several historical and epistemological studies on energy were published by scientists and/or philosophers of science at the end of the nineteenth century and the beginning of the twentieth century (e.g. Mach, Planck, Poincaré, Meyerson and Cassirer). Later, Kuhn’s (1959) article encouraged science historians to carry out new investigations on the emergence of the concept in the nineteenth century (e.g. Elkana 1974; Truesdell 1980; Hiebert 1981; Smith and Wise 1989; Caneva 1993; Smith 1998; Ghesquier-Pourcin et al. 2010). It should be noted that the history of the concept of energy over the course of the twentieth century, with the advent of the theory of relativity (special and general relativity) and of quantum mechanics, as well as the importation of the concept in many other fields (chemistry, biology, economics, arts, etc.), has not yet been well studied.

  11. 11.

    See in particular the literature indicated in Sect. 8.2.

  12. 12.

    For further information on these aspects, see the references in the previous footnote.

  13. 13.

    The inspiration here is from Papadouris and Constantinou (2011, p. 966), who ‘take the perspective that any attempt to promote students’ understanding about energy should primarily address the question ‘What is energy and why is it useful in science?’. However, we diverge from these writers’ approach on several points: we maintain that it is pertinent to include the question of the origin of the concept of energy; we suggest approaching the three questions drawing on EHST; and, lastly, we do not provide the same answers to the questions posed.

  14. 14.

    In the order of occurrence in Kuhn’s text: Mayer, Joule, Colding, Helmholtz, Carnot, Séguin, Holtzmann, Hirn, Mohr, Grove, Faraday and Liebig. This list is not meant to be exhaustive, and other scientists could be added, such as W. Thomson (Lord Kelvin) and Rankine, whose contributions came later but were no less conclusive.

  15. 15.

    By ‘metaphysical’, we mean an idea that precedes any scientific research.

  16. 16.

    It should be noted that advances in the mathematical sophistication of the laws of physics were a necessary precondition for the emergence of the principle.

  17. 17.

    See, for example, Robardet and Guillaud (1995, Chap. 3), Gil-Pérez et al. (2002, p. 563), Johsua and Dupin (2003, pp. 215–217) and Cariou (2011, pp. 84–86). A survey of teachers would be worth carrying out to corroborate this hypothesis regarding their choice of option (i).

  18. 18.

    In accordance with current terminology, one should speak of the mutual convertibility between kinetic energy and thermal energy (a form of energy, as distinct from heat, or ‘thermal transfer’, which is a mode of energy transfer).

  19. 19.

    As stressed by Caneva (1993, pp. 25–27, 46 and 323), Mayer came to this idea of the conservation of ‘force’ (an ancestor of energy) by making an analogy with the conservation of matter (the latter being still implicit in physics and chemistry at the time of Mayer and made explicit by him). This ‘guiding analogy’ can also be considered as an a priori reasoning towards the principle of conservation of energy.

  20. 20.

    Unlike momentum as it is defined today, Descartes’ ‘quantity of motion’ (quantité de mouvement) was a scalar and not a vector quantity. See Descartes (1996 [1644]).

  21. 21.

    On the controversy between Descartes and Leibniz on this point, see, e.g. Iltis (1971).

  22. 22.

    See Lavoisier (1864 [1789]).

  23. 23.

    Note that, in classical mechanics, potential energy depends only on the relative distances between the interacting bodies. Therefore, if all these interacting bodies are included in the system, the potential energy of this system no longer depends on the choice of the coordinate system.

  24. 24.

    Hertz actually rejected potential energy, emphasising the role of the kinetic energy of hidden masses.

  25. 25.

    It should also be noted that energy is equally employed in the social sciences: economics, psychology, sociology, etc. However, the meaning of the concept of energy and the uses made of it are not necessarily the same as in the physical sciences.

  26. 26.

    Chisholm (1992, p. 217) writes: ‘Energy […] produces changes.’ Bunge (2000, p. 458) identifies energy with ‘changeability’. For us, these two definitions do not adequately elucidate the idea of capacity. Doménech et al. (2007, p. 51) define energy ‘as the capacity to produce transformations’. We criticise this definition for the use of the term ‘transformation’ rather than ‘change’. The latter term is more general than the former and, in particular, can include variation in the value of a quantity (such as temperature or speed), which is not usually described as a ‘transformation’.

  27. 27.

    As observed by Roche (2003, p. 187), ‘Rankine attributes this definition to Thomson’, who ‘in 1849, in an almost casual way […] first used the term energy in print more generally to mean the amount of work any system can perform.’

  28. 28.

    In the viewpoint of current physics, it is a question of the transformation of ‘thermal energy’ into ‘mechanical energy’.

  29. 29.

    An ‘isolated system’ is defined here as a system that does not interact with its environment.

  30. 30.

    Ministère de l’éducation nationale (Ministry of education, France)

References

  • Abd-El-Khalick, F. (2001). Embedding nature of science instruction in preservice elementary science courses: abandoning scientism, but…. Journal of Science Teacher Education, 12 (2), 215–233.

    Article  Google Scholar 

  • Agabra, J. (1985). Energie et mouvement: représentations à partir de l’étude de jouets mobiles. Aster, 1, 95–113.

    Google Scholar 

  • Agabra, J. (1986). Echanges thermiques. Aster, 2, 1–41.

    Google Scholar 

  • Arons, A. (1989). Developing the Energy Concepts in Introductory Physics. The Physics Teacher, 27, 506–517.

    Article  Google Scholar 

  • Arons, A. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67(12), 1063–1067.

    Article  Google Scholar 

  • Bächtold, M. & Guedj, M. (2012). Towards a new strategy for teaching energy based on the history and philosophy of the concept of energy. In O. Bruneau, P. Grapi, P. Heering, S. Laubé, M.-R. Massa-Esteve, T. de Vittori (eds.), Innovative methods for science education: history of science, ICT and inquiry based science teaching (pp. 225–238). Berlin: Frank & Timme GmbH.

    Google Scholar 

  • Balibar, F. (2010). Energie. In D. Lecourt (ed.), Dictionnaire d’histoire et philosophie des sciences (pp. 403–408). Paris: Presses Universitaires de France.

    Google Scholar 

  • Ballini, R., Robardet, G. & Rolando, J.-M. (1997). L’intuition, obstacle à l’acquisition de concepts scientifiques : propositions pour l’enseignement du concept d’énergie en Première S. Aster, 24, 81–112.

    Article  Google Scholar 

  • Beynon, J. (1990). Some myths surrounding energy. Physics Education, 25(6), 314–316.

    Article  Google Scholar 

  • Bruguières, C., Sivade, A. & Cros, D. (2002). Quelle terminologie adopter pour articuler enseignement disciplinaire et enseignement thématique de l’énergie, en classe de première de série scientifique. Didaskalia, 20, 67–100.

    Google Scholar 

  • Brush, S. (1976). The kind of motion we call heat: a history of the kinetic theories of gases in the 19th century, Volumes I and II. Oxford: North-Holland Publishing Company.

    Google Scholar 

  • Bunge, M. (2000). Energy: between physics and metaphysics. Science & Education, 9, 457–461.

    Article  Google Scholar 

  • Caneva, K. (1993). Robert Mayer and the conservation of energy. Princeton: Princeton University Press.

    Google Scholar 

  • Cariou, J.-Y. (2011). Histoire des démarches en sciences et épistémologie scolaire. Revue de Didactique des Sciences et des Techniques, 3, 83–106.

    Google Scholar 

  • Cassirer, E. (1929 [1972]). La philosophie des formes symboliques 3: la phénoménologie de la connaissance (tr. fr.). Paris: Les éditions de Minuit.

    Google Scholar 

  • Chisholm, D. (1992). Some energetic thoughts. Physics Education, 27, 215–220.

    Article  Google Scholar 

  • Coelho, R. (2009). On the concept of energy: how understanding its history can improve physics teaching. Science & Education, 18, 961–983.

    Article  Google Scholar 

  • Cotignola, M., Bordogna, C., Punte, G., & Cappannini, O. (2002). Difficulties in learning thermodynamic concepts: are they linked to the historical development of this field? Science & Education, 11, 279–291.

    Article  Google Scholar 

  • Darrigol, O. (2001). God, waterwheels, and molecules: Saint-Venant’s anticipation of energy conservation. Historical Studies in Physical Sciences, 31(2), 285–353.

    Article  Google Scholar 

  • Descartes, R. (1996 [1644]). Les principes de la philosophie. In Œuvres de Descartes. Paris: Vrin/CNRS.

    Google Scholar 

  • Désautels, J., and Larochelle, M., (1989). Qu’est ce que le savoir scientifique? Points de vue d’adolescents et d’adolescentes. Québec: Les Presses de l’Université de Laval.

    Google Scholar 

  • Doménech, J.-L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., Trumper, R., Valdés, P. & Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16, 43–64.

    Article  Google Scholar 

  • Driver, R., Squires, A., Rushworth, P. & Wood-Robinson, V. (1994). Making sense of secondary science: research into children’s ideas. London and New York: Routledge.

    Google Scholar 

  • Driver, R. & Warrington, L. (1985). Student’s use of the principle of energy conservation in problem situation. Physics Education, 5, 171–175.

    Article  Google Scholar 

  • Duit, R. (1981). Understanding energy as conserved quantity. European Journal of Science Education, 3(3), 291–301.

    Article  Google Scholar 

  • Duit, R. (1984). Learning the energy concept in school – empirical results from the Philippines and West Germany. Physics Education, 19, 59–66.

    Article  Google Scholar 

  • Duit, R. (1987). Should energy be introduced as something quasi-material? International Journal of Science Education, 9, 139–145.

    Article  Google Scholar 

  • Einstein, A. (1905). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik, 17, 639–641.

    Article  Google Scholar 

  • Elkana, Y. (1974). The discovery of the conservation of energy. London: Hutchinson Educational LTD.

    Google Scholar 

  • Fauque, D. (2006). La longue marche d’un enseignement de l’histoire des sciences et des techniques. Tréma, 26, 35–47.

    Google Scholar 

  • Feynman, R. (1963). The Feynman lectures on physics, vol. I: mainly mechanics, radiation, and heat. California Institute of Technology.

    Google Scholar 

  • Feynman, R. (1965). The character of physical law. Cambridge (Mas.), London: MIT Press.

    Google Scholar 

  • Freuler, L. (1995). Major trends in philosophy around 1900. In M. Panza & J.-C. Pont (eds.), Les savants et l’épistémologie vers la fin du XIXè siècle (pp. 1–15). Paris: Albert Blanchard.

    Google Scholar 

  • Ghesquier-Pourcin, D., Guedj, M., Gohau, G. & Paty, M. (2010). Energie, science et philosophie, Vol. 1: l’émergence de l’énergie dans les sciences de la nature. Paris: Hermann.

    Google Scholar 

  • Gilbert, J. & Pope, M. (1986). Small group discussions about conception in science: a case study. Research in Science and Technological Education, 4, 61–76.

    Article  Google Scholar 

  • Gilbert, J. & Watts, D. (1983). Concepts, misconceptions and alternative conceptions: changing perspectives in science education. Studies in Science Education, 10, 61–98.

    Article  Google Scholar 

  • Gil-Pérez, D., Guisasola, J., Moreno, A., Cachapuz, A., Pessoa, A., Martinez-Torregrosa, J., Salinas, J., Valdés, P., Gonzalez, E., Gené, A., Dumas-Carré, A., Tricarico, H. & Gallego, R. (2002). Defending constructivism in science education, Science & Education, 11, 557–571.

    Article  Google Scholar 

  • Goldring, H. & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29, 26–31.

    Article  Google Scholar 

  • Guedj, M. (2010). Du concept de travail vers celui d’énergie: l’apport de William Thomson. In Ghesquier-Pourcin, Guedj, Gohau & Paty (2010, pp. 103–125).

    Google Scholar 

  • Hertz, H. (1894). Die Prinzipien der Mechanik: in neuen zusammenhange dargestellt. Leipzig: Barth.

    Google Scholar 

  • Heisenberg, W. (1972 [1969]). Le tout et la partie: le monde de la physique atomique (tr. fr.). Paris: Flammarion.

    Google Scholar 

  • Hiebert, E. (1981). Historical roots of the principle of conservation of energy. New York: Arno Press.

    Google Scholar 

  • Hulin, M. (1992). Le mirage et la nécessité: pour une redéfinition de la formation scientifique de base. Paris: Presses de l’École Normale Supérieure and Palais de la Découverte.

    Google Scholar 

  • Iltis, C. (1971). Leibniz and the vis viva controversy. Chicago: The University of Chicago Press.

    Google Scholar 

  • Johsua, S. & Dupin, J.-J. (2003). Introduction à la didactique des sciences et des mathématiques. Paris: Presses Universitaires de France.

    Google Scholar 

  • Joule, J. (1847). On matter, living force, and heat. Published in the Manchester Courier newspaper, May 5 and 12. Reprinted in The Scientific Papers of James Prescott Joule, Vol. 1, 1884 (pp. 265–276). Taylor & Francis.

    Google Scholar 

  • Koliopoulos, D. & Ravanis, K. (1998). L’enseignement de l’énergie au collège vu par les enseignants. Grille d’analyse de leurs conceptions. Aster, 26, 165–182.

    Google Scholar 

  • Kuhn, T. (1959). Energy conservation as an example of simultaneous discovery. In M. Clagett (ed.), Critical Problems in the History of Science (pp. 321–56). Madison (Wis.): The University of Wisconsin Press.

    Google Scholar 

  • Lavoisier, A.-L. (1864 [1789]). Traité élémentaire de chimie. In Œuvre de Lavoisier, tome premier. Paris: Imprimerie impériale.

    Google Scholar 

  • Lecourt, D. (1999). L’enseignement de la philosophie des sciences. Rapport au ministre de l’Éducation nationale, de la Recherche et de la Technologie.

    Google Scholar 

  • Lemeignan, G. & Weil-Barais, A. (1993). Construire des concepts en physique. Paris: Hachette.

    Google Scholar 

  • Levy-Leblond, J. M. (1973). (Auto)critique de la science (Textes réunis par Alain Jaubert et Jean-Marc Lévy-Leblond), Seuil.

    Google Scholar 

  • Levy-Leblond J. M. (2007). (Re)mettre la science en culture: de la crise épistémologique à l’exigence éthique. Speech at the inauguration of the Institute for Scientific Methodology (ISEM), Palermo, March 2007. Online at <http://www.i-sem.net>.

  • Mach, E. (1987 [1883]). La mécanique: exposé historique et critique de son développement (tr. fr.). Paris: Gabay, 1987.

    Google Scholar 

  • Martinand, J.-L. (1993). Histoire et didactique de la physique et de la chimie: quelles relations? Didaskalia, 2, 89–99.

    Google Scholar 

  • Matthews, M. (1994/2014). Science teaching: the role of history and philosophy of science. New York, London: Routledge.

    Google Scholar 

  • Maxwell, J.C. (1871). Theory of heat. London: Longmans, Green, and co.

    Google Scholar 

  • Mayer, J. (1842). Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie, 42, 233–240.

    Article  Google Scholar 

  • Méheut, M., Duprez, C. & Kermen, I. (2004). Approches historique et didactique de la réversibilité. Didaskalia, 25, 31–62.

    Google Scholar 

  • Meyerson, E. (1908). Identité et réalité. Paris: Alcan.

    Google Scholar 

  • Millar, D. (2005). Teaching about energy. Department of Educational Studies, research paper 2005/11. Online at <http://www.york.ac.uk/media/educationalstudies/documents/research/Paper11Teachingaboutenergy.pdf>.

  • MENFootnote

    Ministère de l’éducation nationale (Ministry of education, France)

    (2002). Fiches connaissances : cycles 2 et 3. Collection ‘Document d’application des programmes’. CNDP. Online at <http://www2.cndp.fr/archivage/valid/38285/38285-5692-5495.pdf>.

  • MEN (2007). Cahier des charges de la fomation des maîtres en Institut Universitaire de formation des maîtres. Bulletin Officiel de l’Education Nationale, spécial n°1 du 4 janvier 2007. Online at <http://www.education.gouv.fr/bo/2007/1/MENS0603181A.htm>.

  • MEN (2008a). Horaires et programmes de l’école primaire. Bulletin Officiel de l’Education Nationale, hors-série, n°3 du 19 juin 2008. Online at <http://www.education.gouv.fr/bo/2008/hs3/default.htm>.

  • MEN (2008b). Programmes du collège : programmes de l’enseignement de physique-chimie. Bulletin Officiel de l’Education Nationale, spécial n°6 du 28 août 2008. Online at <http://media.education.gouv.fr/file/special_6/52/7/Programme_physique-chimie_33527.pdf>.

  • MEN (2010a). Programmes de physique-chimie en classe de seconde générale et technologie. Bulletin Officiel de l’Education Nationale, spécial n°4 du 29 avril 2010. Online at <http://media.education.gouv.fr/file/special_4/72/9/physique_chimie_143729.pdf>.

  • MEN (2010b). Programme d’enseignement spécifique de physique-chimie en classe de première de la série scientifique. Bulletin Officiel de l’Education Nationale, spécial n°4 des 9 et 30 septembre 2010. Online at <http://www.education.gouv.fr/cid53327/mene1019556a.html>.

  • MEN (2011). Programme d’enseignement spécifique et de spécialité de physique-chimie de la série scientifique : classe terminale. Bulletin Officiel de l’Education Nationale, spécial n°8 du 13 octobre 2011. Online at <http://media.education.gouv.fr/file/special_8_men/99/0/physique_chimie_S_195990.pdf>.

  • Papadouris, N. & Constantinou, C. (2011). A philosophically informed teaching proposal on the topic of energy for students aged 11–14. Science & Education, 20, 961–979.

    Article  Google Scholar 

  • Paty, M. (2000–2001). Histoire et philosophie des sciences. Sciences Humaines, 31, 56–57.

    Google Scholar 

  • Pérez, J.-P. (2001). Thermodynamique: fondements et applications. Paris: Dunod.

    Google Scholar 

  • Pinto, R., Couso, D. & Gutierrez, R. (2004). Using research on teachers’ transformations of innovations to inform teacher education: the case of energy degradation. Science Education, 89, 38–55.

    Article  Google Scholar 

  • Planck, M. (1887). Das Prinzip der Erhaltung der Energie. Leipzig: Teubner.

    Google Scholar 

  • Poincaré, H. (1968 [1902]). La science et l’hypothèse. Paris: Flammarion.

    Google Scholar 

  • Rankine, W. (1855). Outlines of the science of energetics. The Edinburgh New Philosophical Journal, July-October 1855, Vol. II, 3, 121–141.

    Google Scholar 

  • Robardet, G. & Guillaud, J.-G. (1995). Éléments d’épistémologie et de didactique des sciences physiques: de la recherche à la pratique. Grenoble: Publications de l’IUFM de Grenoble.

    Google Scholar 

  • Roche, J. (2003). What is potential energy? European Journal of Physics, 24, 185–196.

    Article  Google Scholar 

  • Sexl, R. (1981). Some observations concerning the teaching of the energy concept. European Journal of Science Education, 3(3), 285–289.

    Article  Google Scholar 

  • Shortland, M. & Warick, A. (eds.) (1989). Teaching the History of Science, Basil Blackwell, Oxford.

    Google Scholar 

  • Smith, C. (1998). The science of energy: a cultural history of energy physics in Victorian Britain. London and Chicago: The Athlone Press.

    Google Scholar 

  • Smith, C. & Wise, N. (1989). Energy and empire: a bibliographical study of Lord Kelvin. Cambridge: Cambridge University Press.

    Google Scholar 

  • Solomon, J. (1982). How children learn about energy, or Does the first law come first? School Science Review, 63 (224), 415–422.

    Google Scholar 

  • Solomon, J. (1983). Learning about energy: how pupils think in two domains. European Journal of Science Education, 5, 49–59.

    Article  Google Scholar 

  • Solomon, J. (1985). Teaching the conservation of energy. Physics Education, 20, 165–170.

    Article  Google Scholar 

  • Summers, M. & Kruger, C. (1992). Research into English primary school teachers’ understanding on the concept of energy. Evaluation & Research in Education, 6, 95–111.

    Article  Google Scholar 

  • Thomson, W. (1851). On the dynamical theory of heat: with a numerical result deduced from Mr Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Proceedings of the Royal Society of Edinburgh, 3, 48–52.

    Google Scholar 

  • Thomson, W. (1852). On a universal tendency in nature to the dissipation of mechanical energy. Proceedings of the Royal Society of Edinburgh for April 19, 1852.

    Google Scholar 

  • Trellu, J.-L. & Toussaint, J. (1986). La conservation, un grand principe. Aster, 2, 43–87.

    Google Scholar 

  • Trumper, R. (1990). Being constructive: an alternative approach to the teaching of the energy concept, part one. International Journal of Science Education, 12(4), 343–354.

    Article  Google Scholar 

  • Trumper, R. (1991). Being constructive: an alternative approach to the teaching of the energy concept, part two. International Journal of Science Education, 13(1), 1–10.

    Article  Google Scholar 

  • Trumper, R. (1993). Children’s energy concepts: a cross-age study. International Journal of Science Education, 15, 139–148.

    Article  Google Scholar 

  • Trumper, R., Raviolo, A. & Shnersch, A. M. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training — empirical results from Israel and Argentina. Teaching and Teacher Education, 16(7), 697–714.

    Article  Google Scholar 

  • Truesdell., C. (1980). The tragicomical history of thermodynamics (1822–1854). New York, Heidelberg, Berlin: Springer.

    Google Scholar 

  • Van Huis, C. & van den Berg, E. (1993). Teaching energy: a systems approach. Physics Education, 28, 146–153.

    Article  Google Scholar 

  • Vatin, F. (2010). Travail. In D. Lecourt (ed.), Dictionnaire d’histoire et philosophie des sciences (pp. 1109–1114). Paris: Presses Universitaires de France.

    Google Scholar 

  • Watts, D. (1983). Some alternative views of energy. Physics Education, 18, 213–217.

    Article  Google Scholar 

  • Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295–297.

    Article  Google Scholar 

  • Warren, J. W. (1991). The teaching of energy. Physics Education, 26(1), 8–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bächtold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bächtold, M., Guedj, M. (2014). Teaching Energy Informed by the History and Epistemology of the Concept with Implications for Teacher Education. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_8

Download citation

Publish with us

Policies and ethics