Skip to main content

Near-Surface Turbulence

  • Chapter
  • First Online:
Book cover The Near-Surface Layer of the Ocean

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

Abstract

Physical processes that determine the character and magnitude of turbulence in the upper ocean are surveyed and the challenges of studying near-surface turbulence are revealed. The free-surface boundary layer has some specifics, which distinguish it from the classic wall layer. The wall layer analogy is, however, still useful for understanding the near-surface turbulence. The major problem in studying the near-surface turbulence is obtaining reliable data in the wave-disturbed layer. A substantial part of the kinetic energy is dissipated by the breaking waves that are saturated with air bubbles, while most of the available ocean sensor technologies do not provide useful data in this environment. Methodological requirements are followed by examples of turbulence data obtained with a free-rising profiler and bow-mounted sensors in comparison with other results. The field data provide context for discussion of models of wave-enhanced turbulence. As a transition to Chap. 4, the effects of thermohaline stratification on the near-surface turbulence regime and the parameterization of these effects are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal YC, Terray EA, Donelan MA, Hwang PA, Williams AJ, III, Drennan WM, Kahma KK, Kitaigorodskii SA (1992) Enhanced dissipation of kinetic energy beneath surface waves. Nature 359:219–220

    Article  Google Scholar 

  • Ardhuin F, Jenkins AD (2006) On the interaction of surface waves and upper ocean turbulence. J Phys Oceanogr 36:551–557

    Article  Google Scholar 

  • Arsenyev SA, Dobroklonsky SV, Mamedov RM, Shelkovnikov NK (1975) Direct measurements of some characteristics of fine structure from a stationary platform in the open sea. Izvestiya, Fizika Atmosphery i Okeana 11:845–850 (English translation)

    Google Scholar 

  • Azizjan GV, Volkov YA, Soloviev AV (1984) Experimental investigation of vertical thermal structure of thin boundary layers of the sea and atmosphere. Atmos Oceanic Phys 20(6):511–519

    Google Scholar 

  • Baker MA, Gibson CH (1987) Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J Phys Oceanogr 17:1817–1837

    Article  Google Scholar 

  • Barenblatt GI, Golitsyn GS (1974) Local structure of mature dust storms. J Atmos Sci 31:1917–1933

    Article  Google Scholar 

  • Beljaars ACM (1994) The parameterization of surface fluxes in large-scale models under free convection. Q J Roy Meteor Soc 121:255–270

    Article  Google Scholar 

  • Benilov AY (2012) On the turbulence generated by the potential surface waves. J Geophys Res 11 C00J30, doi:10.1029/2012JC007948

    Google Scholar 

  • Benilov AY, Filyushkin BN (1970) Application of the linear filtration methods to the fluctuation analysis in the sea upper layer. Izvestiya, Fizika Atmosphery i Okeana 6:477–482

    Google Scholar 

  • Benilov AY, Ly LN (2002) Modeling of surface waves breaking effects in the ocean upper layer. Math Comput Model 35:191–213

    Article  Google Scholar 

  • Borue V, Orszag SA, Staroselsky I (1995) Interaction of surface waves with turbulence: Direct numerical simulations of turbulent open-channel flow. J Fluid Mech 286:1–23

    Article  Google Scholar 

  • Bye JAT (1988) The coupling of wave drift and wind velocity profiles. J Mar Res 46:457–472

    Article  Google Scholar 

  • Catrakis HJ (2000) Distribution of scales in turbulence. Phys Rev E 62:564–578

    Article  Google Scholar 

  • Charney JG (1960) Non-linear theory of a wind-driven homogeneous layer near the equator. Deep-Sea Res 6:303–310

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteor Soc 81:639–640

    Article  Google Scholar 

  • Cheung TK, Street RL (1988) The turbulent layer in the water at an air-water interface. J Fluid Mech 194:133–151

    Article  Google Scholar 

  • Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr 24:2546–2559

    Article  Google Scholar 

  • Csanady GT (1984) The free surface turbulent shear layer. J Phys Oceanogr 14:402–411

    Article  Google Scholar 

  • Dillon TM, Richmann JG, Hansen CG, Pearson MD (1981) Near-surface turbulence measurements in a lake. Nature 290:390–392

    Article  Google Scholar 

  • Dozenko SV (1974) Theoretical basis of measuring physical fields in the ocean. Hydrometeoizdat, Leningrad, p. 152 (in Russian only).

    Google Scholar 

  • Drennan W, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26:808–815

    Article  Google Scholar 

  • Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Arkiv Met Astr Fysik 2:1–53

    Google Scholar 

  • Elfouhaily T, Chapron B, Katsaros K, Vandemark D (1997) A unified directional spectrum for long and short wind-driven waves. J Geophys Res 102:15781–15796

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes in TOGA COARE. J Geophys Res 101:3747–3767

    Article  Google Scholar 

  • Farrell BF, Ioannou PJ (2008) The stochastic parametric mechanism for growth of wind-driven surface water waves. J Phys Oceanogr 38:862–879

    Article  Google Scholar 

  • Farrar JT (2011) Moored turbulence measurements in the open ocean using pulse-coherent Doppler sonar. J Ocean Techn 6(2):66–67

    Google Scholar 

  • Fornwalt B, Terray G, Voulgaris G, Trowbridge J (2002) Flow modeling around an autonomous underwater vehicle with applications to turbulence measurements. Abstract to 2002 Ocean Sciences Meeting, 11–15 February 2002, Honolulu, Hawaii. Published in supplement to EOS, transactions, American Geophysical Union 83(4):143.

    Google Scholar 

  • Garwood Jr RW, Gallacher PC (1985) Wind direction and equilibrium mixed layer depth: General theory. J Phys Oceanogr 15:1325–1331

    Article  Google Scholar 

  • Garwood Jr. RW, Muller P, Gallacher PC (1985) Wind direction and equilibrium mixed layer depth in the tropical Pacific Ocean. J Phys Oceanogr 15:1332–1338

    Article  Google Scholar 

  • Gemmrich J (2010) Strong turbulence in the wave crest region, J Phys Oceanogr, 40(3):583–595

    Article  Google Scholar 

  • Gemmrich J (2012) Bubble-induced turbulence suppression in Langmuir circulation. Geophys Res Lett 39, L10604, doi:10.1029/2012GL051691

    Google Scholar 

  • Gemmrich JR, Farmer DM (1999) Observations of the scale and occurrence of breaking surface waves. J Phys Oceanogr 29:2595–2606

    Article  Google Scholar 

  • Gemmrich JR, Farmer DM (2004) Near-surface turbulence in the presence of breaking waves, J Phys Oceanogr 34(5):1067–1086

    Article  Google Scholar 

  • Gemmrich JR, Mudge TD, Polonchicko VD (1994) On the energy input from wind to surface waves. J Phys Oceanogr 24:2413–2417

    Article  Google Scholar 

  • Gerbi GP, Trowbridge JH, Edson JB, Plueddemann AJ, Terray EA, Fredericks JJ (2008) Measurements of momentum and heat transfer across the air–sea interface. J Phys Oceanogr 38:1054–1072

    Article  Google Scholar 

  • Gerbi GP, Trowbridge JH, Terray EA., Plueddemann AJ, Kukulka T (2009) Observations of turbulence in the ocean surface boundary layer: energetics and transport. J Phys Oceanogr 39:1077–1096

    Article  Google Scholar 

  • Greenan BJW, Oakey NS, Dobson FW (2001) Estimates of dissipation in the ocean mixed layer using a Quasi-horizontal microstructure profiler. J Phys Oceanogr 31:992–1004

    Article  Google Scholar 

  • Gregg MC, Sanford TB, Winkel DP (2003) Reduced mixing from the breaking of internal waves in the equatorial waters. Nature 422:513–516

    Article  Google Scholar 

  • Gregg MC, Seim HE, Percival DB (1993) Statistics of shear and turbulent dissipation profiles in random internal wave fields. J Phys Oceanogr 23:1777–1979

    Article  Google Scholar 

  • Gurvich AS, Yaglom AM (1967) Breakdown of eddies and probability distributions for small-scale turbulence. Phys Fluids 10 (Suppl., Part II):559–565

    Google Scholar 

  • Handler RA, Swean TF, Leghton Jr RI, Swearingen JD (1993) Length scales and the energy balance of turbulence near a free surface. AIAA J 31 1998–2007

    Article  Google Scholar 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AICHE J 1:289–295

    Article  Google Scholar 

  • Hinze J (1975) Turbulence. McGraw-Hill, New York, p. 790

    Google Scholar 

  • Hoffmann KA (1989) Computational fluid dynamics for engineers. Engineering education system, Austin, Tex, p. 567

    Google Scholar 

  • Iyanaga S, Kawada Y (eds) (1980) Encyclopedic dictionary of mathematics. MIT Press, Cambridge, p. 618

    Google Scholar 

  • Jenkins GM Watts D (1998) Spectral analysis and its applications. Emerson Adams Pr Inc, p. 525

    Google Scholar 

  • Jones ISF, Kenney BC (1977) The scaling of velocity fluctuations in the surface mixed layer. J Geophys Res 82:1392–1396

    Article  Google Scholar 

  • Joyce TM, Lukas R, Firing E (1988) On the hydrostatic balance and equatorial geostrophy. Deep-Sea Res Part A 35(8):1255–1257

    Article  Google Scholar 

  • Kitaigorodskii SA (1991) The dissipation subrange of wind wave spectra. In: Banner ML, Grimshaw RHJ (eds), Breaking waves, UTAM Symposium, Sydney, Australia, 1991:199–206

    Google Scholar 

  • Kitaigorodskii SA, Donelan MA, Lumley JL, Terray EA (1983) Wave-turbulence interactions in the upper ocean: Part II. J Phys Oceanogr 13:1988–1999

    Article  Google Scholar 

  • Kraus EB, Businger JA (1994) Atmosphere-ocean interaction. Oxford University Press, p. 352

    Google Scholar 

  • Kudryavtsev VN, Makin VK, Chapron B (1999) Coupled sea surface–atmosphere model. 2. Spectrum of short wind waves. J Geophys Res 104:7625–7639

    Article  Google Scholar 

  • Kudryavtsev V, Dulov V, Shira V, Malinovsky V (2008) On vertical structure of wind-driven sea surface currents. J Phys Oceanogr 38(10):2121–2144

    Article  Google Scholar 

  • Kudryavtsev VN, Soloviev AV (1990) Slippery near-surface layer of the ocean arising due to daytime solar heating. J Phys Oceanogr 20:617–628

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev Geophys 32:363–403

    Article  Google Scholar 

  • Liang J-H, McWilliams JC, Sullivan PP, Baschek B (2012) Large eddy simulation of the bubbly ocean: new insights on subsurface bubble distribution and bubble-mediated gas transfer, J Geophys Res 117:C04002

    Google Scholar 

  • Lien R-C, McPhaden MJ, Gregg MC (1996) High-frequency internal waves at 0°, 140°W and their possible relationship to deep-cycle turbulence. J Phys Oceanogr 26:581–600

    Article  Google Scholar 

  • Lombardo CP, Gregg MC (1989) Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J Geophys Res 94:6273–6284

    Article  Google Scholar 

  • Longuet-Higgins MS (1969) On wave breaking and the equilibrium spectrum of wind-generated waves. Proc Roy Soc A310(1501):151–159

    Google Scholar 

  • Lukas R, Firing E (1984) The geostrophic balance of the pacific equatorial undercurrent. Deep-sea Res 31:61–66

    Google Scholar 

  • Lumley J, Terray E (1983) Kinematics of turbulence convected by a random wave field. J Phys Oceanogr 13:2000–2007

    Article  Google Scholar 

  • Ly LN, Garwood RW Jr. (2000) Numerical modeling of wave-enhanced turbulence in the oceanic upper layer. J Oceanogr 56:473–483

    Article  Google Scholar 

  • McComas CH, Muller P (1981) The dynamic balance of internal waves. J Phys Oceanogr 11:970–986

    Article  Google Scholar 

  • McCreary JP (1981) A linear, stratified ocean model of the equatorial undercurrent. Phil Trans Roy Soc London Ser. A 298:603–635

    Google Scholar 

  • McPhee MG, Maykut GA, Morison JH (1987) Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J Geophys Res 92:7017–7031

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Melville WK (1994) Energy dissipation by breaking waves. J Phys Oceanogr 24:2041–2049

    Article  Google Scholar 

  • Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484

    Article  Google Scholar 

  • Miles JW (1957) On the generation of surface waves by shear flows. J Fluid Mech 3:185–204

    Article  Google Scholar 

  • Miles JW (1959) On the generation of surface waves by shear flows. Part 2. J Fluid Mech 6:568–582

    Article  Google Scholar 

  • Monin S, Yaglom AM (1971) Statistical fluid mechanics, Vol. 1. MIT Press, Cambridge, p. 769

    Google Scholar 

  • Moum JN, Caldwell DR (1994) Experiment explores the dynamics of the ocean mixing. EOS, T Am Geophys Un 75:489, 494–495

    Google Scholar 

  • Moum JN, Gregg MC, Lien RC, Carr ME (1995) Comparison of turbulence kinetic energy dissipation rates estimates from two ocean microstructure profilers. J Atmos Ocean Tech 12:346–366

    Article  Google Scholar 

  • Munk W (2009) An inconvenient sea truth: Spread, steepness, and skewness of surface slopes. Annu Rev Mar Sci 1:377–415

    Article  Google Scholar 

  • Nasmyth PW (1970) Oceanic turbulence. Ph.D. dissertation, University of British Columbia, Vancouver.

    Google Scholar 

  • Novikov EA (1961) The energy spectrum of the turbulent flow in an incompressible fluid. Dokl Akad Nauk SSSR 139(2).

    Google Scholar 

  • Nowell ARM (1983) The benthic boundary layer and sediment transport. Revs Geophys 21(5):1181–1192

    Article  Google Scholar 

  • Oakey NH (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271

    Article  Google Scholar 

  • Oakey NS Elliott JA (1982) Dissipation within surface mixed layer. J Phys Oceanogr 12:175–195

    Google Scholar 

  • Osborn T, Farmer DM, Vagle S, Thorpe S, Cure M (1992) Measurements of bubble plumes and turbulence from a submarine. Atmos–Ocean 30:419–440

    Article  Google Scholar 

  • Patel VC, Rodi W, Scheurer G (1984) Turbulence models for near-wall and low Reynolds number flows. A review. AIAA J 23(9):1306–1319

    Google Scholar 

  • Peters H, Gregg MC, Toole JM (1988) On the parameterization of equatorial turbulence. J Geophys Res 93:1199–1218

    Article  Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully-developed wind seas based on the similarity theory of S.A. Kitaigorodsky. J Geophys Res 69:5181–5190

    Article  Google Scholar 

  • Polzin K (1996) Statistics of the Richardson number mixing models and finestructure. J Phys Oceanogr 26:1409–1425

    Article  Google Scholar 

  • Priestly CHB (1959) Turbulent transfer in the lower atmosphere, 3rd edn. University of Chicago Press, Chicago, p 130

    Google Scholar 

  • Rabinovich SG (1995) Measurement errors: theory and practice. American Institute of Physics, Woodbury, p 279

    Google Scholar 

  • Rascle N, Chapron B, Ardhuin F, Soloviev A (2012) A note on the direct injection of turbulence by breaking waves. Ocean Model 70: 145–151

    Google Scholar 

  • Santiago-Mandujano F, Firing E (1990) Mixed-layer shear generated by wind stress in the central equatorial Pacific, J Phys Oceanogr 20:1576–1582

    Article  Google Scholar 

  • Schoeberlein HC, Baker MA (1996) Status report: Reduction of motion contamination in TOGA COARE velocity measurements. Technical report, 13 December 1996, The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, p 46

    Google Scholar 

  • Shen L, Zhang X, Yue DKP, Triantafyllou GS (1999) The surface layer for free-surface turbulent flows. J Fluid Mech 386:167–212

    Article  Google Scholar 

  • Skyllingstad ED, Smyth WD, Moum JN, Wijesekera H (1999) Upper ocean turbulence during a westerly wind burst: a comparison of large-eddy simulation results and microstructure measurements. J Phys Oceanogr 29:5–28

    Article  Google Scholar 

  • Smyth WD, Hebert D, Moum JN (1996) Local ocean response to a multiphase westerly wind burst, 1, Dynamic response. J Geophys Res 101:22,495–22,512

    Google Scholar 

  • Snodgrass FE, Groves GW, Hasselmann K, Miller GR, Munk WH, Powers WH (1966) Propagation of ocean swell across the Pacific. Philos Trans Roy Soc Lond A 249:431–497

    Article  Google Scholar 

  • Sreenivasan KR, Ramshankar R, Meneveau C (1989) Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc Roy Soc Lond A 421:79–108

    Article  Google Scholar 

  • Soloviev AV (1990) Coherent structure at the ocean surface in the convectively unstable conditions. Nature 346:157–160

    Article  Google Scholar 

  • Soloviev AV (1992) Small-Scale Structure of the Open Ocean Boundary Layers. Dissertation for Doctor of Physical-Mathematical Sciences Degree, Russian Academy of Sciences, Moscow (in Russian)

    Google Scholar 

  • Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J Phys Oceanogr 26(11):2529–2538

    Article  Google Scholar 

  • Soloviev AV, Lukas R (2003) Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res Part I 50:371–395

    Article  Google Scholar 

  • Soloviev A, Lukas R (1997) Sharp frontal interfaces in the near-surface layer of the ocean in the western equatorial Pacific warm pool. J Phys Oceanogr 27(6):999–1017

    Article  Google Scholar 

  • Soloviev A, Lukas R (2006) The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Springer, NY, 572 p.

    Google Scholar 

  • Soloviev AV, Lukas R, DeCarlo S, Snyder J, Arjannikov A, Baker M, Khlebnikov D (1995) Small-scale measurements near the ocean-air interface during TOGA-COARE. Data Report. SOEST-95–05. University of Hawaii, Honolulu, HI, p 257.

    Google Scholar 

  • Soloviev A, Lukas R, DeCarlo S, Snyder J, Arjannikov A, Turenko V, Baker M, Khlebnikov D (1998) A near-surface microstructure sensor system used during TOGA-COARE. Part I: Bow measurements. J Atmos Ocean Tech 15:563–578

    Article  Google Scholar 

  • Soloviev A, Lukas R, Hacker P (2001) An approach to parameterization of the oceanic turbulent boundary layer in the western pacific warm pool. J Geophys Res 106:4421–4435

    Article  Google Scholar 

  • Soloviev A, Lukas R, Hacker P, Baker M, Schoeberlein H, Arjannikov A (1999) A near-surface microstructure sensor system used during TOGA COARE. Part II: Turbulence Measurements. J Atmos Oceanic Tech 16:1598–1618

    Article  Google Scholar 

  • Soloviev AV, Vershinsky NV, Bezverchnii VA (1988) Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res 35:1859–1874

    Article  Google Scholar 

  • Soloviev A, Maingot C, Agor M, Nash L, Dixon K (2012) 3D Sonar measurements in wakes of ships of opportunity. J Atmos Oceanic Techn 29:880–886

    Article  Google Scholar 

  • Stacey MW (1999) Simulation of the wind-forced near-surface circulation in knight inlet: A parameterization of the roughness length. J Phys Oceanogr 29:1363–1367

    Article  Google Scholar 

  • Stewart RW, Grant HL (1962) Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J Geophys Res 67:3177–3180

    Article  Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106

    Google Scholar 

  • Stommel H (1960) Wind-drift near the equator. Deep-Sea Res 6:298–302

    Article  Google Scholar 

  • Stull RB, Kraus EB (1987) A transilient model of the upper ocean. J Geophys Res-Oceans 92:10,745–10,755

    Google Scholar 

  • Sullivan PP, McWilliams JC, Melville WK (2007) Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J Fluid Mech 593:405–452

    Google Scholar 

  • Swean Jr. TF, Leighton RI, Handler R, Swearingen JD (1991) Turbulence modeling near the free surface in open channel flow. AIAA Paper 91–0613

    Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond 164:476–490

    Article  Google Scholar 

  • Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30:558–567

    Article  Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ III, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26:792–807

    Article  Google Scholar 

  • Thompson SM, Turner JS (1975) Mixing across an interface due to turbulence generated by an oscillating grid.J Fluid Mech 67:349–368

    Article  Google Scholar 

  • Thorpe SA (1969) Experiments on the stability of stratified shear flows. Radio Sci 4:1327–1331

    Article  Google Scholar 

  • Thorpe SA (1988) The dynamics of the boundary layers of the deep ocean. Sci Prog Oxf 72:189–206

    Google Scholar 

  • Thorpe SA (1975) The excitation, dissipation, and interaction of internal waves in the deep ocean. J Geophys Res 80:328–338

    Article  Google Scholar 

  • Thorpe SA (1985) Small-scale processes in the upper ocean boundary layer. Nature 318:519–522

    Article  Google Scholar 

  • Thorpe SA, Jackson JFE, Hall AJ, Lueck RG (2003a) Measurements of turbulence in the upper ocean mixing layer using Autosub. J Phys Oceanogr 33:122–145

    Article  Google Scholar 

  • Thorpe SA, Osborn TR, Farmer DM, Vagel S (2003b): Bubble clouds and Langmuir circulation: observations and models. J Phys Oceanogr 33:2013–2031

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, NY

    Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61:235–265

    Article  Google Scholar 

  • Van Dyke M (1982) An album of fluid motion. Parabolic Press, Stanford, CA, p. 176

    Google Scholar 

  • Veronis G (1960) An approximate theoretical analysis of the equatorial undercurrent. Deep-Sea Res 6:318–327

    Article  Google Scholar 

  • Vershinsky NV, Soloviev AV (1977) A profiler for the studies of the ocean surface layer. Oceanology 17:358–363 (in Russian)

    Google Scholar 

  • Volkov YA, Soloviev AV (1986) On vertical thermal structure of near-surface layer of atmosphere above the ocean. Izvestiya: Atmospheric and oceanic physics 22(9):899–903

    Google Scholar 

  • Volkov YA, Soloviev AV, Turenko VV, Bezverchnii VA, Vershinsky NV, Ermolaev FMA (1989) Investigation of hydrophysical fields structure of the thin surface layer of the ocean from a moving vessel. Izvestiya: Atmospheric and oceanic physics 25(7):695–701

    Google Scholar 

  • Voss R (1988) Fractals in nature: from characterization to simulation. In Peitgen H, Saupe D (eds), The science of fractal images, chapter 1, pp 21–70. New York, Springer-Verlag

    Google Scholar 

  • Wang D, Large WG, McWilliams JC (1996) Large-eddy simulation of the equatorial ocean boundary layer: diurnal cycling, eddy viscosity, and horizontal rotation. J Geophys Res 101:3649–3662

    Article  Google Scholar 

  • Weller RA, Price JF (1988) Langmuir circulation within the oceanic mixed layer. Deep-Sea Res 35:711–747

    Article  Google Scholar 

  • White FM (1986) Fluid mechanics. McGraw-Hill, NY, pp 732

    Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity and the budgets of shear stress. J Atmos Sci 28:1171–1182

    Article  Google Scholar 

  • Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent flows. Ann Rev Fluid Mech 11:505–540

    Article  Google Scholar 

  • Zilitinkevich SS, Calanca P (2000) An extended similarity-theory for the stably stratified atmospheric surface layer. Q J Roy Meteorol Soc 126:1913–1923

    Article  Google Scholar 

  • Zubair FR, Catrakis HJ (2009) On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers. J Fluid Mech 624:389–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). Near-Surface Turbulence. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_3

Download citation

Publish with us

Policies and ethics