Skip to main content

History of Diphtheria Vaccine Development

  • Chapter
  • First Online:
Book cover Corynebacterium diphtheriae and Related Toxigenic Species

Abstract

Diphtheria was a major cause of death among children until the beginning of the nineteenth century. The introduction in the 1920s of formaldehyde-detoxified diphtheria toxin for mass immunization, led to the control of diphtheria that is considered to be the first conquest of vaccination. Pioneering scientific discoveries were the isolation of Corynebacterium diphtheriae and of the secreted toxin responsible for disease, diphtheria toxin. The simultaneous progress on bacteriology and immunology brought to the development of detoxified toxins as safe and efficacious subunit vaccines that are still used in current vaccines. In this chapter we will review the main scientific breakthroughs that led to the development of the first vaccine against diphtheria and to the control of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ada G, Isaacs D (2003) Carbohydrate–protein conjugate vaccines. Clin Microbiol Infec 9(2):79–85

    Article  CAS  Google Scholar 

  • Baker JP (2000) Immunization and the American way: 4 childhood vaccines. Am J Public Health 90(2):199–207

    Article  PubMed  CAS  Google Scholar 

  • Bayne-Jones S (1924) The titration of diphtheria toxin and antitoxin by Ramon’s flocculation method. J Immunol 9(6):481–504

    CAS  Google Scholar 

  • Behring E (1890) Untersuchungen uber das zustandekommen der diphtherie-immunitat bei theiren. Deut Med Wochenschr 16:1145–1148

    Article  Google Scholar 

  • Behring E (1901) The Nobel prize in physiology or medicine 1901. Nobelprize.org. Nobel Media AB 2013. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1901/

  • Bergamini M, Fabrizi P, Pagani S, Grilli A, Severini R, Contini C (2000) Evidence of increased carriage of Corynebacterium spp. in healthy individuals with low antibody titres against diphtheria toxoid. Epidemiol Infect 125(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Bisgard KMK, Rhodes PP, Hardy IRI, Litkina ILI, Filatov NNN, Monisov AAA, Wharton MM (2000) Diphtheria toxoid vaccine effectiveness: a case-control study in Russia. J Infect Dis 181(Suppl 1):S184–S187

    Google Scholar 

  • Bloomberg MW, Fleming AG (1927) Diphtheria immunization with diphtheria toxoid (anatoxin-ramon). Can Med Assoc J 17(7):801–803

    PubMed  CAS  Google Scholar 

  • Borrow R, Dagan R, Zepp F, Hallander H, Poolman J (2011) Glycoconjugate vaccines and immune interactions, and implications for vaccination schedules. Expert Rev Vaccines 10(11):1621–1631

    Article  PubMed  CAS  Google Scholar 

  • Bröker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R (2011) Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 39(4):195–204

    Article  PubMed  Google Scholar 

  • Caulfield E (1939) The “Throat Distemper” of 1735–1740: part II. Yale J Biol Med 11(4):277–335

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (1995) Diphtheria epidemic–New independent states of the former Soviet Union, 1990–1994. MMWR. Morb Mortal Wkly Rep 44(10):177–181

    Google Scholar 

  • Chalmers I (2001) Comparing like with like: some historical milestones in the evolution of methods to create unbiased comparison groups in therapeutic experiments. Int J Epidemiol 30(5):1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357(6375):216–222

    Article  PubMed  CAS  Google Scholar 

  • Christenson B (1986) Is diphtheria coming back? Ann Clin Res 18(2):69–70

    PubMed  CAS  Google Scholar 

  • Clements C, Griffiths E (2002) The global impact of vaccines containing aluminium adjuvants. Vaccine 20:S24–S33

    Google Scholar 

  • Collier RJ (1967) Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol 25(1):83–98

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ (1996) A tribute to Pap. In: Frandsen PL, Alouf JE, Falmagne P et al (ed) Bacterial Protein Toxins. Gustav Fischer Verlag-Stuttgart-Jena, New York, pp 1–4

    Google Scholar 

  • Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39(11):1793–1803

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ, Pappenheimer AM (1964) Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J Exp Med 120:1019–1039

    Article  PubMed  CAS  Google Scholar 

  • Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 6(10):1045–1066

    Article  PubMed  CAS  Google Scholar 

  • de Kruif P (1926) Microbe hunters, 1996 Ed. Harcourt, Inc

    Google Scholar 

  • Dolman C (1973) The Donald T. Fraser Memorial Lecture, 1973. Landmarks and pioneers in the control of diphtheria. Can J Public Health 64(4):317–336

    PubMed  CAS  Google Scholar 

  • Ebisawa I (1987) The encounter of Gaston Ramon (1886–1963) with formalin: a biographical study of a great scientist. Kitasato Arch Exp Med 60(3):55–70

    PubMed  CAS  Google Scholar 

  • Ebisawa I (1996) Three to four instead of one millilitre of formalin. Vaccine 14(3):247

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1897) Die wertbemessung des diphtherieheilserums und deren theoretische grundlagen. In, vol 6. Klinisches Jahrbuch, pp 299–326

    Google Scholar 

  • Ehrlich P (1908) The Nobel prize in physiology or medicine 1908. Nobelprize.org. Nobel Media AB 2013. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1908/

  • Emerson H, Freeman AW, Chapin CV, Dublin LI, Rice JL, Vaughan HF, Mountin JW, Walker WF (1935) Recommended procedures for diphtheria immunization: sub-committee on evaluation of administrative practices of the committee on administrative practice. Am J Publ Health Nation’s Health 25(6):712–714

    Article  CAS  Google Scholar 

  • English PC (1985) Diphtheria and theories of infectious disease: centennial appreciation of the critical role of diphtheria in the history of medicine. Pediatrics 76(1):1–9

    PubMed  CAS  Google Scholar 

  • Eskola J, Lumio J, Vuopio-Varkila J (1998) Resurgent diphtheria—are we safe? Br Med Bull 54(3):635–645

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald JG (1927) Diphtheria toxoid as an immunizing agent. Can Med Assoc J 17(5):524–529

    PubMed  CAS  Google Scholar 

  • Gachelin G (2007) The designing of anti-diphtheria serotherapy at the Institut Pasteur (1888–1900): the role of a supranational network of microbiologists. Dynamis (Granada, Spain) 27:45–62

    PubMed  Google Scholar 

  • Galazka AM (2000) The changing epidemiology of diphtheria in the vaccine era. J Infect Dis 181(Suppl 1):S2–S9

    Google Scholar 

  • Galazka AM, Robertson SE (1995) Diphtheria: changing patterns in the developing world and the industrialized world. Eur J Epidemiol 11(1):107–117

    Article  PubMed  CAS  Google Scholar 

  • Giannini G, Rappuoli R, Ratti G (1984) The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 12(10):4063–4069

    Article  PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer AM, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Glenny AT (1930) Insoluble precipitates in diphtheria and tetanus immunization. Bri Med J 2(3632):244

    Article  CAS  Google Scholar 

  • Glenny AT, Brien R (1921) The Schick reaction and diphtheria prophylactic immunization with toxin-antitoxin mixture. Lancet 197(5102):1236–1237

    Article  Google Scholar 

  • Glenny AT, Hopkins BE (1923) Diphtheria toxoid as an immunizing agent. Br J Exp Pathol 4:283–288

    CAS  Google Scholar 

  • Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological notes. XVII–XXIV. J Pathol Bacteriol 29(1):31–40

    Article  CAS  Google Scholar 

  • Glenny AT, Südmersen HJ (2009) Notes on the production of immunity to diphtheria toxin. J Hygiene 20(02):176–220

    Article  Google Scholar 

  • Grabenstein JD (2010) Toxoid vaccines. In: Artenstein A (ed) Vaccines: a biography. Springer, New York, pp 105–124

    Chapter  Google Scholar 

  • Grundbacher F (1992) Behring’s discovery of diphtheria and tetanus antitoxins. Immunol Today 13(5):188–190

    Article  PubMed  CAS  Google Scholar 

  • Hadfield TL, McEvoy P, Polotsky Y, Tzinserling VA, Yakovlev AA (2000) The pathology of diphtheria. J Infect Dis 181(Suppl 1):S116

    Article  PubMed  Google Scholar 

  • Halsey NA (2001) Combination vaccines: defining and addressing current safety concerns. Rev Infect Dis 33(Suppl 4):S312–S318

    Google Scholar 

  • Hammonds EM (1999) Childhood’s deadly scourge: the campaign to control diphtheria in New York City, 1880–1930. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Hróbjartsson A, Gøtzsche PC, Gluud C (1998) The controlled clinical trial turns 100 years: fibiger’s trial of serum treatment of diphtheria. BMJ 317(7167):1243–1245

    Article  PubMed  Google Scholar 

  • Keith JM (2011) Bacterial protein toxins used in vaccines. In: Rappuoli R, Bagnoli F (eds) Vaccine design: innovative approaches and novel strategies. Caister Academic Press, Norfolk, UK,pp 109–137

    Google Scholar 

  • Keller AE, Harris S (1934) The use of diphtheria toxoid in immunization of medical students and nurses. J Am Med Assoc 102(26):2163

    Article  Google Scholar 

  • Keller JE (2011) Overview of currently approved serological methods with a focus on diphtheria and tetanus toxoid potency testing. Procedia in Vaccinology 5:192–199

    Article  Google Scholar 

  • Kitchin NRE (2011) Review of diphtheria, tetanus and pertussis vaccines in clinical development. Expert Rev Vaccines 10(5):605–615

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen K, Simonsen O, Heron I (1985) Immunity against diphtheria 25–30 years after primary vaccination in childhood. Lancet 325(8434):900–902

    Article  Google Scholar 

  • Kleinman LC (1992) To end an epidemic. Lessons from the history of diphtheria. New Engl J Med 326(11):773–777

    Article  PubMed  CAS  Google Scholar 

  • Lampidis T, Barksdale L (1971) Park-Williams number 8 strain of Corynebacterium diphtheriae. J Bacteriol 105(1):77–85

    PubMed  CAS  Google Scholar 

  • Lévy F (1975) The fiftieth anniversary of diphtheria and tetanus immunization. Prev Med 4:226–237

    Article  PubMed  Google Scholar 

  • Lindblad EB (2004) Aluminium compounds for use in vaccines. Immunol Cell Biol 82(5):497–505

    Article  PubMed  CAS  Google Scholar 

  • Linggood FV (1941) Purification of diphtheria toxin and toxoid made from tryptic digest broth. Bri J Exp Path 22:255–261

    CAS  Google Scholar 

  • Linggood FV, Stevens MF, Fulthorpe A, Woiwod A, Pope CG (1963) The toxoiding of purified diphtheria toxin. Bri J Exp Path 44(2):177

    CAS  Google Scholar 

  • Linton DS (2005) Emil von Behring: infectious disease, immunology, serum therapy. Amer Philosophical Society, Philadelphia, pp. 265–266

    Google Scholar 

  • Loeffler F (1884) Untersuchungen über die bedeutung der mikroorganismen für die entstehung der diphtherie beim menschen, bei der taube und beim kalbe. 2:421–499

    Google Scholar 

  • Loewenstein E (1909) Über aktive schutzimpfung bei tetanus durch toxoide. Med Microbiol Immunol 62(1):491–508

    Google Scholar 

  • Malito E, Bursulaya B, Chen C, Surdo PL, Picchianti M, Balducci E, Biancucci M, Brock A, Berti F, Bottomley MJ, Nissum M, Costantino P, Rappuoli R, Spraggon G (2012) Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A 109(14):5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Moreira LO, Damasco PV, Hirata JR (2003) Diphtheria remains a threat to health in the developing world: an overview. Memórias do Instituto Oswaldo Cruz 98(8):987–993

    Article  PubMed  Google Scholar 

  • Metz B, Kersten GFA, Jong A de, Meiring H, ten Hove J, Hennink WE, Crommelin DJA, Jiskoot W (2005) Identification of formaldehyde-induced modifications in proteins: reactions with diphtheria toxin. In: Structural characterisation of diphtheria toxoid. vol 7. Proefschrift Universiteit Utrecht, pp 139–154

    Google Scholar 

  • Murphy JR (1996) Corynebacterium diphtheriae. In: Baron S (ed) Medical Microbiology, 4th ed, vol 32. NCBI Bookshelf, Galveston (TX)

    Google Scholar 

  • Nezelof C (2002) Pierre Fidèle Bretonneau 1778–1862. A pioneer in understanding infectious diseases. Ann Diagn Pathol 6(1):74–82

    Article  PubMed  Google Scholar 

  • Pappenheimer AM (1937) Diphtheria toxin. I. Isolation and characterization of a toxic protein from Corynebacterium diphtheriae filtrates. J Biol Chem 120(2):543–553

    CAS  Google Scholar 

  • Pappenheimer AM (1984) Diphtheria. In: Germanier R (ed) Bacterial vaccines. vol 1. Academic Press, Inc, pp 1–35

    Google Scholar 

  • Pappenheimer AM (1993) The story of a toxic protein, 1888–1992. Protein science 2(2):292–298

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer AM, Gill DM (1973) Diphtheria. Science (New York, NY) 182(110):353–358

    Google Scholar 

  • Park WH (1922) Toxin-antitoxin immunization against diphtheria. J Am Med Assoc 79(19):1584–1591

    Article  Google Scholar 

  • Park WH (1931) The history of diphtheria in New York City. Arch Pediatr Adolesc Med 42(6):1439–1445

    Article  Google Scholar 

  • Pizza M, Masignani V, Rappuoli R (2003) Toxins as vaccines and adjuvants. In: Burns D, Barbieri J, Iglewski B, Rappuoli R (eds) Bacterial protein toxins vol 22. ASM Press, Washington, D. C., pp 311–325

    Google Scholar 

  • Plotkin S (2011) History of vaccine development. Springer, New York, NY

    Book  Google Scholar 

  • Podda A, Vescia N, Donati D, Marsili I, Volpini G, Nencioni L, Mastroeni I, Rappuoli R, Fara GM (1991) A phase-I clinical trial of a new antitetanus/antidiphtheria vaccine for adults. Ann Ig 3(2):79–84

    PubMed  CAS  Google Scholar 

  • Pope CG (1963) Development of knowledge of antitoxins. Bri Med Bull 19:230–234

    CAS  Google Scholar 

  • Prigge R (1955) The development of diphtheria vaccines. Bull World Health Organ 13(3):473–478

    PubMed  CAS  Google Scholar 

  • Ramon G (1922) Floculation dans un melange neutre de toxine-antitoxine diphteriques. R Soc Biol (Paris) 86:661–663.

    Google Scholar 

  • Ramon G (1923a) La floculations dans les melanges de toxine et de serum antidiphtherique. Ann Inst Pasteur 37:1001–1011

    CAS  Google Scholar 

  • Ramon G (1923b) Sur le pouvoir floculant et sur les propriétés immunisantes d’une toxine diphtérique rendue anatoxique (anatoxine). CR Acad Sci 177:1338–1340

    Google Scholar 

  • Ramon G (1924) Sur la toxine et sur l’anatoxine diphtériques. Pouvoir floculant et propriétés immunisantes. Ann Inst Pasteur 48:1–10

    Google Scholar 

  • Ramon G (1925a) Sur la production de l’antitoxine diphtérique. CR Soc Biol 93:506–507

    Google Scholar 

  • Ramon G (1925b) Sur la production des antitoxines. CR Soc Biol 181:157–159

    CAS  Google Scholar 

  • Ramon G, Zoeller C (1926) Les “vaccins associés” par union d’une anatoxine et d’un vaccin microbien (T.A.B.) ou par mélange d’anatoxines. CR Soc Biol 13:155–165

    Google Scholar 

  • Rappuoli R (1983) Isolation and characterization of Corynebacterium diphtheriae nontandem double lysogens hyperproducing CRM197. Appl Environ Microbiol 46(3):560–564

    PubMed  CAS  Google Scholar 

  • Rappuoli R (1990) New and improved vaccines against diphtheria and tetanus. In: Woodrow G, Levine M (eds) New generation vaccines. vol 17. Marcel Dekker Inc., New York, pp 417–435

    Google Scholar 

  • Rappuoli R (1994) Toxin inactivation and antigen stabilization: two different uses of formaldehyde. Vaccine 12(7):579–581

    Article  PubMed  CAS  Google Scholar 

  • Ratts R, Murphy JR (2005) Diphtheria toxin, diphtheria-related fusion protein toxins, and the molecular mechanism of their action against eukaryotic cells. In: Schmitt M, Schaffrath R (eds) Microbial protein toxins. Topics in current genetics, vol 11. Springer Berlin Heidelberg, Heidelberg, pp 1–20

    Google Scholar 

  • Relyveld EH (1996) A history of toxoids. In: Plotkin S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors. Springer, Vaccinology Elsevier Paris, pp 95–105

    Google Scholar 

  • Roux E, Yersin A (1888) Contribution a l’etude de la diphtherie. Annales de l’institut pasteur 2(12):629–661

    Google Scholar 

  • Schick B (1913) Die diphtherietoxin—Hautreaktion des menschen als vorprobe der prophylaktischen diphtherieheilseruminjektion. MuÌnch Med Woch 60(47):2608–2610

    Google Scholar 

  • Shinefield HR (2010) Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine 28(27):4335–4339

    Article  PubMed  CAS  Google Scholar 

  • Smith JW (1969) Diphtheria and tetanus toxoids. Bri Med Bull 25(2):177–182

    CAS  Google Scholar 

  • Smith T (1907) The degree and duration of passive immunity to diphtheria toxin transmitted by immunized female guinea-pigs to their immediate offspring. J Med Res 16(2):359–379

    PubMed  CAS  Google Scholar 

  • Smith T (1909) Active immunity produced by so called balanced or neutral mixtures of diphtheria toxin and antitoxin. J Exp Med 11(2):241–256

    Article  PubMed  CAS  Google Scholar 

  • Uchida T, Pappenheimer AM, Greany R (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 248(11):3838–3844

    PubMed  CAS  Google Scholar 

  • Vitek CR (2006) Diphtheria. Curr Top Microbiol Immunol 304:71–94

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2006) Diphtheria vaccine. Wkly Epidemiol Rec 81(3):24–32

    Google Scholar 

  • World Health Organization (2009) The Immunological Basis for Immunization Series. Module 2: Diphtheria Update 2009. http://apps.who.int/iris/handle/10665/44094?mode=full&submit_simple=Show+full+item+record

Download references

Acknowledgements

We thank Francesco Berti, Paolo Costantino, and Matthew Bottomley for useful discussions, and Catherine Mallia for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rino Rappuoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Rappuoli, R., Malito, E. (2014). History of Diphtheria Vaccine Development. In: Burkovski, A. (eds) Corynebacterium diphtheriae and Related Toxigenic Species. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7624-1_11

Download citation

Publish with us

Policies and ethics