Skip to main content

Models of Cognitive Development

  • Chapter
  • First Online:
Book cover Modelling Learners and Learning in Science Education
  • 1533 Accesses

Abstract

The chapter considers well known models of cognitive, intellectual and moral development to consider what research suggests about the affordances and limitations of the human cognitive apparatus in learners of different ages. All these various studies converge on the notion that thinking skills develop over time, suggesting that many learners, especially school-age learners, may not be capable of readily demonstrating the types of thinking which may be necessary to fully engage with teachers’ expectations in science lessons, particularly in terms of epistemological sophistication. The relevance of ‘post-formal’ thinking is recognised to be especially important in relation to science teaching concerned with socio-scientific issues and the nature of science. The chapter also revisits the notion of knowledge domains in relation to areas of cognition that are widely mooted as having a strong evolutionary basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlin, P. K. (1975). Cognitive development in adulthood: A fifth stage? Developmental Psychology, 11(5), 602–606.

    Article  Google Scholar 

  • Ashton-Jones, E., & Thomas, D. K. (1990). Composition, collaboration, and women’s ways of knowing: A conversation with Mary Belen. Journal of Advanced Composition, 10(2), 275–292.

    Google Scholar 

  • Biesta, G. J. J., & Burbules, N. C. (2003). Pragmatism and educational research. Lanham, MD: Rowman & Littlefield Publishers.

    Google Scholar 

  • Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139–172.

    Article  Google Scholar 

  • Bruner, J. S. (1960). The process of education. New York: Vintage Books.

    Google Scholar 

  • Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1–15.

    Article  Google Scholar 

  • Bruner, J. S. (1967a). On cognitive growth. In J. S. Bruner, R. Oliver, R. P. M. Greenfield, J. R. Hornesby, H. J. Kenney, M. Maccoby, N. Modiano, F. A. Mosher, D. R. Oslon, M. C. Potter, L. M. Reich, & A. M. Sonstroem (Eds.), Studies in cognitive growth: A collaboration at the Centre for Cognitive Studies (pp. 1–29). New York: Wiley.

    Google Scholar 

  • Bruner, J. S. (1967b). Preface. In J. S. Bruner, R. Oliver, R. P. M. Greenfield, J. R. Hornesby, H. J. Kenney, M. Maccoby, N. Modiano, F. A. Mosher, D. R. Oslon, M. C. Potter, L. C. Reich, & A. M. Sonstroem (Eds.), Studies in cognitive growth: A collaboration at the Centre for Cognitive Studies (pp. vii–xv). New York: Wiley.

    Google Scholar 

  • Clinchy, B., & Zimmerman, C. (1985). Growing up intellectually: Issues for college women. Wellesley, MA: Wellesley Centers for Women, Wellesley College.

    Google Scholar 

  • Commons, M. L., Richards, F. A., & Armon, C. (Eds.). (1984). Beyond formal operations: Late adolescent and adult cognitive development. New York: Praeger.

    Google Scholar 

  • Crain, W. (1992). Theories of development: Concepts and applications (3rd ed.). London: Prentice-Hall International.

    Google Scholar 

  • Demetriou, A., & Mouyi, A. (2011). Processing efficiency, representational capacity, and reasoning: Modelling their dynamic interactions. In P. Barrouillet & V. Gaillard (Eds.), Cognitive development and working memory: A dialogue between neo-Piagetian theories and cognitive approaches (pp. 69–103). Hove, UK: Psychology Press.

    Google Scholar 

  • Donaldson, M. (1978). Children’s minds. London: Fontana.

    Google Scholar 

  • Driver, R. (1983). The pupil as scientist? Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Eastwood, J. L., Schlegel, W. M., & Cook, K. L. (2011). Effects of an interdisciplinary program on students' reasoning with socioscientific issues and perceptions of their learning experiences. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 89–126). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Elkind, D., & Flavell, J. H. (Eds.). (1969). Studies in cognitive development: Essays in honor of Jean Piaget. New York: Oxford University Press.

    Google Scholar 

  • Finster, D. C. (1991). Developmental instruction: Part 2. Application of Perry’s model to general chemistry. Journal of Chemical Education, 68(9), 752–756.

    Article  Google Scholar 

  • Flavell, J. H. (1963). The developmental psychology of Jean Piaget (Students’ paperback ed.). London: D Van Nostrand Company.

    Google Scholar 

  • Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor, J. A. (1985). Précis of the modularity of mind. The Behavioral and Brain Sciences, 8(01), 1–5. doi:10.1017/S0140525X0001921X.

    Google Scholar 

  • Gardner, H. (1993). Frames of mind: The theory of multiple intelligences (2nd ed.). London: Fontana.

    Google Scholar 

  • Gelman, S. A. (2009). Learning from others: Children’s construction of concepts. Annual Review of Psychology, 60(1), 115–140. doi:10.1146/annurev.psych.59.103006.093659.

    Article  Google Scholar 

  • Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. European Journal of Science Education, 7(2), 107–120.

    Article  Google Scholar 

  • Glasersfeld, E. v. (1989). Cognition, construction of knowledge, and teaching. Synthese, 80(1), 121–140.

    Article  Google Scholar 

  • Hirschfeld, L., & Gelman, S. A. (1994a). Towards a topography of mind: An introduction to domain specificity. In L. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 3–35). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Hirschfeld, L., & Gelman, S. A. (Eds.). (1994b). Mapping the mind: Domain specificity in cognition and culture. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.

    Article  Google Scholar 

  • Kaiser, M. K., McCloskey, M., & Proffitt, D. R. (1986). Development of intuitive theories of motion: Curvilinear motion in the absence of external forces. Developmental Psychology, 22(1), 67–71. doi:10.1037/0012-1649.22.1.67.

    Article  Google Scholar 

  • Keil, F. C. (1992). Concepts, kinds and cognitive development. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kohlberg, L. (1973). Stages and aging in moral development – Some speculations. The Gerontologist, 13(4), 497–502. doi:10.1093/geront/13.4.497.

    Article  Google Scholar 

  • Kohlberg, L., & Hersh, R. H. (1977). Moral development: A review of the theory. Theory into Practice, 16(2), 53–59. doi:10.1080/00405847709542675.

    Article  Google Scholar 

  • Kramer, D. A. (1983). Post-formal operations? A need for further conceptualization. Human Development, 26, 91–105.

    Article  Google Scholar 

  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16–46.

    Article  Google Scholar 

  • Lawson, A. E. (1985). A review of research on formal reasoning and science teaching. Journal of Research in Science Teaching, 22(7), 569–617.

    Article  Google Scholar 

  • Levinson, R. (2007). Teaching controversial socio-scientific issues to gifted and talented students. In K. S. Taber (Ed.), Science education for gifted learners (pp. 128–141). London: Routledge.

    Google Scholar 

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Medin, D. L., & Scott, A. (Eds.). (1999). Folkbiology. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Modgil, S. (1974). Piagetian research: A handbook of recent studies. Windsor, UK: NFER Publishing.

    Google Scholar 

  • Morton, J. B., & Munakata, Y. (2002). Active versus latent representations: A neural network model of perseveration, dissociation, and decalage. Developmental Psychobiology, 40(3), 255–265. doi:10.1002/dev.10033.

    Article  Google Scholar 

  • Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Piaget, J. (1932/1977). The moral judgement of the child. Harmondsworth, UK: Penguin Books.

    Google Scholar 

  • Piaget, J. (1970/1972). The principles of genetic epistemology (W. Mays, Trans.). London: Routledge & Kegan Paul.

    Google Scholar 

  • Piaget, J. (1972). Psychology and epistemology: Towards a theory of knowledge (P. A. Wells, Trans.). Harmondsworth, UK: Penguin.

    Google Scholar 

  • Sadler, T. D. (Ed.). (2011). Socio-scientific issues in the classroom: Teaching, learning and research (Vol. 39). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Sadler, T. D., Klosterman, M. L., & Topcu, M. S. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 45–77). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Shayer, M., & Adey, P. (1981). Towards a science of science teaching: Cognitive development and curriculum demand. Oxford, UK: Heinemann Educational Books.

    Google Scholar 

  • Sternberg, R. J. (1980). Factor theories of intelligence are all right almost. Educational Researcher, 9(8), 6–13 + 18.

    Google Scholar 

  • Sternberg, R. J. (2009a). A balance theory of wisdom. In J. C. Kaufman & E. L. Grigorenko (Eds.), The essential Sternberg: Essays on intelligence, psychology and education (pp. 353–375). New York: Springer.

    Google Scholar 

  • Sternberg, R. J. (2009b). Sketch of a componential subtheory of human intelligence. In J. C. Kaufman & E. L. Grigorenko (Eds.), The essential Sternberg: Essays on intelligence, psychology and education (pp. 3–31). New York: Springer.

    Google Scholar 

  • Sugarman, S. (1987). Piaget’s construction of the child’s reality. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sutherland, P. (1992). Cognitive development today: Piaget and his critics. London: Paul Chapman Publishing.

    Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S. (Submitted b). Representing evolution in science education: The challenge of teaching about natural selection. In B. Akpan (Ed.), Science education: A global perspective.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). Models of Cognitive Development. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_14

Download citation

Publish with us

Policies and ethics