Skip to main content

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 9))

  • 1071 Accesses

Abstract

Determination of the details of how consciousness evolved in living systems is still to be achieved. In this chapter we take an approach to this problem through the evolution of the mechanism of attention across the animal kingdom. This is natural since one must attend to a stimulus in normal viewing conditions in order to be conscious of it. The present understanding of attention in primates, using single cell and fMRI results is shown to lead to a control approach which we suggest evolves through four stages to an extended form of ballistic attention control; a similar sequential approach was already discussed in Chap. 5, although will take a slightly different form here due to the approach trying to keep to an evolutionary path rather than purely a functional one. The final step in either path is to be finally extended for humans by addition, we propose (on the basis of the CODAM architecture) of a corollary discharge signal of that for the movement of the focus of attention, as developed in Chap. 6. It is suggested that this is the final (fifth) stage in the evolution of attention, with consciousness as a concomitant of the corollary discharge signal itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen C (2009) Animal consciousness. Stanford Encyclopedia of Philosophy (online)

    Google Scholar 

  • Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6(1):47–51

    Article  PubMed  Google Scholar 

  • Baars B (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150:45–53

    Article  PubMed  Google Scholar 

  • Bajer B, Dieterich M, Stoeter P, Birklein F, Muller NG (2010) Anatomical correlates of impaired covert visual attention processed in patients with Cerebellum lesions. J Neurosci 2010(10):3770–3776

    Google Scholar 

  • Bressler S, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Buller J (2009) Evolution of the mind: 4 fallacies of psychology. Scientific American

    Google Scholar 

  • Butler AB (2008) Evolution of brains, cognition and consciousness. Brain Res Bull 75:442–449

    Article  PubMed  Google Scholar 

  • Chalmers D (1996) The conscious mind: in search of a fundamental theory. Oxford University Press, Oxford

    Google Scholar 

  • Cochran G, Harpending H (2009) The 10,000 year explosion: how civilisation accelerated human evolution. Basic Books, New York

    Google Scholar 

  • Corbetta M, Patel G, Shulman G (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (2004, 1871) The descent of man and selection in relation to sex. Penguin Classics, New York

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Erwin HR (2009) M-Systems and consciousness. CASA’09, Liege, Belgium, 3–8 Aug 2009

    Google Scholar 

  • Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32(9):478–484

    Google Scholar 

  • Erwin HR, Wilson WW (2001) A computational sensorimotor model of bat echolocation. J Acoust Soc Am 110(2):1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:298–304

    Google Scholar 

  • Fragopanagos N, Kockelkoren S, Taylor JG (2005) A neurodynamic model of the attentional blink. Cogn Brain Res 24:568–586

    Article  Google Scholar 

  • Fragopanagos N, Cristescu T, Goolsby B, Kiss M, Eimer M, Nobre AC, Raymond JE, Shapiro KL, Taylor JG (2009) Modelling distracter devaluation (DD) and its neurophysiological correlates. Neurospychologia 47:2354–2366

    Article  Google Scholar 

  • Gangestad SW, Simpson JA (2007) The evolution of mind: fundamental questions and controversies. Guilford Press, New York

    Google Scholar 

  • Geary DC (2004) Evolution and cognitive development. In: Burgess R, MacDonald K (eds) Evolutionary perspectives on human development. Sage Publications, Thousand Oaks, pp99–133

    Google Scholar 

  • Hilgetag CC, Lomber SG, Payne BR (2001) Neural mechanisms of spatial attention in the cat. Neurocomputing 38–40:1281–1287

    Article  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a models for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Husain M, Nachev P (2006) Space and the parietal cortex. Trends Cogn Neurosci 11(1):30–36

    Article  Google Scholar 

  • Jaynes J (1976) The origin of consciousness in the breakdown of the bicameral mind. Princeton University Press, Princeton

    Google Scholar 

  • Jerison HJ (2006) Evolution of the frontal lobes. In: Miller BL, Cummings JL (eds) The human frontal lobes: functions and disorders, 2nd edn. Guilford Press, New York, pp 107–118

    Google Scholar 

  • Jerison HJ (2007) Evolution of the frontal lobes. In: Miller BL, Cummings JL (eds) The human frontal lobes. Guilford Press, New York

    Google Scholar 

  • Klein HG (1989) The human career: human biological and cultural origins. Chicago University Press, Chicago

    Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    PubMed  CAS  Google Scholar 

  • Levine J (1983) Materialism and Qualia: the explanatory gap. Pac Philos Quart 64:354–361

    Google Scholar 

  • Lewis-Williams D (2002) The mind in the cave. Thames & Hudson, London

    Google Scholar 

  • Li Z, Dayan P (2006) Pre-attentive visual selection. Neural Netw 19(9):1437–1439

    Article  CAS  Google Scholar 

  • Nagel T (1974) What is it like to be a bat? Philos Rev 83:434–450

    Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190(4):307–337

    CAS  Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756

    Article  PubMed  Google Scholar 

  • Reynolds GD, Richards JE (2008) Attention and early brain development. In: Tremblay RE, Barr RG, Peters RDV, Boivin M (eds) Encyclopedia on early childhood development [online]. Centre of Excellence for Early Childhood Development, Montreal, pp 1–5

    Google Scholar 

  • Sumner P, Adamjee T, Mollon J (2002) Signals invisible to the collicular and magnocellular pathways can capture visual attention. Current Biology 12(15):1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Taylor JG (2000) A control model for attention and consciousness. Soc Neurosci Abstr 26, 2231#839.3

    Google Scholar 

  • Taylor JG (2002a) Paying attention to consciousness. Trends Cogn Sci 6(5):206–210

    Article  PubMed  Google Scholar 

  • Taylor JG (2002b) From matter to mind. J Consciousness Stud 6:3–22

    Google Scholar 

  • Taylor JG (2007) CODAM: a model of attention leading to the creation of consciousness. Scholarpedia 2(11):1598

    Article  Google Scholar 

  • Taylor JG (2010a) The creativity effect: consciousness versus attention. In: The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, IEEE, pp 1–8, 18–23 July 2010

    Google Scholar 

  • Taylor JG (2010b) Consciousness versus attention. In: International conference on artificial neural networks; artificial neural networks – ICANN 2010. Lecture Notes in Computer Science, vol 6354, pp 496–503

    Google Scholar 

  • Taylor JG (2010c) The I’s eye view of its consciousness. J Consciousness Stud 17(1/2):95–117

    Google Scholar 

  • Taylor JG (2010d) A neural model of the loss of self in schizophrenia. Schizoph Bull (on-line: 23 April 2010)

    Google Scholar 

  • Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci 102(10):3576–3580

    Article  PubMed  CAS  Google Scholar 

  • Woodman GF, Kang M-S, Rossi AF, Schall JD (2007) Nonhuman primate event-related potentials indexing covert shifts of attention. Proc Natl Acad Sci U S A 104(38):15111–15116

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chun M-M (2006) Dissociable neural mechanisms supporting visual short-term memory. Nature 440:91–95

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taylor, J.G. (2013). The Evolution of Human Consciousness. In: Solving the Mind-Body Problem by the CODAM Neural Model of Consciousness?. Springer Series in Cognitive and Neural Systems, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7645-6_12

Download citation

Publish with us

Policies and ethics