Skip to main content

The Learner’s Understanding

  • Chapter
  • First Online:
Modelling Learners and Learning in Science Education
  • 1458 Accesses

Abstract

We all feel we know what it is to understand, and there is a good deal of research in science education on learners’ understanding of various topics. Yet research into understanding may take two very different forms. One (normative-positivistic) approach looks to evaluate the extent to which students understand concepts canonically; whereas an interpretative approach seeks to make sense of how learners themselves understand certain science topics and concepts. This chapter compares the two approaches, and explores the inherent difficulties in either kind of research given the way research techniques necessarily collect indirect data (as ‘understanding’ is not directly observable) and rely upon researchers forming their own models of scientific subject matter and/or aspects of learners’ conceptual structures. The challenges of this kind of research leave open alternative ways of interpreting data, especially where learners may seem to hold several ways of understanding the ‘same’ science concept. Key issues here are the distinction between entertaining a way of understanding, and committing to it (believing it is so); and the possibility of metaunderstanding (understanding of another’s way of understanding a target, without adopting that way of understanding the target oneself) versus multiple understanding (where several ways of understanding are held, which may be elicited in different contexts, or even sequentially in a single context).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahtee, M., & Varjola, I. (1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305–316.

    Article  Google Scholar 

  • Anderberg, E. (2000). Word meaning and conceptions. An empirical study of relationships between students’ thinking and use of language when reasoning about a problem. Instructional Science, 28, 89–113.

    Article  Google Scholar 

  • Butts, B., & Smith, R. (1987). HSC chemistry students’ understanding of the structure and properties of molecular and ionic compounds. Research in Science Education, 17(1), 192–201.

    Article  Google Scholar 

  • Camacho, F. F., & Cazares, L. G. (1998). Partial possible models: An approach to interpret students’ physical representations. Science Education, 82(1), 15–29.

    Article  Google Scholar 

  • Changeux, J.-P. (1983/1997). Neuronal man: The biology of mind (L. Garey, Trans.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Chapanis, N. P., & Chapanis, A. (1964). Cognitive dissonance. Psychological Bulletin, 61(1), 1–22. doi:10.1037/h0043457.

    Article  Google Scholar 

  • Chomsky, N. (1999). Form and meaning in natural languages. In M. Baghramian (Ed.), Modern philosophy of language (pp. 294–308). Washington, DC: Counterpoint.

    Google Scholar 

  • Dent, N. (1995). Normative. In T. Honderich (Ed.), The Oxford companion to philosophy (p. 626). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Drever, J., & Wallerstein, H. (Eds.). (1964). The Penguin dictionary of psychology (Rev. ed.). Harmondsworth, UK: Penguin Books.

    Google Scholar 

  • Driver, R., & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.

    Article  Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633.

    Article  Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (Eds.). (2009). Multiple representations in chemical education. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Article  Google Scholar 

  • Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. European Journal of Science Education, 7(2), 107–120.

    Article  Google Scholar 

  • Glasersfeld, E. v. (1989). Cognition, construction of knowledge, and teaching. Synthese, 80(1), 121–140.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Johnson-Laird, P. N. (2003a). Illusions of understanding. In A. J. Sanford (Ed.), The nature and limits of human understanding (pp. 3–25). London: T&T Clark Ltd.

    Google Scholar 

  • Karmiloff-Smith, A. (1996). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kitchener, R. F. (1987). Genetic epistemology, equilibration and the rationality of scientific change. Studies in History and Philosophy of Science Part A, 18(3), 339–366. doi:10.1016/0039-3681(87)90024-0.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 114–122.

    Article  Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O'Sullivan, C. Y., Arora, A., & Erberber, E. (2005). TIMSS 2007 assessment frameworks. Chestnut Hill, MA: International Association for the Evaluation of Educational Achievement/TIMSS & PIRLS International Study Center.

    Google Scholar 

  • Newton, D. P. (2000). Teaching for understanding: What it is and how to do it. London: RoutledgeFalmer.

    Google Scholar 

  • Nickerson, R. S. (1985). Understanding. American Journal of Education, 93(2), 201–239.

    Article  Google Scholar 

  • OECD. (2007). PISA 2006 science competencies for tomorrow’s world (Analysis, Vol. 1). Paris: Organisation for Economic Cooperation and Development.

    Book  Google Scholar 

  • Palmer, D. (1997). The effect of context on students’ reasoning about forces. International Journal of Science Education, 19(16), 681–696. doi:10.1080/0950069970190605.

    Article  Google Scholar 

  • Piaget, J. (1970/1972). The principles of genetic epistemology (W. Mays, Trans.). London: Routledge & Kegan Paul.

    Google Scholar 

  • Pope, M. L., & Denicolo, P. (1986). Intuitive theories – A researcher’s dilemma: Some practical methodological implications. British Educational Research Journal, 12(2), 153–166.

    Article  Google Scholar 

  • Smith, E. L. (1991). A conceptual change model of learning science. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science (pp. 43–63). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Solomon, J. (1992). Getting to know about energy – In school and society. London: Falmer Press.

    Google Scholar 

  • Taber, K. S. (1997). Student understanding of ionic bonding: Molecular versus electrostatic thinking? School Science Review, 78(285), 85–95.

    Google Scholar 

  • Taber, K. S. (2000a). Finding the optimum level of simplification: The case of teaching about heat and temperature. Physics Education, 35(5), 320–325.

    Article  Google Scholar 

  • Taber, K. S. (2001a). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2(2), 123–158.

    Google Scholar 

  • Taber, K. S. (2001b). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731–753.

    Article  Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S., & Tan, K. C. D. (2011). The insidious nature of ‘hard core’ alternative conceptions: Implications for the constructivist research programme of patterns in high school students’ and pre-service teachers’ thinking about ionisation energy. International Journal of Science Education, 33(2), 259–297. doi:10.1080/09500691003709880.

    Article  Google Scholar 

  • Taber, K. S., Tsaparlis, G., & Nakiboğlu, C. (2012). Student conceptions of ionic bonding: Patterns of thinking across three European contexts. International Journal of Science Education, 1–31. doi:10.1080/09500693.2012.656150.

  • Thagard, P. (1992). Conceptual revolutions. Oxford, UK: Princeton University Press.

    Google Scholar 

  • Toulmin, S., & Goodfield, J. (1962/1999). The fabric of the heavens: The development of astronomy and dynamics. Chicago: University of Chicago Press.

    Google Scholar 

  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159–169. doi:10.1080/0950069880100204.

    Article  Google Scholar 

  • Watts, M., & Gilbert, J. K. (1983). Enigmas in school science: Students’ conceptions for scientifically associated words. Research in Science and Technological Education, 1(2), 161–171.

    Article  Google Scholar 

  • Watts, M., & Zylbersztajn, A. (1981). A survey of some children’s ideas about force. Physics Education, 16(6), 360–365.

    Article  Google Scholar 

  • White, R. T., & Gunstone, R. F. (1992). Probing understanding. London: Falmer Press.

    Google Scholar 

  • Witzig, S. B., Halverson, K. L., Siegel, M. A., & Freyermuth, S. K. (2011). The interface of opinion, understanding and evaluation while learning about a socioscientific issue. International Journal of Science Education, 1–25. doi:10.1080/09500693.2011.600351.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). The Learner’s Understanding. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_6

Download citation

Publish with us

Policies and ethics