Skip to main content

Abstract

This chapter reviews the attempts to include the history and philosophy of science (HPS) in the teaching of light and vision and the lessons learned from these attempts. This kind of curricular innovation requires special effort and draws on extensive research in learning theory and cognitive psychology and culturology, all applied to a science curriculum on light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Theory is used here in the inclusive sense of a collection of knowledge elements about reality in a particular domain. A fundamental theory in physics includes principles, laws, concepts, models, experiments, problems, practical applications, apparatus, and other elements, all conforming to the same set of basic principles. The broad structure of this knowledge will be specified below.

  2. 2.

    See, for example, Andersson and Karrqvist (1983), Beaty (1987), Bendall et al. (1993), Bouwens (1987), Boyes and Stanisstreet (1991), Colin and Viennot (2001), Colin (2001), Feher and Rice (1988, 1992), Fetherstonhaugh et al. (1987), Fetherstonhaugh and Treagust (1992), Fleer (1996), Galili (1996), Galili et al. (1993), Goldberg and McDermott (1986, 1987), Guesne (1985), Jung (1981, 1982, 1987), La Rosa et al. (1984), Langley et al. (1997), Olivieri et al. (1988), Osborne et al. (1993), Perales et al. (1989), Ramadas and Driver (1989), Reiner et al. (1995), Reiner (1992), Rice and Feher (1987), Ronen and Eylon (1993), Saxena (1991), Schnepps and Sadler (1989), Segel and Cosgrove (1993), Selley (1996a, b), Singh and Butler (1990), Stead and Osborne (1980), and Watts (1985).

  3. 3.

    See, for example, Crombie (1959, 1990), Dijksterhuis (1986), Forbes and Dijksterhuis (1963), Gliozzi (1965), Lindberg (1992), Mason (1962), Pedersen and Phil (1974), Sambursky (1959), Steneck (1976), Whittaker (1960), and Wolf (1968).

  4. 4.

    See, for example, Boyer (1987), Dijksterhuis (2004), Emmott (1961), Endry (1980), Gaukroger (1995), Hakfoort (1995), Herzberger (1966), Kipnis (1991), Lauginie (2012), Lindberg (1976, 1978, 1985, 2002), Middleton (1961, 1963), Rashed (2002), Ronchi (1970, 1991), Russell (2002), Sabra (1981, 1989, 2003), Sambursky (1958), Shapiro (1973, 1993), Smith (1996, 1999), and Westfall (1962, 1989).

  5. 5.

    See, for example, Arons (1965), Galili and Hazan (2004, 2009), Kipnis (1992), Mach (1913/1926), Taylor (1941), and Hecht (1998).

  6. 6.

    Important original texts in optics include Aristotle (1952), Bragg (1959), Descartes (1637/1965), 1998, Fresnel (1866), Goethe (1810), Huygens (1690/1912), Kepler (1610/2000), Newton (1671/1974, 1704/1952), Ross (2008), and Young (1804, 1807).

  7. 7.

    The restriction of discussions to Type-A knowledge may be connected to the positivist philosophy seemingly prevailing in science classes (e.g., Benson 1989). This approach, however, does not adequately present controversies in scientific discourse or the educational complexity in facing specific misconceptions.

  8. 8.

    The proponents of this approach quote “Those who forget the past are doomed to repeat it,” attributed to George Santayana, and “Those who fail to learn from history are doomed to repeat it,” Winston Churchill.

  9. 9.

    Lakatos (1978) considered a similar structure when he described scientific research programs. However, the contents of all areas become different when one represents the knowledge of a fundamental theory as a culture.

  10. 10.

    One may locate the laws of reflection and refraction in the nucleus of the theory (as Newton did, see in the following) or in the body of knowledge, that is, being proved basing on the principles of light path being minimal/extremal and its being reversible (as Heron and Archimedes did with reflection in the Hellenistic physics and Fermat – in the seventeenth century, with refraction). Both ways are educationally valid given that they are supported in the course of teaching-learning.

  11. 11.

    Newton’s numerical results on ray periodicity were of unprecedented accuracy for his time: for yellow-orange ray it was 1/89,000 in. (Newton 1704/1952, p. 285), well conforming to the half wavelength known today.

  12. 12.

    The quantitative account of the polarization of light was provided much later by Malus in the nineteenth century (Malus’ law), who introduced and described the polarization of light particles instead of Newton’s sides of light rays.

  13. 13.

    The list of Newton’s successes should also include the dynamic account of light behavior in the Principia and Newton’s polemics there with Descartes’ paradigm of plenum.

  14. 14.

    In the cultural approach, experiment may be affiliated to either body or periphery area within the triadic structure of theory knowledge.

  15. 15.

    See Sect. 4.5.1.

  16. 16.

    To be distinguished from the real world (the first one) and the personal world (the second one).

  17. 17.

    This simplified law of refraction can be used in teaching optical phenomena presented qualitatively (Galili and Goldberg 1996).

  18. 18.

    See Sect. 4.5.4.

  19. 19.

    See Sect. 4.5.2.

  20. 20.

    Educators may use an artistic metaphor to represent the transition from the epistemological credo of classical physics to that of the modern theories. The relief on the Nobel Prize medal for physics can be seen as representing the epistemology of classical physics, while a sketch depicting the myth of Pygmalion and Galatea may do the same for modern physics (Levrini et al. 2014; Galili 2013).

  21. 21.

    See Sect. 4.5.2.

References

  • Aristotle (1952). On the Soul. In The Works of Aristotle. Chicago: Encyclopedia Britannica, vol. 1, pp. 627–668.

    Google Scholar 

  • Aikenhead, G.S. (1997). Towards a first nations cross-cultural science and technology curriculum. Science Education, 81(2), 217–238.

    Google Scholar 

  • Aikenhead, G.S. & Jegede, O.J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. Journal of Research in Science Education, 36(3), 267–287.

    Google Scholar 

  • Andersson, B. & Karrqvist, C. (1983). How Swedish pupils, aged 12–15 years, understand light & its properties. European Journal of Science Education, 5(4), 387–402.

    Google Scholar 

  • Andreou, C. & Raftopoulos, A. (2011). Lessons from the History of the Concept of the Ray for Teaching Geometrical Optics. Science & Education, 20(10), 1007–1037.

    Google Scholar 

  • Arons, A. (1965). Development of concepts of physics. Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Atwood, R. K. & Atwood, V. A. (1996). Preservice elementary teachers’ conceptions of the causes of seasons. Journal of Research in Science Teaching, 33, 553–563.

    Google Scholar 

  • Ausubel, D.P. (1968). Educational Psychology: A Cognitive View. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Beaty, W. (1987). The origin of misconceptions in optics? American Journal of Physics, 55(10), 872–873.

    Google Scholar 

  • Bendall, S., Goldberg, F., & Galili, I. (1993). Prospective elementary teachers’ prior knowledge about light. Journal of Research in Science Teaching, 30(9), 1169–1187.

    Google Scholar 

  • Benson, G. (1989). Epistemology and Science Curriculum. Journal of Curriculum Studies 21(4), 329–344.

    Google Scholar 

  • Bevilacqua, F., Giannetto, E., & Matthews, M. (2001). Science education and culture. The contribution of history and philosophy of science. Dordrecht: Kluwer.

    Google Scholar 

  • Born, M. (1962). Einstein's Theory of Relativity. New York: Dover.

    Google Scholar 

  • Bouwens, R. (1987). Misconceptions among pupils regarding geometrical optics. In J.D. Novak (ed.), Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science & Mathematics. Ithaca: Cornell University.

    Google Scholar 

  • Boyer, C.B. (1987). The Rainbow: From Myth to Mathematics, Princeton: Princeton University Press.

    Google Scholar 

  • Boyes, E. & Stanisstreet, M. (1991). Development of Pupils’ Ideas of Hearing and Seeing-the Path of Light and Sound. Research in Science and Technology Education, 9(2), 223–244.

    Google Scholar 

  • Bragg, W. (1959). The Universe of Light. New York: Dover.

    Google Scholar 

  • Britannica Encyclopaedia (1770/1979). Edinburgh, Society of Gentlemen in Scotland, The First Edition.

    Google Scholar 

  • Bronowski, J. (1967). The Common Sense of Science. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Brush, S.G. (1974). Should the History of Science Be Rated X? Science, 183, 1164–1172.

    Google Scholar 

  • Bunge, M. (1973). Philosophy of Science. Dordrecht: Reidel.

    Google Scholar 

  • Cohen, R.M. & Drabkin, E.I. (1966). A Source Book in Greek Science. New York: McGraw-Hill Book Company, Inc.

    Google Scholar 

  • Colin, P. & Viennot, L. (2001). Using two models in optics: students’ difficulties & suggestions for teaching. American Journal of Physics, Physics Education Research Supplement, 69(7), S36–44.

    Google Scholar 

  • Colin, P. (2001). Two models in a physical situation: the case of optics. Students’ difficulties, teachers’ viewpoints and guidelines for a didactical structure. In H. Behrendt, H. Dahncke, R. Duit, W. Graeber, M. Komorek, A. Kross, P. Reiska (eds.), Research in Science Education – Past, Present & Future (pp. 241–246). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Collingwood, R.G. (1949). The Idea of Nature. Oxford: Clarendon Press.

    Google Scholar 

  • Collingwood, R.G. (1956). The Idea of History. New York: Oxford University Press.

    Google Scholar 

  • Conant, J.B. (1961). Science and Common Sense. New Haven: Yale University Press.

    Google Scholar 

  • Crombie, A.C. (1959). Medieval and Early Modern Science. New York: Doubleday Anchor Books.

    Google Scholar 

  • Crombie, A.C. (1990). Science, Optics and Music in the Medieval and Early Modern Thought. London: The Hambledon Press.

    Google Scholar 

  • Cromer, A. (1993). Uncommon Sense. New York: Oxford University Press.

    Google Scholar 

  • Cushing, J. (1994). Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. Chicago: University of Chicago Press.

    Google Scholar 

  • Cushing, J. (1998). Philosophical concepts in physics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • De Hosson, C. & Kaminski, W. (2007). Historical controversy as an educational tool: Evaluating elements of a teaching-learning sequence conducted with the text “Dialogue on the ways that vision operates”. International Journal of Science Education, 29(2), 617–642.

    Google Scholar 

  • Dedes, C. (2005). The mechanism of vision: Conceptual similarities between historical models and children’s representations. Science & Education, 14, 699–712.

    Google Scholar 

  • Descartes, R. (1637/1965). Discourse on Method, Optics, Geometry and Meteorology. Second Discourse – of Refraction. New York: Bobbs-Merrill.

    Google Scholar 

  • Descartes, R. (1998). The World and Other Writings. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Dijksterhuis, E.J. (1986). The Mechanization of the World Picture, Pythagoras to Newton. Princeton: Princeton University Press.

    Google Scholar 

  • Dijksterhuis, F.E. (2004). Lenses and Waves: Christian Huygens and the Mathematical Science of Optics in the Seventeenth Century. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • diSessa, A. (1993). Toward an epistemology of physics. Cognition & Instruction, 10, 105–225.

    Google Scholar 

  • Driver, R. & Bell, B. (1986). Students’ Thinking and the Learning of Science: A Constructivist View. School Science Review, 67, 443–456.

    Google Scholar 

  • Duhem, P. (1906/1982). The Aim and Structure of Physical Theory, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H.E. Fischer (ed.), Developing standards in research on science education (pp. 1–9). London: Taylor & Francis.

    Google Scholar 

  • Einstein, A. (1987). Letters to Solovine: 1906–1955 (May 7, 1952). New York: Open Road, Integrated Media.

    Google Scholar 

  • Emmott, W. (1961). Some Early Experiments in Physical Optics, Optician, 142 (Aug), 138–140; (Sept.) 189–193; 211–215; 296–298; (Nov) 449–456.

    Google Scholar 

  • Endry, J. (1980). Newton’s Theory of Colour. Centaurus, 23(3), 230–251.

    Google Scholar 

  • Feher, E. & Rice, K. (1988). Shadows and anti-images: children’s conception of light and vision II. Science Education, 72(5), 637–649.

    Google Scholar 

  • Feher, E. & Rice, K. (1992). Children’ s conceptions of color. Journal of Research in Science Teaching, 29(5), 505–520.

    Google Scholar 

  • Fehl, N. E. (1965). Science and Culture. Hong Kong: Chung Chi, The Chinese University of Hong Kong.

    Google Scholar 

  • Fetherstonhaugh, A., Happs, J., & Treagust, D. (1987). Student misconceptions about light: A comparative study of prevalent views found in Western Australia, France, New Zealand, Sweden and the United States. Research in Science Education, 17(1), 156–164.

    Google Scholar 

  • Fetherstonhaugh, T. & Treagust, D. (1992). Students’ Understanding of Light and its Properties: Teaching to Engender Conceptual Change. Science Education, 76(6), 653–672.

    Google Scholar 

  • Feynman, R. (1948). The Space-Time Formulation of Nonrelativistic Quantum Mechanics. Reviews of Modern Physics, 20(2), 367–387.

    Google Scholar 

  • Feynman, R. (1985). QED – The Strange Theory of Light and Matter (Lecture 2). Princeton: Princeton University Press.

    Google Scholar 

  • Fizeau, H. (1851). Sur les hypotheses relatives à l'éther lumineux, et sur une expérience qui paraît démontrer que le mouvement des corps change la vitesse avec laquelle la lumière se propage dans leur intérieur. Comptes-rendus hebdomadaires de l'Académie des sciences, 33, 349–355.

    Google Scholar 

  • Fleer, M. (1996). Early learning about light: mapping preschool children's thinking about light before, during & after involvement in a two week teaching program. International Journal of Science Education, 18(7), 819–836.

    Google Scholar 

  • Forbes, R.J. & Dijksterhuis, E.J. (1963). A History of Science and Technology. ‘Nature Obeyed and Conquered’. Baltimore: Penguin Books.

    Google Scholar 

  • Foucault, L. (1854). Sur les vitesses relatives de la lumière dans l'air et dans l'eau (On the relative Velocities of Light in Air and in Water). Annales de Chimie et de Physique, 41(3), 129–164.

    Google Scholar 

  • French, A. (1968). Special Relativity. The MIT Introductory Physics Series. New York: Norton.

    Google Scholar 

  • Fresnel, A. (1818). Lettre de M. Fresnel à M. Arago, sur l'influence du mouvement terrestre dans quelques phénomènes d'optique. Annales de Chimie et de Physique, 9(1), 57–66.

    Google Scholar 

  • Fresnel, A. (1866–70). Oeuvres complètes d’Augustin Fresnel, 3 vols. Paris: Imprimerie Impériale.

    Google Scholar 

  • Galili, I. (1996). Student’s Conceptual Change in Geometrical Optics. International Journal in Science Education, 18(7), 847–868.

    Google Scholar 

  • Galili, I. (2012). Promotion of Content Cultural Knowledge through the Use of History and Philosophy of Science, Science & Education, 21(9), 1283–1316, doi: 10.1007/s111910119376.

  • Galili, I. (2013). On the Power of Fine Arts Pictorial Imagery in Science Education in Science Education. Science & Education, doi: 10.1007/s11191-013-9593-6.

  • Galili, I. & Goldberg, F. (1996). Using a linear approximation for single-surface refraction to explain some virtual image phenomena. American Journal of Physics, 64(3), 256–264.

    Google Scholar 

  • Galili, I. & Hazan, A. (2000a). Learners’ knowledge in optics: Interpretation, structure, and analysis. International Journal in Science Education, 22(1), 57–88.

    Google Scholar 

  • Galili, I. & Hazan, A. (2000b). The influence of historically oriented course on students’ content knowledge in optics evaluated by means of facets-schemes analysis. Physics Education Research, American Journal of Physics, 68(7), S3-S15.

    Google Scholar 

  • Galili, I. & Hazan, A. (2001). Experts’ views on using history and philosophy of science in the practice of physics instruction. Science & Education, 10(4), 345–367.

    Google Scholar 

  • Galili, I. & Hazan, A. (2004). Optics – The theory of light and vision in the broad cultural approach. Jerusalem, Israel: Science Teaching Center, The Hebrew University of Jerusalem.

    Google Scholar 

  • Galili, I. & Hazan, A. (2009). Physical Optics - the theory of light in the broad cultural approach, Parts II and III (Physical Optics of Waves and the Modern Theory of Light). Jerusalem, Israel: Science Teaching Center, The Hebrew University of Jerusalem.

    Google Scholar 

  • Galili, I. & Lavrik, V. (1998). Flux concept in learning about light: A critique of the present situation. Science Education, 82, 591–613.

    Google Scholar 

  • Galili, I. & Zinn, B. (2007). Physics and art – A cultural symbiosis in physics education. Science & Education, 16(3–5), 441–460.

    Google Scholar 

  • Galili, I., Bendall, S., & Godberg, S. (1996). The effects of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching, 30(3), 271–301.

    Google Scholar 

  • Gaukroger, S. (1995). Descartes. An Intellectual Biography. Oxford: Clarendon Press.

    Google Scholar 

  • Gliozzi, M. (1965). Storia della Fisica, Vol. II. Storia della Scienze, Torino, Italy.

    Google Scholar 

  • Goethe, J. W. (1810). Zur Farbenlehre. See J. Pawlik (1974), Goethe’s Farbenlehre. Verlag Dumont Schauberg, Cologne. English translation by C.L. Eastlake (1970). Theory of Colors. Cambridge, Mass: The MIT Press.

    Google Scholar 

  • Goldberg, F. & McDermott, L.C. (1986). Student difficulties in understanding image formation by a plane mirror. Physics Teacher, 24(8), 472–480.

    Google Scholar 

  • Goldberg, F. & McDermott, L.C. (1987). An investigation of students’ understanding of the real image formed by a converging lens or concave mirror. American Journal of Physics, 55(2), 108–119.

    Google Scholar 

  • Gregory, R. L. (1979). Eye and Brain. Princeton: Princeton University Press.

    Google Scholar 

  • Grimaldi, F. M. (1665). Physico-Mathesis de lumine, coloribus, et iride. Bologna: Vittorio Bonati.

    Google Scholar 

  • Guesne, E. (1985). Light. In R. Driver, E. Guesne, & A. Tiberghien (eds.), Children’s ideas in science (pp. 11–32). Milton Keynes: Open University Press.

    Google Scholar 

  • Hakfoort, C. (1995). Optics in the Age of Euler. Conceptions of the Nature of Light, 1700–1795. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hecht, E. (1998). Optics. Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Herzberger, M. (1966). Optics from Euclid to Huygens. Applied Optics, 5(9), 1383–1393.

    Google Scholar 

  • Holton, G. (1985). Introduction to concepts and theories in physical science. Second edition revised by Brush, S.G. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Huygens, Ch. (1690/1912). Treatise on light: In which are explained the causes of that which occurs in reflection & in refraction, and particularly in the strange refraction of Iceland crystal. London: McMillan. In French: Huygens, Ch. (1992). Traité de la lumière. Paris: Dunod.

    Google Scholar 

  • Jardine, D.W. (2006). Piaget and Education. New York: Peter Lang.

    Google Scholar 

  • Jung, W. (1981). Erhebungen zu Schülervorstellungen in Optik. Physica Didactica, 8, 137.

    Google Scholar 

  • Jung, W. (1982). Ergebnisse einer Optik-Erhebung. Physica Didactica, 9, 19.

    Google Scholar 

  • Jung, W. (1987). Understanding students’ understanding: the case of elementary optics. Proceedings of the Second International Seminar: Misconceptions and Educational Strategies in Science and Mathematics, vol. 3, pp. 268–277. Ithaca: Cornell University Press.

    Google Scholar 

  • Kepler, J. (1610/2000). Optics: Paralipomena to Witelo and the Optical Part of Astronomy. Santa Fe, New Mexico: Green Lion Press.

    Google Scholar 

  • Kierkegaard, S. (1952). Gesammelte Werke. Dusseldorf, Köln, p. 1951.

    Google Scholar 

  • Kipnis, N. (1991). History of the Principle of Interference of Light. Basel: Birkhauser Verlag.

    Google Scholar 

  • Kipnis, N. (1992). Rediscovering Optics. Minneapolis: BENA Press.

    Google Scholar 

  • Kipnis, N. (1996). The historical-investigative approach to teaching science. Science & Education, 5, 277–292.

    Google Scholar 

  • Kipnis, N. (1998). A history of science approach to the nature of science: Learning science by rediscovering it. In W.F. McComas (ed.), The nature of science in science education (pp. 177–196). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Kipnis, N. (2010). Scientific errors. Science & Education, 10, 33–49.

    Google Scholar 

  • Kofka, K. (1925). The Growth of Mind (p. 44). New York: Harcourt, Brace & Co.

    Google Scholar 

  • Koyré, A. (1943). In G. Holton (1952). Introduction to Concepts and Theories in Physical Science (pp. 21–22). Reading, Mass.: Addison-Wesley.

    Google Scholar 

  • Kuhn, T. (1962/1970). The structure of the scientific revolution. Chicago: The University of Chicago Press.

    Google Scholar 

  • Kuhn, T. (1977). The Function of Measurement in Modern Physical Science. In The Essential Tension. Chicago: The University of Chicago Press.

    Google Scholar 

  • Kwan, A., Dudley, J., & Lantz, E. (2002). Who really discovered Snell’s law? Physics World, April 2002, 64.

    Google Scholar 

  • Lagrange, J.L. (1788/1938). Mechanique Analitique. Paris, Desaint.

    Google Scholar 

  • La Rosa, C., Mayer, M., Patrizi, P., & Vicentini-Missoni, M. (1984). Commonsense knowledge in optics: Preliminary results of an investigation into the properties of light. European Journal of Science Education, 6(4), 387–397.

    Google Scholar 

  • Lakatos, I. (1978). The Methodology of Scientific Research Programs. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Langley, D., Ronen, M., & Eylon, B. (1997). Light propagation and visual patterns: Pre-instruction learners’ conceptions. Journal of Research in Science Teaching, 34, 399–424.

    Google Scholar 

  • Latour, B. (1987). Science in Action. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Lauginie, P. (2012). How did Light Acquire a Velocity? Science & Education (in press).

    Google Scholar 

  • Levrini, O., Bertozzi, E., Gagliardi, M., Grimellini-Tomasini, N., Pecori, B., Tasquier, G., & Galili, I. (2014). Meeting the Discipline-Culture Framework of Physics Knowledge: An Experiment in Italian Secondary Schools. Science & Education (in press).

    Google Scholar 

  • Lindberg, D.C. (1968). The theory of pinhole images from antiquity to the thirteenth century. Archive for History of Exact Sciences, 5(2), 154–176.

    Google Scholar 

  • Lindberg, D.C. (1976). Theories of vision form Al-Kindi to Kepler. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lindberg, D.C. (1978). The Science of Optics. In D.C. Lindberg (ed.), Science in the Middle Ages (pp. 338–368). Chicago: The University of Chicago Press.

    Google Scholar 

  • Lindberg, D.C. (1985). Laying the Foundations of Geometrical Optics: Maurolico, Kepler, and the Medieval Tradition. In Discourse of Light from the Middle Ages to the Enlightenment (pp. 1–65). Los Angeles: The University of California Los Angeles.

    Google Scholar 

  • Lindberg, D.C. (1992). The Beginnings of Western Science: the European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lindberg, D.C. (2002). The Western reception of Arabic Optics. In R. Rashed (ed.). Encyclopedia of the History of Arabic Science (vol. 2, pp. 363–371). Florence, KY: Routledge.

    Google Scholar 

  • Linn, M.C., Clark, D., & Slotta, J.D. (2003). WISE Design for Knowledge Integration. Science Education 87, 517–538.

    Google Scholar 

  • Lipson, H. (1968). The Great Experiments in Physics. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Losee, J. (2001). A Historical Introduction to the Philosophy of Science. New York: Oxford University Press.

    Google Scholar 

  • Lotman, Yu. (2001). Universe of Mind. A Semiotic Theory of Culture. Great Britain: I.B. Tauris & Co.

    Google Scholar 

  • Mach, E. (1913/1926). The Principles of Physical Optics. An Historical and Philosophical Treatment. New York: Dover.

    Google Scholar 

  • Magie, W.F. (1969). Light. In A Source Book in Physics (pp. 265–386). Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Marton, F., Runesson, U., & Tsui, A.B.M. (2004). The Space of Learning. In F. Marton & A.B.M. Tsui (eds.), Classroom Discourse and the Space of Learning (pp. 3–40). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Mason, S.F. (1962). A History of the Sciences. New York: Collier Books, Macmillan.

    Google Scholar 

  • Matthews, M.R. (1989). A role for history and philosophy of science in science teaching. Interchange, 20, 3–15.

    Google Scholar 

  • Matthews, M.R. (1994). Science Teaching. The Role of History, Philosophy and Science, New York: Routledge.

    Google Scholar 

  • Matthews, M.R. (2000). Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion Can Contribute to Science Literacy. New York: Plenum Press.

    Google Scholar 

  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 114–122 and McCloskey, M. (1983), Naive Theories of Motion. In D. Genter & A.L. Stevens (eds.), Mental models (pp. 299–324). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McComas, W.F. (1998). The nature of science in science education. Dordrecht: Kluwer.

    Google Scholar 

  • McComas, W. (2005). Teaching the Nature of Science: What Illustrations and Examples Exist in Popular Books on the Subject? Paper presented at the IHPST Conference, Leeds (UK) July 15–18, 2005. http://www.ihpst2005.leeds.ac.uk/papers/McComas.pdf. Accessed 1 August, 2012.

  • McComas, W.F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.

    Google Scholar 

  • Middleton, W.E.K. (1961). Archimedes, Kircher, Buffon, and the Burning-Mirrors. Isis, 52(4), 533–543.

    Google Scholar 

  • Middleton, W.E.K. (1963). Note on the invention of photometry. American Journal of Physics, 31(2), 177181.

    Google Scholar 

  • Migdal, A.B. (1985). Niels Bohr and Quantum Physics. Soviet Physics Uspekhi, 28(10), 910–934, doi: 10.1070/PU1985v028n10ABEH003951

  • Migdal, A.B. (1990). Physics and Philosophy. Voprosi Philosophii, 1, 5–32 (In Russian).

    Google Scholar 

  • Mihas, P. (2008). Developing Ideas of Refraction, Lenses and Rainbow Through the Use of Historical Resources, Science & Education, 17(7), 751–777.

    Google Scholar 

  • Mihas, P. & Andreadis, P. (2005). A historical approach to the teaching of the linear propagation of light, shadows and pinhole cameras. Science & Education, 14, 675–697.

    Google Scholar 

  • Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg & H. Niedderer (eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 110–128). Kiel: IPN.

    Google Scholar 

  • Monk, M. & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A Model for the development of pedagogy. Science Education, 81(4), 405–424.

    Google Scholar 

  • Nersessian, N. (1989). Conceptual Change in Science and in Science Education. Synthese, 8(1), 163–183.

    Google Scholar 

  • Newton, I. (1671/1974). The new theory about light & colours. In H.S. Thyer (ed.), Newton’s philosophy of nature. New York: Hafner Press.

    Google Scholar 

  • Newton, I. (1704/1952). Opticks. New York: Dover.

    Google Scholar 

  • Newton, I. (1727/1999). Mathematical principles of natural philosophy. University of California Press, Berkeley.

    Google Scholar 

  • Newton, I. (1729/1999). Philosophiae Naturalis Principia Mathematica. Third Edition. Berkeley: University of California Press.

    Google Scholar 

  • Olivieri, G., Torosantucci, G., & Vicentini, M. (1988). Colored shadows. International Journal of Science of Education, 10(5), 561–569.

    Google Scholar 

  • Osborne, J.F., Black, P., Meadows, J., & Smith, M. (1993). Young children’s (7–11) ideas about light and their development. International Journal of Science Education, 15, 89–93.

    Google Scholar 

  • Panofsky, W.K.H. & Phillips, M. (1962). Classical Electricity and Magnetism (p. 282). Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Park, D. (1997). The fire within the eye. A historical essay on the nature and meaning of light. Princeton: Princeton University Press.

    Google Scholar 

  • Pedersen, O. & Phil, M. (1974). Early physics and astronomy. London: Macdonald & Janes.

    Google Scholar 

  • Pedrotti, L.S. & Pedrotti, F.L. (1998). Optics and Vision (pp. 1–11). Upper Saddle River, New Jersey: Prentice-Hall.

    Google Scholar 

  • Penrose, R. (1997). The Large the Small and the Human Mind. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Perales, F.J., Nievas, F., & Cervantes, A. (1989). Misconceptions on Geometric Optics and their association with relevant educational variables. International Journal of Science Education, 11, 273–286.

    Google Scholar 

  • Popper, K.R. (1965). Conjectures and Refutations: The Growth of Scientific Knowledge. New York: Harper Torchbooks.

    Google Scholar 

  • Popper, K.R. (1978). Three worlds. The Tanner Lecture on Human Values. The University of Michigan. http://www.tannerlectures.utah.edu/lectures/documents/popper80.pdf. Accessed on August 1, 2012.

  • Popper, K.R. (1981). Objective knowledge. Oxford: Clarendon Press.

    Google Scholar 

  • Ptolemy, C. (1940/1966). Refraction. In M.R. Cohen & I.E. Drabkin (eds.), A Source Book in Greek Science. New York: McGraw-Hill Book, pp. 271–281.

    Google Scholar 

  • Raftopoulos, A., Kalyfommatou, N., & Constantinou, C.P. (2005). The Properties and the Nature of Light: The Study of Newton’s Work and the Teaching of Optics. Science & Education, 14(6), 649–673.

    Google Scholar 

  • Ramadas, J. & Driver, R. (1989). Aspects of Secondary Students’ Ideas about Light. Leeds: University of Leeds, Center for Studies in Science and Mathematics Education.

    Google Scholar 

  • Rashed, R. (2002). Geometrical optics. In R. Rashed (ed.), Encyclopedia of the History of Arabic Science (vol. 2, pp. 299–324). Florence, KY: Routledge.

    Google Scholar 

  • Reiner, M. (1992). Patterns of thought on light and underlying commitments. In R. Duit, F. Goldberg & H. Niedderer (eds.), Research in Physics Learning: Theoretical Issues and Empirical Studies (pp. 99–109). Kiel: IPN.

    Google Scholar 

  • Reiner, M., Pea, R.D., & Shulman, D.J. (1995). Impact of Simulator-Based Instruction on Diagramming in Geometrical Optics by Introductory Physics Students. Journal of Science Education and Technology, 4(3), 199226.

    Google Scholar 

  • Rice, K. & Feher, E. (1987). Pinholes and images: children’s conceptions of light and vision. I. Science Education, 71(6), 629–639.

    Google Scholar 

  • Ronchi, V. (1970). The Nature of Light: An Historical Survey. London: Heinemann.

    Google Scholar 

  • Ronchi, V. (1991). Optics. The science of vision. New York: Dover.

    Google Scholar 

  • Ronen, M. & Eylon, B. (1993). To see or not to see: the eye in geometrical optics: when and how. Physics Education, 28, 52–59.

    Google Scholar 

  • Ross, J. (2008). Fermat’s Complete Correspondence on Light. Dynamis. http://science.larouchepac.com/fermat/

  • Russell, G.A. (2002). The Emergence of the Physiological Optics. In R. Rashed (ed.). Encyclopedia of the History of Arabic Science (vol. 2, pp. 325–350). Florence, KY: Routledge.

    Google Scholar 

  • Russo, L. (2004). The Forgotten Revolution: How Science Was Born in 300 BC and Why It Had to Be Reborn. Berlin: Springer Verlag.

    Google Scholar 

  • Sabra, I.A. (1981). Theories of Light. From Descartes to Newton. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sabra, I.A. (1989). The optics of ibn Al-Haytham. Books I–III, on direct vision. Translation with commentary (vol. I). London: The Warburg Institute, University of London.

    Google Scholar 

  • Sabra, I.A. (2003). Ibn Al- Haytham’s revolutionary project in optics: The achievement and the obstacle. In J.P. Hodgedijk & I. Sabra (eds.), The enterprise of science in Islam, new perspectives (pp. 85–118). Cambridge, Mass.: The MIT Press.

    Google Scholar 

  • Sambursky, S. (1958). Philoponus’ interpretation of Aristotle’s theory of light. Osiris, 13, 114–126.

    Google Scholar 

  • Sambursky, S. (1959). Physics of the stoics. London: Routledge & Kegan.

    Google Scholar 

  • Saxena, A.B. (1991). The understanding of the properties of light by students in India. International Journal of Science Education, 13, 283–290.

    Google Scholar 

  • Schnepps, M.H. & Sadler, P.M. (1989). A private universe – preconceptions that block learning [Videotape]. Cambridge, Mass.: Harvard University/Smithsonian Institution.

    Google Scholar 

  • Schwab, J.J. (1964). Problems, Topics, and Issues. In S. Elam (ed.), Education and the Structure of Knowledge (pp. 4–47). Chicago: Rand McNally.

    Google Scholar 

  • Schwab, J.J. (1978). Education and the Structure of the Discipline. In I. Westbury & N.J. Wilkof (eds.), Science, Curriculum, and Liberal Education (pp. 229–272). Chicago: The University of Chicago Press.

    Google Scholar 

  • Segel, G. & Cosgrove, M. (1993). The sun is sleeping now: early learning about light and shadows. Research in Science Education, 23(2), 276–285.

    Google Scholar 

  • Selley, N. J. (1996a). Children’s ideas on light and vision. International Journal of Science Education, 18(6), 713–723.

    Google Scholar 

  • Selley, N. J. (1996b). Towards a phenomenography of light and vision. International Journal of Science Education, 18(8), 836–845.

    Google Scholar 

  • Seroglou, F. & Koumaras, P. (2001). The contribution of the history of physics in physics education: A review. Science & Education, 10(1–2), 153–172.

    Google Scholar 

  • Shapiro, A.E. (1973). Kinematic Optics: A Study of the Wave Theory of Light in the Seventeenth Century, Archive for History of Exact Sciences, 11, 134–266.

    Google Scholar 

  • Shapiro, A.E. (1993). Fits, Passions, and Paroxysms. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Shapiro, B.L. (1994). What Children Bring to Light. New York: Teachers’ College Press.

    Google Scholar 

  • Singh, A. & Butler, P. (1990). Refraction: Conceptions and Knowledge Structure. International Journal of Science Education, 12(4), 429–442.

    Google Scholar 

  • Smith, A.M. (1982). Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of “Saving the Appearances” and its Limitations. Archive for History of Exact Sciences, 26 (3), 221–240.

    Google Scholar 

  • Smith, A.M. (1996). Ptolemy’s Theory of Visual Perception: An English Translation of the Optics with Introduction and Commentary. Transactions of the American Philosophical Society, 86(2), 1–300.

    Google Scholar 

  • Smith, A.M. (1999). Ptolemy and the Foundations of Ancient Mathematical Optics: A Source Based Guided Study, Transactions of the American Philosophical Society, 89(3), 1–172.

    Google Scholar 

  • Stead, B.F. & Osborne, R.J. (1980). Exploring science students’ conception of light. Australian Science Teaching Journal, 26(1), 84–90.

    Google Scholar 

  • Steneck, N.H. (1976). Science and Creation in the Middle Ages. South Bend: University of Notre Dame Press.

    Google Scholar 

  • Taylor, G.I. (1909). Interference fringes with feeble light. Proceedings of the Cambridge Philosophical Society, 15, 114–115.

    Google Scholar 

  • Taylor, L.W. (1941). Physics. The Pioneer Science. New York: Dover.

    Google Scholar 

  • Tseitlin, M. & Galili I. (2005). Teaching physics in looking for its self: from a physics-discipline to a physics-culture. Science & Education, 14 (3–5), 235–261.

    Google Scholar 

  • Tyndal, J. (1877). Six Lectures on Light. New York: Appleton & Co.

    Google Scholar 

  • Wandersee, J.H. (1986). Can the History of Science Help Science Educators Anticipate Students’ Misconceptions? Journal of Research in Science Teaching, 23(7), 581–597.

    Google Scholar 

  • Watts, D. M. (1985). Students’ conceptions of light: A case study. Physics Education, 20(2), 183–187.

    Google Scholar 

  • Weinberg, S. (2001). Facing Up – Science and Its Cultural Adversaries. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Westfall, R.S. (1962). The Development of Newton's Theory of Color. Isis, 53(3), 339–358.

    Google Scholar 

  • Westfall, R.S. (1989). Mechanical Science in the Construction of Modern Science (pp. 50–64). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Whittaker, E. (1960). A History of the Theories of Aether and Electricity. New York: Harper.

    Google Scholar 

  • Wolf, A. (1968). A History of Science, Technology and Philosophy in the 16th & 17th Centuries. Gloucester, Mass.: Smith.

    Google Scholar 

  • Wolpert, L. (1994). The Unnatural Nature of Science. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Young, T. (1804). Experiments and calculations relative to physical optics (The 1803 Bakerian Lecture) Philosophical Transactions of the Royal Society of London, 94, 1–16.

    Google Scholar 

  • Young, T. (1807). A Course of Lectures on Natural Philosophy and the Mechanical Arts. London: J. Johnson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igal Galili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Galili, I. (2014). Teaching Optics: A Historico-Philosophical Perspective. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_4

Download citation

Publish with us

Policies and ethics