Skip to main content

Applications

  • Chapter
  • First Online:
  • 1447 Accesses

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

Abstract

In this final chapter, practical applications of the results obtained from the studies of the near-surface layer of the ocean are considered. These applications range from remote sensing and air–sea interactions to acoustics, optics, biophysical coupling, climate, ship wakes, and oil spill monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alldredge AL, Crocker KM (1995) Why do sinking mucilage aggregates accumulate in the water column? Sci Total Environ 165:15–22

    Google Scholar 

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res 40:1131–1140

    Google Scholar 

  • Alldredge AL, Cowles TJ, MacIntyre S, Rines JEB, Donaghay PL, Greenlaw CF, Holliday DV, Dekshenieks MM, Sullivan JM, Zaneveld R (2002) Occurrence and mechanism of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar Ecol Prog Ser 233:1–12

    Google Scholar 

  • Alpers W (1985) Theory of radar imaging of internal waves. Nature 314:245–247

    Google Scholar 

  • Alpers W, Huang W (2011) On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface. IEEE Trans Geosci Rem Sens 49(3):1114–1126

    Google Scholar 

  • Alpers W, Hühnerfuss H (1989) The damping of ocean waves by surface films: a new look at an old problem. J Geophy Res 94(C5):6251–6265

    Google Scholar 

  • Alpers W, Mitnik L, Hock L, Chen KS (1999) The Tropical and Subtropical Ocean Viewed by ERS SAR. http://www.ifm.zmaw.de/fileadmin/files/ers-sar

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 m s-1. J Phys Oceanogr 28:2175–2184

    Google Scholar 

  • Anagnostou MN, Nystuen JA, Anagnostou EN, Nikolopoulos EI, Amitai E (2008) Evaluation of Underwater Rainfall Measurements during the Ionian Sea Rainfall Experiment. IEEE Trans Geosci Rem Sens 46(10):2936–2946

    Google Scholar 

  • Andreas EL, Emanuel KA (2001) Effects of sea spray on tropical cyclone activity. J Geophys Res 58:3741–3751

    Google Scholar 

  • Asper VL (1987) Measuring the flux and sinking speed of marine snow aggregations. Deep-Sea Res 34:1–7

    Google Scholar 

  • Apel JR (1994) An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J Geophys Res 99(16):269–16, 291

    Google Scholar 

  • Atlas D, Ulbrich CW, Marks FD, Amitai E, Williams CR (1999) Systematic variation of drop size and radar–rainfall relations. J Geophys Res 104:6155–6169

    Google Scholar 

  • Balaguru K, Chang P, Saravanan R, Leung LR, Xu Z, Li M, Hsieh J-S (2012) Ocean barrier layers’ effect on tropical cyclone intensification. PNAS 109(36):14343–14347

    Google Scholar 

  • Ballabrera-Poy J, Murtugudde R, Busalacchi AJ, (2002) On the potential impact of sea surface salinity observations on ENSO predictions. J Geophys Res 107(C12):8007. doi:10.1029/2001JC000834

    Google Scholar 

  • Bentamy A, Katsaros KB, Mestas-Nuñez AM, Drennan WM, Forde EB, Roquet H. (2003) Satellite estimates of wind speed and latent heat flux over the global oceans. J Climate 16:637–656

    Google Scholar 

  • Berger M, Camps A, Font J, Kerr Y, Miller J, Johannessen J, Boutin J, Drinkwater MR, Skou N, Floury N, Rast M, Rebhan H, Attema E (2002) Measuring Ocean Salinity with ESA’s SMOS Mission. ESA Bulletin 111:113f

    Google Scholar 

  • Biao Z, Perrie W (2012) Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes. Bull Amer Meteor Soc 93: 531–541

    Google Scholar 

  • Bissett WP, Schofield O, Glenn S, Cullen JJ, Miller WL, Plueddemann AJ, Mobley CD (2001) Resolving the impacts and feedbacks of ocean optics on upper ocean ecology. Oceanography 14(3):30–53

    Google Scholar 

  • Black PG, Proni JR, Wilkerson JC, Samsury CE (1997) Oceanic rainfall detection and classification in tropical and subtropical mesoscale convective systems using underwater acoustic methods. Mon Weather Rev 125:2014–2024

    Google Scholar 

  • Bock EJ, Hara T, Frew NM, McGillis WR (1999) Relationship between air-sea gas transfer and short wind waves. J Geophys Res 104:25821–25831

    Google Scholar 

  • Bolin B (1960) On the exchange of carbon dioxide between atmosphere and sea. Tellus 12(3):274–281

    Google Scholar 

  • Borge JCN, Rodriguez GR, Hessner K, Conza PI (2004) Inversion of marine radar images for surface wave analysis. J Atmos Ocean Technol 21:1291–1300

    Google Scholar 

  • Boutin J, Martin N, Yin X, Font J, Reul N, Spurgeon P (2012) First assessment of SMOS data over open ocean: part II—Sea surface salinity. IEEE Trans Geosci Rem Sens 50(5):1662–1675

    Google Scholar 

  • Breitz ND, Medwin H (1989) Instrumentation for in-situ acoustical measurements of bubble size distributions. J Atmos Ocean Tech 86:739–743

    Google Scholar 

  • Brekhovskich LM, Lysanov YP (1978) Acoustic of the ocean. In: Voitov VI (eds) Physics of the ocean 2, Nauka, Moscow, pp 49–145

    Google Scholar 

  • Broecker WS (1991) The great ocean conveyor. Oceanography 4:79–89

    Google Scholar 

  • Brusch S, Lehner S, Fritz T, Soloviev A, van Schie B (2011) Ship surveillance with TerraSAR-X. IEEE Trans Geosci Rem Sens 49(3):1092–1103

    Google Scholar 

  • Bulatov MG, Kravtsov Yu A, Lavrova O Yu, Litovchenko K Ts, Mityagina MI, Raev MD, Sabinin KD, Trokhimovskii Yu G, Tchuryumov AN, Shugan IV (2003) Physical mechanisms of aerospace radar imaging of the ocean. Physics-Uspekhi 46(1):63–80 (in Russian)

    Google Scholar 

  • Carey WM, Bradley MP (1985) Low-frequency ocean surface noise sources. J Acoust Soc Amer 78:S1–S2

    Google Scholar 

  • Catrakis HJ (2000) Distribution of scales in turbulence. Phys Rev E 62:564–578

    Google Scholar 

  • Chandraesekhar S (1950) Radiative Transfer. Oxford University Pressreprinted by Dover Publications, New York, pp. 393 (1960)

    Google Scholar 

  • Chapron B, Collard F, Kerbaol V (2004) Satellite synthetic aperture radar sea surface Doppler measurements. Proceedings of the Second Workshop on Coastal and Marine Applications of SAR, 8–12 September 2003. Svalbard, ESA Publications Division, pp. 133–140 (ESA SP–565)

    Google Scholar 

  • Choi J-K, Park YJ, Ahn JH, Lim H-S, Eom J, Ryu J-H (2012) GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J Geophys Res 117, C09004. doi:10.1029/2012JC008046

    Google Scholar 

  • Christian J, Verschell M, Murtugudde R, Busalacchi A, McClain C (2002) Biogeochemical modeling of the tropical Pacific Ocean I: Seasonal and interannual variability. Deep-Sea Res 49:509

    Google Scholar 

  • Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: Comparison between theory and experiments. J Acoust Soc Amer 85:732–746

    Google Scholar 

  • Cox C, Munk W (1956) Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J Opt Soc Am 44:838–850. doi:10.1364/JOSA.44.000838

    Google Scholar 

  • Cowles TJ, Desiderio RA, Carr M-E (1998) Small-scale planktonic structure: Persistence and trophic consequences. Oceanography 11(1):4–9

    Google Scholar 

  • Crisp D (2004) The state-of-the-art in ship detection in synthetic aperture radar imagery. Australian Dept. Defense, Canberra, Australia

    Google Scholar 

  • Crum IA (1995) Unresolved issues in bubble-related ambient noise. In: Buckingham MJ, Potter JR (eds) Proceedings of III Int. Meeting on Natural Physical Processes Related to Sea Surface Sound “Sea Surface Sound’94,” University of California, Lake Arrowhead, 7–11 March 1994. 243–269 (World Scientific, Singapore)

    Google Scholar 

  • Dickey T, Banner ML, Bhandari P et al (2012) Introduction to special section on Recent Advances in the Study of Optical Variability in the Near-Surface and Upper Ocean. J Geophys Res. 117. doi:10.1029/2012JC007964 (C00H20)

    Google Scholar 

  • Donaghay PL, Osborn TR (1997) Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnol Oceanogr 42(5):1238–1296

    Google Scholar 

  • Donaghay PL, Rines HM, Sieburth JM (1992) Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Ergeb Limnol 36:97–108

    Google Scholar 

  • Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J Geophys Res 92:4971–5029

    Google Scholar 

  • Duennebier FK, Lukas R, Nosal E-M, Aucan J, Weller RA (2012) Wind, waves, and acoustic background levels at Station ALOHA. J Geophys Res 117. doi:10.1029/2011JC007267 (C03017)

    Google Scholar 

  • Eldhuset K (1996) An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions. IEEE Trans Geosci Rem Sens 34(4):1010–1019

    Google Scholar 

  • Elfouhaily T, Chapron B, Katsaros K, Vandemark D (1997) A unified directional spectrum for long and short wind-driven waves. J Geophys Res 102(C7):15,781–15,796. doi:10.1029/97JC00467

    Google Scholar 

  • Ewans KC (1998) Observations of the directional spectrum of fetchlimited waves. J Phys Oceanogr 28:495–512. doi:10.1175/1520-0485 (1998 028 <0495:OOTDSO> 2.0.CO;2)

    Google Scholar 

  • Ermakov SA, Sergievskaya IA, Shchegolkov Yu.B (2002) A laboratory study of strong modulation of radar signals due to long waves on the water surface covered with a surfactant film. Radiophy Quant Electron 45(12):942–957

    Google Scholar 

  • Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB, Young GS (1996) The cool skin and the warm layer in bulk flux calculations. J Geophys Res 101:1295–1308

    Google Scholar 

  • Fairall CW, Yang M, Bariteau L, Edson JB, Helmig D, McGillis W, Pezoa S, Hare JE, Huebert B, Blomquist B (2011) Implementation of the COARE flux algorithm with CO2, DMS, and O3. J Geophys Res 116. doi:10.1029/2010JC006884

    Google Scholar 

  • Farmer DM, Lemon D (1984) The influence of bubbles on ambient noise in the ocean at high wind speeds. J Phys Oceanogr 14:1761–1777

    Google Scholar 

  • Farmer DM, Vagle S, Booth AD (1998) A free-flooding acoustical resonator for measurement of bubble size distributions. J Atmos Ocean Tech 15(5):1132–1146

    Google Scholar 

  • Farrell WE, Munk W (2008) What do deep sea pressure fluctuations tell about short surface waves? Geophys Res Lett 35:L19605. doi:10.1029/2008GL035008

    Google Scholar 

  • Farrell WE, Munk W (2010) Booms and busts in the deep. J Phys Oceanogr 40: 2159–2169, doi:10.1175/2010JPO4440.1

    Google Scholar 

  • Fedorov KN (1991) Salinity as Cinderella of Physical Oceanography. Selected Works in Physical Oceanography by K.N. Fedorov. 292–299 (in Russian)

    Google Scholar 

  • Felizardo FC, Melville WK (1995) Correlations between ambient noise and the ocean surface wave field. J Phys Oceanogr 25:513–532

    Google Scholar 

  • Flores-Vidal X, Flament P, Durazo R, Chavanne C, Gurgel K-W (2013) High Frequency Radars: beam forming calibrations using ships as reflectors. J Atm Ocean Tech 30:638–648

    Google Scholar 

  • Frew NM, Bock EJ, McGillis WR, Karachintsev AV, Hara T, Muensterer T, Jaehne B (1995) Variation of air-water gas transfer with wind stress and surface viscoelasticity. In: Jaehne B, Monahan EC (eds) Air-Water Gas Transfer. AEON Verlag & Studio, Hanau, pp 529–541

    Google Scholar 

  • Fu LL, Holt B (1982) Seasat views oceans and sea ice with synthetic aperture radar. NASA JPL Publication, Pasadena

    Google Scholar 

  • Fujimura A, Soloviev A, Kudryavtsev V (2010) Numerical simulation of the environmental effects on SAR imagery of ship wakes. IEEE Geosci Rem Sens Lett 7:646–649

    Google Scholar 

  • Fujimura A, Soloviev A, Rhee SH, Romeiser R (2013) Coupled model simulation of wind stress effect on far wakes of ships in sar images (Manuscript in revision)

    Google Scholar 

  • Gade M, Alpers W, Huhnerfuss H, Masuko H, Kobayashi T (1998) Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. J Geophys Res 103(C9):18851–18866

    Google Scholar 

  • Gade M, Hühnerfuss H, Korenowski G (Eds) (2006) Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing. Springer, The Netherlands, 341 pp

    Google Scholar 

  • Garbe CS, Jähne B, Hauβecker H (2002) Measuring the sea surface heat flux and probability distribution of surface renewal events. In: Saltzman ES, Donealn M, Drennan W, Wanninkhof R (Eds) AGU Monograph Gas Transfer at Water Surfaces. pp 109–114

    Google Scholar 

  • Garrett WD, Smith PM (1984) Physical and chemical factors affecting the thermal IR imagery of ship wakes.NRL Memorandum Report 5376. Naval Researcj Lab, Washington DC 20375, p. 30

    Google Scholar 

  • Geiser PW (2004) The WindSat space borne polarimetric microwave radiometer: sensor description and early orbit performance. IEEE Trans Geosci Remote Sens 42(11):2347–2361

    Google Scholar 

  • Gemmrich JR, Farmer DM (1999) Observations of the scale and occurrence of breaking surface waves. J Phys Oceanogr 29:2595–2606

    Google Scholar 

  • Gentemann CL, Wentz FJ, Brewer M, Hilburn K, Smith D (2010) Passive microwave remote sensing of the ocean: an overview. In: Barale V, Gover JFR, Alberotanza L (eds) Oceanography from Space revisited. Springer, pp 19–44

    Google Scholar 

  • Gilman M, Soloviev A, Graber H (2011) Study of the Far Wake of a Large Ship. J Atmos Ocean Technol 28:720–733

    Google Scholar 

  • Gordon HR (1997) Atmospheric correction of ocean color imagery in the earth observing system era. J Geophys Res 102:17,081–17,106

    Google Scholar 

  • Greidanus H, Kourti N (2006) Findings of the DECLIMS project—Detection and classification of marine traffic from space. SEASAR: Advances in SAR oceanography from envisat and ERS missions. Eur. Space Agency, Roma

    Google Scholar 

  • Grimshaw RHJ, Khusnutdinova KR (2004) The effect of bubbles on internal waves. J. Phys. Oceanogr 34:477–489

    Google Scholar 

  • Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao H-Y (2012) Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys Res Lett 39:L20603. doi:10.1029/2012GL053335

    Google Scholar 

  • IOCCG (2000) Remote sensing of ocean colour in coastal, and other optically-complex waters.In: sathyendranath S (eds) Reports of the international ocean colour coordinating group, No. 3. IOCCG, Dartmouth

    Google Scholar 

  • IOCCG (2012) Mission requirements for future ocean-colour sensors. In: McClain CR, Meister G (eds) Reports of the international ocean-colour coordinating group, No. 13. IOCCG, Dartmouth, p. 106

    Google Scholar 

  • Jaehne B, Muennich O, Boesinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air–water gas exchange. J Geophys Res 92:1937–1949

    Google Scholar 

  • Janssen PAEM (2007) Progress in ocean wave forecasting. J. Comp. Phys. doi:10.1016/j.jcp.2007.04.029, 23 p.

    Google Scholar 

  • Jerlov NG (1976) Marine Optics. Elsevier, Amsterdam

    Google Scholar 

  • Jo Y-H, Yan X-H, Pan J, Liu WT (2004) Sensible and latent heat flux in the tropical Pacific from satellite multi-sensor data. Remot Sens Environ 90:166–177

    Google Scholar 

  • Johannessen JA, Kudryavtsev V, Akimov D, Eldevik T, Winther N, Chapron B (2005) On radar imaging of current features: 2. Mesoscale eddy and current front detection. J Geophys Res 110:C07017. doi:10.1029/2004JC002802

    Google Scholar 

  • Hanson AK Jr, Donaghay P.I (1998) Micro- to fine-scale chemical gradients and layers in stratified coastal waters. Oceanography 11(1):10–17

    Google Scholar 

  • Hare JE, Fairall CW, McGillis WR, Edson JB, Ward B, Wanninkhof R (2004) Evaluation of the national oceanic and atmospheric administration/coupled-ocean atmospheric response experiment (NOAA/COARE) air-sea gas transfer parameterization using GasEx data. J Geophys Res 109:C08S11. doi:10.1029/2003JC001831

    Google Scholar 

  • Hennings IR, Alpers RW, Viola A (1999) Radar imaging of Kelvin arms of ship wakes. Int J Remot Sens 20(13):2519–2543

    Google Scholar 

  • Huebert B, Blomquist B, Hare JE, Fairall CW, Bates T, Johnson J (2004) Measurements of the sea-air DMS flux and transfer velocity using eddy correlation. J Geophys Res Lett 31:L23113. doi:10.1029/2004GL021567

    Google Scholar 

  • Huhnerfuss H, Alpers W, Dannhauer H, Gade M, Lange PA, Neumann V, Wismann V (1996) Natural and man-made sea slicks in the North Sea investigated by a helicopter-borne 5-frequency radar scatterometer. Int J Remot Sens 17(8):1567–1582

    Google Scholar 

  • Hughes B (1976) Estimates of underwater sound (and infrasound) produced by nonlinearly interacting ocean waves, J Acoust Soc Am 60(5):1032–1038. doi:10.1121/1.381203

    Google Scholar 

  • Hwang PA (1997) A study of the wavenumber spectra of short water waves in the ocean. Part II: Spectral model and mean square slope. J Atmos Oceanic Technol 14:1174–1186

    Google Scholar 

  • Katsaros KB, DeCosmo J (1990) Evaporation at high wind speeds, sea surface temperature at low wind speeds: examples of atmospheric regulation. proceedings, workshop on modeling the fate and influence of marine spray. Marseille, France, pp. 1–11 (June 5–7, 1990)

    Google Scholar 

  • Katsaros KB, Soloviev AV (2003) Vanishing horizontal sea surface temperature gradients at low wind speeds. Bound-Layer Meterol 112:381–396

    Google Scholar 

  • Katsaros KB, Fiuza A, Sousa F, Amann V (1983) Surface temperature patterns and air-sea fluxes in the German Bight during MARSEN 1979, Phase 1. J Geophys Res 88:9871–9882

    Google Scholar 

  • Katsaros KB, Soloviev AV, Weisberg RH, Luther ME (2005) Reduced horizontal sea surface temperature gradients under conditions of clear sky and weak winds. Bound.-Layer Meterol (in press)

    Google Scholar 

  • Kerman BR (1984) Underwater sound generation by breaking wind Waves. J Acoust Soc Am 75:149–165

    Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res 105:26793–26808

    Google Scholar 

  • Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, Gruber N, McKinley GA, Murata A, Ríos AF, Sabine CL (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–2191

    Google Scholar 

  • Klemas V (2012) Remote sensing of coastal and ocean currents: an overview. J Coast Res 28(3):576–586. (West Palm Beach, Florida, ISSN 0749–0208)

    Google Scholar 

  • Knudsen VO, Alford RS, Emling JW (1948) Underwater ambient noise. J Mar Res 3:410–429

    Google Scholar 

  • Kolaini AR, Dandeault P, Ruxton AD (1995) Passive and active acoustical measurement of laboratory breaking waves. In: Buckingham MJ, Potter JR (eds) Proceedings of III Int. Meeting on Natural Physical Processes Related to Sea Surface Sound “Sea Surface Sound’94,”. University of California, Lake Arrowhead, pp. 229–240 (7–11 March 1994, World Scientific, Singapore)

    Google Scholar 

  • Kopelevich OV, Sheberstov SV, Burenkov VI, Evdoshenko MA, Ershova SV (1998) New data products derived from SeaWIFS ocean color data: examples for the mediterranean basin. International symposium satellite-based observation: a tool for the study of the mediterranean basin. Tunis, pp. 23–27 (November, 1998)

    Google Scholar 

  • Lagerloef G (2012) Satellite mission monitors ocean surface salinity, Eos Trans. AGU 93(25):233. doi:10.1029/2012EO250001

    Google Scholar 

  • Lagerloef GSE, Swift CT, Le Vine DM (1995) Sea surface salinity: the next remote sensing challenge. Oceanography 8:44–50

    Google Scholar 

  • Lagerloef GSE, Lukas R, Bonjean F, Gunn JT, Mitchum GT, Bourassa M, Busalacchi AJ (2003) El Niño tropical pacific ocean surface current and temperature evolution in 2002 and outlook for early 2003. Geophys Res Lett 30(10):1514

    Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev Geophys 32:363–403

    Google Scholar 

  • Lee T, Lagerloef G, Gierach MM, Kao H-Y, Yueh S, Dohan K (2012) Aquarius reveals salinity structure of tropical instability waves, Geophys Res Lett 39:L12610. doi:10.1029/2012GL052232

    Google Scholar 

  • Lamarre E, Melville WK (1994) Sound-speed measurements near the ocean surface. J Acoust Soc Amer 96:3605–3616

    Google Scholar 

  • Lamarre E, Melville WK (1995) Instrumentation for the measurement of sound speed near the ocean surface. J Atmos Ocean Technol 12:317–329

    Google Scholar 

  • Le Vine DM, Kao M, Garvine RW, Sanders T (1998) Remote sensing of ocean salinity: results from the Delaware coastal current experiment. J Atmos Ocean Tech 15:1478–1484

    Google Scholar 

  • Lee T, Lagerloef G, Gierach MM, Kao H-Y, Yueh S, Dohan K (2012) Aquarius reveals salinity structure of tropical instability waves. Geophys Res Lett 39:L12610. doi:10.1029/2012GL052232

    Google Scholar 

  • Lehr WJ, Simecek-Beatty D (2000) The relation of Langmuir circulation processes to the standard oil spill spreading, dispersion, and transport algorithms. Spill Science & Technology Bulletin 6: 247–253

    Google Scholar 

  • Leifer I, Lehr B, Simecek-Beatty D, Bradley E, Clark R, Dennison P, Hu Y, Matheson S, Jones C, Holt B, Reif M, Roberts D, Svejkovsky J, Swayze G, Wozencraft J (2012) State of the art satellite and airborne marine oil spill remote sensing: application to the bp deepwater horizon oil spill. Remot Sens Environ 124:185–209

    Google Scholar 

  • Lewis MR, Carr M-E, Feldman GC, Esaias W, McClain C (1990) Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347:543–545

    Google Scholar 

  • Liu WT, Tang W, Xie X, Navalgund R, Xu K, (2008) Power density of ocean surface wind-stress from international scatterometer tandem missions. Int J Remote Sens 29(21):6109–6116

    Google Scholar 

  • Liu H-L, Sassi F, Garcia RR (2009) Error growth in a whole atmosphere climate model. J Atmos Sci 66:173–186

    Google Scholar 

  • Liu Y, Weisberg RH, Hu C., Zheng L (2011) Tracking the Deepwater Horizon oil spill: A modeling perspective. Eos Trans. AGU, 92(6): 45–46.

    Google Scholar 

  • Loewen MR, Melville WK (1991a) Microwave backscatter and acoustic radiation from breaking waves. J Fluid Mech 224:601–623

    Google Scholar 

  • Loewen MR, Melville WK (1991b) A model of the sound generated by breaking waves. J Acoust Soc Am 90:2075–2080

    Google Scholar 

  • Loisel H, Morel A (1998) Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnol Oceanogr 43(5):847–858

    Google Scholar 

  • Longuet-Higgins MS (1950) A theory of microseisms, Philos Trans R Soc London Ser A 243:1–35. doi:10.1098/rsta.1950.0012

    Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Google Scholar 

  • Lugt H, Ugincius P (1964) Acoustic rays in an ocean with heat source or thermal mixing zone. J Acoust Soc Am 36(4):258–269

    Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res C96 (Supplement): 3343–3358

    Google Scholar 

  • Lyden JD, Hammond RR, Lyzenga DR, Schuchman RA (1988) Synthetic aperture radar imaging of surface ship wakes. J Geophys Res 93:12293–12303

    Google Scholar 

  • Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29(24):2206. doi:10.1029/2002GL016029

    Google Scholar 

  • Makin VK (1998) Air-sea exchange of heat in the presence of wind waves and spray. J Geophys Res 103:1137–1152

    Google Scholar 

  • Martin M, Dash P, Ignatov A, Banzon V, Beggs H, Brasnett B, Cayula J-F, Cummings J, Donlon C, Gentemann C, Grumbine R, Ishizaki S, Maturi E, Reynolds RW, Roberts-Jones J (2012) Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE), Deep Sea Research Part II: Topical Studies in Oceanography. (ISSN 0967–0645, 10.1016/j.dsr2.2012.04.013)

    Google Scholar 

  • Matt S, Soloviev A, Rhee S (2011) Modification of turbulence air-sea interface due to the presence of surfactants and implications for gas exchange. Part II: numerical simulations. Gas transfer at water surfaces, Kyoto University Press, pp. 299–312

    Google Scholar 

  • Matt S, Fujimura A, Soloviev A, Rhee SH, Romeiser R (2012a) Fine-scale features on the sea surface in SAR satellite imagery—Part 2: numerical modeling. Ocean Sci Discuss 9:2915–2950

    Google Scholar 

  • Matt S, Soloviev A, Brusch S, Lehner S (2012b) Numerical simulation of wind shadow type wakes in SAR Imagery. IEEE Geosci Remot Sens Sympisium (IGARSS 2012) 22–27 (July 2012, Minich, Germany)

    Google Scholar 

  • McManus MA, Alldredge AL, Barnard A, Boss E, Case J, Cowles TJ, Donaghay PL, Eisner L, Gifford DJ, Greenlaw C, Herren D.V. Holliday D, Johnson S, MacIntyre CF, McGehee D, Osborn TR, Perry MJ, Pieper R, Rines JEB, Smith DC, Sullivan JM, Talbot MK, Twardowski MS, Weidemann A, Zaneveld JRV (2003) Changes in characteristics, distribution and persistence of thin layers over a 48-hour period. Mar Ecol Prog Ser 261:1–19

    Google Scholar 

  • McNeil CL, Merlivat L (1996) The warm oceanic surface layer: implications for CO2 fluxes and surface gas measurements. Geophys Res Lett 23:3575–3578

    Google Scholar 

  • Medwin H, Beaky MM (1989) Bubble sources of the Knudsen sea noise spectra. J Acoust Soc Am 86:1124–1130

    Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of Acoustical Oceanography. Academic Press, San Diego, p. 712

    Google Scholar 

  • Medwin H, Daniel AC (1990) Acoustical measurements of bubble production by spilling breakers. J Acoust Soc America 88:408–412

    Google Scholar 

  • Medwin H, Nystuen JA, Jacobus PW, Ostwald LH, Synder DE (1992) The anatomy of underwater rain noise. J Acoust Soc Amer 92:1613–1623

    Google Scholar 

  • Meehl GA (1994) Coupled Land-Ocean-Atmosphere Processes and South Asian 30 Monsoon Variability. Science 266: 263–267

    Google Scholar 

  • Meirink JF (2002) The role of wind waves and sea spray in air–sea interaction. Ph.D. dissertation, Technische Universiteit Delft, p. 168

    Google Scholar 

  • Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484

    Google Scholar 

  • Migliaccio M, Nunziata F, Gambardella A (2009) On the copolarised phase difference for oil spill observation. Int J Remote Sens 30(6):1587–1602

    Google Scholar 

  • Milgram JH, Skop RA, Peltzer RD, Griffin OM (1993) Modeling short sea wave energy distribution in the far wakes of ships. J Geophys Res 98(C4):7115–8370

    Google Scholar 

  • Miller AJ, Alexander MA, Boer GJ, Chai F, Denman K, Erickson DJ III, Frouin R, Gabric AJ, Laws EA, Lewis MR, Liu Z, Murtugudde R, Nakamoto S, Neilson DJ, Norris JR, Ohlmann JC, Perry RI, Schneider N, Shell KM, Timmermann A (2003) Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bull Am Met Soc 84:617–633. doi:10.1175/BAMS-84-5-617

    Google Scholar 

  • Minnaert M (1933) On musical air bubbles and the sound of running water. Philos Mag 16: 235–248

    Google Scholar 

  • Minchew B, Jones C, Holt B (2012) Polarimetric L-band SAR signatures of oil from the Deepwater Horizon spill. IEEE Trans Geosci Remot Sens. 50(10): 3812–3830 doi.org/10.1109/TGRS.2012.2185804

    Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego

    Google Scholar 

  • Monahan EC (2002) Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient. Proc Indian Acad Sci (Earth Planet Sci) 111(3): 315–319

    Google Scholar 

  • Monahan EC, Torgersen T (1990) The enhancement of air-sea gas exchange by oceanic whitecapping. In: Wilhelms SC, Gulliver JS (eds) Air-Water Mass Transfer. American Society of Civil Engineers, New York, pp. 608–617

    Google Scholar 

  • Morel A (1980) In-water and remote measurement of ocean color. Bound-Lay Meteorol 18:177–201

    Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Google Scholar 

  • Munk W (2009) An inconvenient sea truth: spread, steepness, and skewness of surface slopes. Annu Rev Mar Sci 1:377–415

    Google Scholar 

  • Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi A (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Climate 15:471–487

    Google Scholar 

  • Murty VSN, Subrahmanyam B, Sarma MSS, Tilvi V, Ramesh Babu V (2002) Estimation of sea surface salinity in the Bay of Bengal using Outgoing Longwave Radiation. Geophys Res Lett 29. doi:10.1029/2001GL014424

    Google Scholar 

  • Nair A, Sathyendranath S, Platt T, Morales J, Stuart V, Forget M-H, Devred E, Bouman H (2008) Remote sensing of phytoplankton functional types. Remot Sens Environ 112(8):3366–3375

    Google Scholar 

  • Nash JD, Moum JN (2005) River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437:400–403

    Google Scholar 

  • NRC (2003) Oil in the sea III: Inputs, fates, and effects (pp. 65). Washington, D.C.: National Academy of Sciences

    Google Scholar 

  • Nunziata F, Migliaccio M, Gambardella A (2011) Pedestal height for sea oil slick observation IET Radar, Sonar & Navigation 5(2): 103–110 doi:10.1049/iet-rsn.2010.0092

    Google Scholar 

  • Nystuen JA (1996) Acoustical rainfall analysis: rainfall drop size distribution using the underwater sound field. J Acoust Soc Amer 13:74–84

    Google Scholar 

  • Nystuen JA (2001) Listening to raindrops from underwater: an acoustic disdrometer. J Atmos Ocean Tech 18:1640–1657

    Google Scholar 

  • Nystuen JA, Selsor HD (1997) Weather classification using passive acoustic drifters. J Atmos Ocean Tech 14:656–666

    Google Scholar 

  • Nystuen JA, Amitai E (2003) High temporal resolution of extreme rainfall rate variability and the acoustic classification of rainfall. J Geophys Res 108:8378. doi:10.1029/2001JD001481

    Google Scholar 

  • Nystuen JA, McPhaden MJ, Freitag HP (2000) Surface measurements of precipitation from an ocean mooring: the acoustic log from the South China Sea. J Appl Meteorol 39:2182–2197

    Google Scholar 

  • Nystuen J, Riser S, Wen T, Swift D (2011) Interpreted acoustic ocean observations from Argo Floats. J Acoust Soc Am 129(4):2400–2400

    Google Scholar 

  • Ohlmann JC, Siegel DA, Gautier C (1996) Ocean mixed layer radiant heating and solar penetration: A global analysis. J Climate 9: 2265–2280

    Google Scholar 

  • Özgökmen TM, Fischer PF (2012) CFD application to oceanic mixed layer sampling with Lagrangian platforms. International Journal of Computational Fluid Dynamics 26: 6–8

    Google Scholar 

  • Paduan J, Graber H (1997) Introduction to high-frequency radar: reality and myth. Oceanography 10:36–39

    Google Scholar 

  • Paulson CA, Lagerloef GSE (1993) Fresh surface lenses caused by heavy rain over the western Pacific warm pool during TOGA COARE. EOS Trans AGU 74, Suppl. to No. 43:125

    Google Scholar 

  • Peltzer RD, Griffin OM, Barger WR, Kaiser JAC (1992) High-resolution measurement of surface-active film redistribution in ship wakes. J Geophys Res 97(C4):5231–5252

    Google Scholar 

  • Peters NJ, Skop RA (1997 Measurements of Ocean Surface Currents from a Moving Ship Using VHF Radar. J Atmos Oceanic Technol 14: 676–694

    Google Scholar 

  • Petrenko AA, Zaneveld JRV, Pegau WS, Barnard AH, Mobley CD (1998) Effects of a thin layer on reflectance and remote-sensing reflectance. Oceanography 11(1):48–50

    Google Scholar 

  • Pichel WG, Clemente-Colon P, Wackerman CC, Friedman KS (2004) Ship and wake detection. In: Jackson CR, Apel JR (eds) Synthetic aperture radar marine User’s Manual. NOAA, pp. 277–303

    Google Scholar 

  • Plane JMC, Blough NV, Ehrhardt MG, Waters K, Zepp RG, Zika RG (1997) Report Group 3—Photochemistry in the sea-surface microlayer. In: Liss PS, Duce RA (eds) The Sea Surface and Global Change. Cambridge University Press, UK, pp. 71–92

    Google Scholar 

  • Prosperetti A (1985) Bubble-related ambient noise in the ocean. J Acoust Soc Am 78:S2

    Google Scholar 

  • Purkis S, Klemas V (2011) Remote sensing and global environmental change. Wiley-Blackwell, Oxford

    Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Amer Meteor Soc 84(11):1547–1564

    Google Scholar 

  • Reed AM, Milgram JH (2002) Ship wakes and their radar images. Annu Rev Fluid Mech 34(1):469–502

    Google Scholar 

  • Rines JEB, Donaghay PL, Dekshenieks MM, Sullivan JM, Twardowski MS (2002) Thin layers and camouflage: hidden Pseudo-nitzschia populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225:123–137

    Google Scholar 

  • Riser S, Nystuen J, Rogers A (2008) Monsoon effects in the Bay of Bengal inferred from profiling float-based measurements of wind speed and rainfall. Limnol Oceanogr 53:2080–2093

    Google Scholar 

  • Romeiser R (2008) M4S 3.2.0 User’s Manual, University of Hamburg, Hamburg

    Google Scholar 

  • Romeiser R, Johannessen J, Chapron B, Collard F, Kudryavtsev V, Runge H, Suchandt S (2010) Direct surface current field imaging from space by along-track InSAR and Conventional SAR. In: Barale V, Gover JFR, Alberotanza L (eds) Oceanography from Space: Revisited. Springer, pp. 73–91

    Google Scholar 

  • Sabins FF (1987) Remote Sensing Principles and Interpretation, 2nd ed. W.H. Freeman, New York, pp. 449

    Google Scholar 

  • Sathyendranath S, Platt T (2010) Ocean-colour radiometry: achievements and future perspectives. In: Barale V, Gover JFR, Alberotanza L (eds) Oceanography from Space: Revisited. Springer, pp. 349–359

    Google Scholar 

  • Schneider EK, Zhu Z (1998) Sensitivity of the simulated annual cycle of the sea surface temperature in the equatorial Pacific to sunlight penetration. J Climate 11:1932–1950

    Google Scholar 

  • Schlüssel P, Soloviev A (2002) Air-sea gas exchange: cool skin and gas transfer velocity in the North Atlantic Ocean during GasEx-98. Adv Space Res 29(1):107–11

    Google Scholar 

  • Schlüssel P, Emery WJ, Grassl H, Mammen TC (1990) On the bulk-skin temperature difference and its impact on satellite remote sensing of the sea surface temperature. J Geophys Res 95:13341–13356

    Google Scholar 

  • Shaw PT, Watts DR, Rossby HT (1978) On the estimation of oceanic wind speed and stress from ambient noise measurements. Deep Sea Res 25:1225–1233

    Google Scholar 

  • Shay LK, Cook TM, Peters H, Mariano AJ, Weisberg RH, An PE, Soloviev AV, Luther ME (2002) Very high-frequency radar mapping of surface currents. IEEE J Ocean Eng 27:155–169

    Google Scholar 

  • Sieburth JM, Donaghay PL (1993 Planktonic methane production and oxidation within the algal maximum of the pycnocline: seasonal fine scale observation in an anoxic estuarine basin. Mar Ecol Prog Ser 100: 3–15

    Google Scholar 

  • Siegel DA, Ohlmann JC, Washburn L, Bidigare RR, Nosse CT, Fields E, Zhou YM (1995) Solar-radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. J Geophys Res 100:4885–4891

    Google Scholar 

  • Siegel DA, Michaels AF (1996) Quantification of non-algal light attenuation in the Sargasso Sea: implication for biogeochemistry and remote sensing. Deep Sea Res II 43:321–345

    Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200-800 nm). Appl Opt 31: 177–184

    Google Scholar 

  • Soloviev A, Donelan M, Graber HC, Haus B, Schlussel P (2007) An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data. J. Marine Syst 66: 182–194

    Google Scholar 

  • Soloviev AV, Schlüssel P (1994) Parameterization of the temperature difference across the cool skin of the ocean and of the air-ocean gas transfer on the basis of modelling surface renewal. J Phys Oceanogr 24:1339–1346

    Google Scholar 

  • Soloviev A, Schlüssel P (2002) A model of the air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface. In: AGU Monograph Gas Transfer at Water Surfaces. E.S. Saltzman, M. Donelan, W. Drennan, and R. Wanninkhof, Eds., pp 141–146

    Google Scholar 

  • Soloviev A, Lukas R (1997) Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep Sea Res 44 Part I:1055–1076

    Google Scholar 

  • Soloviev AV, Gilman M, Young K, Brusch S, Lehner S (2010) Sonar measurements in ship wakes simultaneous with TerraSAR-X overpasses. IEEE Trans Geosci Remot Sens 48:841–851

    Google Scholar 

  • Soloviev A, Matt S, Gilman M, Hühnerfuss H, Haus B, Jeong D, Savelyev I, Donelan M (2011) Modification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part I: laboratory experiment. Gas Transfer at Water Surfaces. Kyoto University Press, pp. 245–258

    Google Scholar 

  • Soloviev A, Maingot C, Agor M, Nash L, Dixon K (2012a) 3D Sonar Measurements in Wakes of Ships of Opportunity. J Atmos Oceanic Technol 29:880–886

    Google Scholar 

  • Soloviev A, Maingot C, Matt S, Dodge RE, Lehner S, Velotto D, Brusch S, Perrie W, Hochberg E (2012b) Fine-scale features on the sea surface in SAR satellite imagery—Part 1: Simultaneous in-situ measurements. Ocean Sci Discuss 9:2885–2914

    Google Scholar 

  • Sorooshian S, Gao X, Hsu K, Maddox RA, Hong Y, Gupta HV, Imam B (2002) Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J Climate 15:983–1001

    Google Scholar 

  • Sreenivasan K, Ramshankar R, Meneveau C (1989) Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc Roy Soc London 421A:79–108

    Google Scholar 

  • Stramski D (1994) Gas microbubbles: an assessment of their significance to light scattering in quiescent seas. Proc SPIE Ocean Opt XII(2258):704–710

    Google Scholar 

  • Su M-Y, Todoroff D, Cartmill J (1994) Laboratory comparisons of acoustic and optical sensors for microbubble measurement. J Atmos Ocean Tech 11:170–181

    Google Scholar 

  • Subrahmanyam B, Murty VSN, Sharp RJ, O’Brien JJ (2005) Air-sea coupling during the tropical cyclones in the Indian Ocean: a case study using satellite observations. J Pure Appl Geophys 162: 1643–1672

    Google Scholar 

  • Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Glob Biogeochem Cycles 21:GB2015

    Google Scholar 

  • Synthetic Aperture Radar (SAR). Marine User’s Manual. Washington, DC. September 2004. U.S. DEPARTMENT OF COMMERCE. National Oceanic and Atmospheric Administration, Technology & Engineering, pp. 464

    Google Scholar 

  • Takahashi T (2000) Distribution of surface water pCO2 and the net sea-air CO2 flux over the global oceans. Paper presented at the Ewing Symposium, Lamont Doherty Earth Observatory, October 27–28

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Google Scholar 

  • Terrill EJ, Melville WK (1997) Sound-speed measurement in the surface-wave layer. J Acoust Soc Am 102(5):2607–2625 (Part 1)

    Google Scholar 

  • Terrill EJ, Melville WK (2000) A broadband acoustic technique for measuring bubble size distributions: laboratory and shallow water measurements. J Atmos Ocean Tech 17:220–239

    Google Scholar 

  • Thingstad TF, Strand E, Larsen A (2008) Stepwise building of plankton functional type (PFT) models: a feasible route to complex models? Progress Oceanography 84(1–2):6–15

    Google Scholar 

  • Thorpe SA (1982) On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. P Trans Roy Soc Lon Ser A 304:155–210

    Google Scholar 

  • Tkalich P, Chan ES (2002) Breaking wind waves as a source of ambient noise. J Acoust Soc Am 112(2):456–463

    Google Scholar 

  • Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald VM (2002) Development and implementation of wind generated ocean surface wave models at NCEP. Weather and Forecasting 17:311–333

    Google Scholar 

  • Vagle S, Farmer DM (1992) The measurement of bubble size distributions by acoustical backscatter. J Atmos Ocean Tech 9(5):630–644

    Google Scholar 

  • Vagle S, Farmer DM (1998) A Comparison of four methods for bubble size and void fraction measurements. IEEE J Ocean Eng 23:211–222

    Google Scholar 

  • Vagle S, Large WG, Farmer DM (1990) An evaluation of the WOTAN technique for inferring oceanic wind from underwater sound. J Atmos Ocean Tech 7:576–595

    Google Scholar 

  • Velotto D, Migliaccio M, Nunziata F, Lehner S (2010) Oil-slick observation using single look complex TerraSAR-X dual-polarized data, IEEE Int Geosci Remot Sens Symposium (IGARSS) 3684–3687

    Google Scholar 

  • Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088

    Google Scholar 

  • Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J Phys Oceanogr 28:1089–1106

    Google Scholar 

  • Vinayachandran PN, Murty VSN, Ramesh Babu (2002) Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J Geophys Res 107. doi:10.1029/2001JC000831

    Google Scholar 

  • Voronovich AG, Zavorotny VU (2001) Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves. Wave Random Media 11(3):247–269

    Google Scholar 

  • Voss R (1988) Fractals in nature: from characterization to simulation. In: Peitgen H, Saupe D (eds) The science of fractal images. Springer-Verlag, pp. 21–70

    Google Scholar 

  • Wang Y, Kepert JD, Holland GJ (2001) The effect of sea spray evaporation on tropical cyclone boundary-layer structure and intensity. Mon Weather Rev 129(10): 2481–2500

    Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing. Annual Review of Marine Science 1: 213–232

    Google Scholar 

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean-Atmosphere Response Experiment. Bull Amer Met Soc 73: 1377–1416

    Google Scholar 

  • Weller RA, Anderson SP (1996) Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment. J Climate 9: 1959–1992

    Google Scholar 

  • Woolf DK, Thorpe SA (1991) Bubbles and the air-sea exchange of gases in near-saturation conditions. J Mar Res 49: 435–466

    Google Scholar 

  • Yueh SH, Dinardo SJ, Fore AG, Li FK (2010) Observations and modeling of ocean surface winds,” IEEE Trans Geosci Remote Sens. 48(8): 3087–3100

    Google Scholar 

  • Zepp RG, Callaghan TV, Erickson DJ (1995) Effects of increased solar radiation on biogeochemical cycles. Ambio 24: 181–187

    Google Scholar 

  • Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37: 6525–6536

    Google Scholar 

  • Zhang Y, Perrie W (2001) Feedback mechanisms for the atmosphere and ocean surface. Bound -Layer Meterol 100: 321–348

    Google Scholar 

  • Zubair FR, Catrakis HJ (2009) On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers. J Fluid Mech 624: 389–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). Applications. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_7

Download citation

Publish with us

Policies and ethics