Skip to main content

Sea Surface Microlayer

  • Chapter
  • First Online:
The Near-Surface Layer of the Ocean

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

Abstract

The top few millimeters of the ocean surface, where properties are most altered relative to deeper water, are often referred to as the sea surface microlayer. Physics, chemistry, and biology of the sea surface microlayer are the subject of this chapter. Very close to the air–sea interface, turbulent mixing is suppressed and molecular diffusion appears to dominate the vertical property transport. The viscous, thermal, and diffusive sublayers close to the ocean surface that exist as characteristic features of the air–sea momentum, heat, and mass transport are considered. Their dynamics are quite complex due to the presence of surface waves, capillary effects, penetrating solar radiation, rainfall, and surface films due to the presence of surfactants. The existing theories of the sea surface microlayer, numerical model parameterizations, available observations and new approaches, including computational fluid dynamics modeling and DNA analysis of the bacterial content of the sea surface microlayer, are critically analyzed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonia RA, Chambers AJ, Friehe CA, Van Atta CW (1979) Temperature ramps in the atmospheric surface layer. J Atmos Sci 36:99–108

    Article  Google Scholar 

  • Asher WE, Atmane MA, Jessup AT (2005) An application of a surface penetration model to air-water gas transfer. 37th International Liège Colloquium on Ocean Dynamics (2–6 May 2005) gas transfer at water surfaces (abstract only)

    Google Scholar 

  • Azizjan GV, Volkov YA, Soloviev AV (1984) Experimental investigation of vertical thermal structure of thin boundary layers of the sea and atmosphere. Atmos Ocean Phys 20(6):511–519

    Google Scholar 

  • Baier RE, Goupil DW, Perlmutter S, King R (1974) Dominant chemical composition of sea surface films, natural slicks and foams. J de Rech Atmos 8:571–600

    Google Scholar 

  • Banner ML, Peregrine DH (1993) Wave breaking in deep water. Annu Rev Fluid Mech 25:373–397

    Article  Google Scholar 

  • Banner ML, Peirson WL (1998) Tangential stress beneath wind-driven air-water interface. J Fluid Mech 364: 107–137

    Google Scholar 

  • Banner ML, Phillips OM (1974) On the incipient breaking of small scale waves. J Fluid Mech 65:647–656

    Article  Google Scholar 

  • Benjamin TB (1960) Effects of a flexible boundary on hydrodynamic stability. J Fluid Mech 9:513

    Article  Google Scholar 

  • Benjamin TB (1963) The threefold classification of unstable disturbances in flexible surfaces bounding in viscid flows. J Fluid Mech 16:436–450

    Article  Google Scholar 

  • Best A (1950) The size distribution of raindrops. Q J Roy Meteor Soc 76:16–36

    Article  Google Scholar 

  • Bock EJ, Frew NM (1993) Static and dynamic response of natural multicomponent oceanic surface films to compression and dilation: laboratory and field observations. J Geophys Res 98:14599–14617

    Article  Google Scholar 

  • Bolin B (1960) On the exchange of carbon dioxide between atmosphere and sea. Tellus 12(3):274–281

    Article  Google Scholar 

  • Broecker WS, Peng TH, Stuiver M (1978) An estimate of the upwelling rate in the equatorial Atlantic based on the distribution of bond radiocarbon. J Geophys Res 83(C12):6179–6186

    Article  Google Scholar 

  • Caldwell DR, Elliott WH (1971) Surface stresses produced by rainfall. J Phys Oceanogr 1:145–148

    Article  Google Scholar 

  • Caulliez G, Makin V, Kudryavtsev V (2008) Drag of the water surface at very short fetches: observations and modeling. J Phys Oceanogr 38:2038–2055

    Article  Google Scholar 

  • Cember R (1989) Bomb radiocarbon in the Red Sea: A medium scale gas exchange experiment. J. Geophys Res 94: 2111-2123

    Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteor Soc 81:639–640

    Article  Google Scholar 

  • Cox C (2001) Sea surface micro-structure: relation to air-sea fluxes, bubble transport and electromagnetic wave radiation. SIO Report A969093, La Jolla, CA

    Google Scholar 

  • Craeye C, Schlüssel P (1998) Rainfall on the sea: surface renewal and wave damping. Bound-Lay Meteorol 89:349–355

    Article  Google Scholar 

  • Csanady GT (1978) Turbulent interface layers. J Geophys Res 83:2329–2342

    Article  Google Scholar 

  • Csanady GT (1990) The role of breaking wavelets in air-sea gas transfer. J Geophys Res 95:749–759

    Article  Google Scholar 

  • Cunliffe M, Murrell JC (2009) The sea surface microlayer is a gelatinous biofilm. ISME J 3: 1001–1003

    Google Scholar 

  • Cunliffe M, Upstill-Goddard RC, Murrell JC (2011) Microbiology of aquatic surfacemicrolayers. FEMS Microbiol Rev 35:233–246

    Article  Google Scholar 

  • Dickey TD, Hartman B, Hammond D, Hurst E. (1984) A laboratory technique for investigating the relationship between gas transfer and fluid turbulence. In: Gas Transfer at Water Surfaces, W. Brutsaert and G.H. Girka, Eds.: 93–100

    Google Scholar 

  • Dhanak MR, Si C (1999) On reduction of turbulent wall friction through spanwise wall oscillations. J Fluid Mech 383:175–195

    Google Scholar 

  • Doney SC (1995) Irreversible thermodynamics and air-sea exchange. J Geophys Res 100:8541–8553

    Article  Google Scholar 

  • Ebuchi N, Kawamura H, Toba Y (1987) Fine structure of laboratory wind-wave surfaces using an optical method. Bound-Lay Meterol 39:133–151

    Article  Google Scholar 

  • Engel OG (1966) Carter depth in fluid mechanics. J Appl Phys 37:1798–1808

    Article  Google Scholar 

  • Fedorov KN, Ginzburg AI (1988) The near-surface layer of the ocean, Hydrometeoizdat, Leningrad. Translated into English in 1992 by VSP, P.O. Box 346, 3700 AH Zeist, The Netherlands

    Google Scholar 

  • Fedorov KN, Vlasov VL, Ambrosimov AK, Ginzburg AI (1979) Investigating the surface layer of evaporating sea water by optical interferometry. Izvestya, Academy of Sciences, USSR, Atmospheric and Oceanic Physics 15:742–747

    Google Scholar 

  • Fairall CW, Bradley EF,Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes in TOGA COARE. J Geophys Res 101: 3747–3767

    Google Scholar 

  • Fairall CW, Hare JE, Edson JB, McGillis W (2000) Parameterization and micrometeorological measurements of air-sea gas transfer. Bound Layer Meteorol 96: 63–105.

    Google Scholar 

  • Fiedler L, Bakan S (1997) Interferometric measurements of sea surface temperature and emissivity. German J Hydrogr 49(2/3):357–365

    Google Scholar 

  • Flack KA, Saylor JR, Smith GB (2001) Near-surface turbulence for evaporative convection at an air-water interface. Phys Fluids 13:3338

    Article  Google Scholar 

  • Foster TD (1971) Intermittent convection. Geophys Fluid Dyn 2:201–217

    Article  Google Scholar 

  • Franklin MP, McDonald IR, Bourne DG, Owens NJ, Upstill-Goddard RC, Murrell JC (2005) Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environ Microbiol 7:723–736

    Article  Google Scholar 

  • Frew NM (1997) The role of organic films in air–sea exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge Univ. Press, New York, pp 121–172

    Chapter  Google Scholar 

  • Garrett WD (1965) Collection of slick-forming materials from the sea surface. Limnol Oceanogr 10:602–605

    Article  Google Scholar 

  • Caulliez G, Makin V, Kudryavtsev V (2008) Drag of the Water Surface at Very Short Fetches: Observations and Modeling. J Phys Oceanogr 38: 2038–2055

    Google Scholar 

  • Ginzburg AI, Zatsepin AG, Fedorov KN (1977) Fine structure of the thermal boundary layer in the water near the air-water interface. Izvestya, Academy of Sciences, USSR, Atmospheric and Oceanic Physics 13:869–875

    Google Scholar 

  • Gladyshev MI (1997) Biophysics of the sea surface film of aquatic ecosystems. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, UK, pp 321–338

    Chapter  Google Scholar 

  • Glazman RE, Greysukh A (1993) Satellite altimeter measurements of surface wind. J Geophys Res 98:2475–2483

    Article  Google Scholar 

  • Grassl H (1976) The dependence of measured cool skin of the ocean on wind stress and total heat flux. Bound Lay Meteorol 10:465–474

    Google Scholar 

  • Green T, Houk DF (1979) The removal of organic surface films by rain. Limnol Oceanogr 24:966–970

    Article  Google Scholar 

  • Hardy JT (1982) The sea-surface microlayer: biology, chemistry and anthropogenic enrichment. Prog Oceanogr 11:307–328

    Article  Google Scholar 

  • Hardy JT, Hunter KA, Calmet D, Cleary JJ, Duce RA, Forbes TL, Gladyshev ML, Harding G, Shenker JM, Tratnyek P, Zaitsev Y (1997) Report group 2–biological effects of chemical and radiative change in the sea surface. In: The Sea Surface and Global

    Google Scholar 

  • Hare JE, Fairall CW, McGillis WR, Edson JB, Ward B, Wanninkhof R (2004) Evaluation of the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment (NOAA/COARE) air-sea gas transfer parameterization using GasEx data. J Geophys Res 109:C08S11

    Google Scholar 

  • Harvey GW, Burzell LA (1972) A simple microlayer method for small samples. Limnol Oceanogr 11:156–157

    Article  Google Scholar 

  • Hasse L (1971) The sea surface temperature deviation and the heat flow at the air-sea interface, Bound. Layer Meteor 1: 368-379

    Google Scholar 

  • Horrocks LA, Candy B, Nightingale T, Saunders RW, O’Carroll AG, Harris AR (2003) Parameterisations of the skin effect and implications for satellite-based measurement of sea-surface temperature. J Geophys Res 108:3096

    Article  Google Scholar 

  • Houk DF, Green T (1976) A note on surface waves due to rain. J Geophys Res 81:4482–4484

    Article  Google Scholar 

  • Howard LN (1961) Note on a paper of John Miles. J Fluid Mech 10:509–512

    Article  Google Scholar 

  • Howard LN (1966) Convection at high Rayleigh number. Proc of the Eleventh Intern. Congress of Applied Mechanics, Munich, pp 1109–1115

    Google Scholar 

  • Hühnerfuss H, Walter W, Lange PA, Alpers W (1987) Attenuation of wind waves by monomolecular sea slicks and the Marangoni effect. J Geophys Res 92(4):3961–3963

    Article  Google Scholar 

  • Jessup AT, Zappa CJ, Yeh HH (1997) Defining and quantifying microscale wave breaking with infrared imagery. J Geophys Res 102(C10):23,145–23,154

    Google Scholar 

  • Kantha LH, Clayson CA (1994) An improved mixed layer model for geophysical applications. J Geophys Res 99:25,235–25,266

    Google Scholar 

  • Kanwisher J (1963) Effect of wind on CO2 exchange across the sea surface. J Geophys Res 68(13):3921–3927

    Article  Google Scholar 

  • Katsaros KB (1976) Effect of precipitation on the eddy exchange in a wind-driven sea. Dynam Atmos Oceans 1:99–126

    Article  Google Scholar 

  • Katsaros KB (1980) The aqueous thermal boundary layer. Bound Layer Meteorol 18:107–127

    Article  Google Scholar 

  • Katsaros KB, Buettner KJK (1969) Influence of rainfall on temperature and salinity of the ocean surface. J Appl Meteorol 8:15–18

    Article  Google Scholar 

  • Katsaros KB, Liu WT, Businger JA, Tillman JE (1977) Heat transport and thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. J Fluid Mech 83:311–335

    Article  Google Scholar 

  • Kim HT, Kline SJ, Reynolds WC (1971) The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech 50:133–160

    Article  Google Scholar 

  • Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  Google Scholar 

  • Kitaigorodskii SA, Donelan MA (1984) Wind-wave effects on gas transfer, In: Gas Transfer at the Water Surfaces, W. Brutseart and G.H. Jirka, Eds., Reidel: 147–170

    Google Scholar 

  • Kjelleberg S, Stenstrom TA, Odham G (1979) Comparative study of different hydrophobic devices for sampling liquid surface films and adherent microorganisms. Mar Biol 53:21–25

    Article  Google Scholar 

  • Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J. Fluid Mech 30: 741–773

    Google Scholar 

  • Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia, Academy of Sciences, USSR; Physics 6(1) & (2): 56-58

    Google Scholar 

  • Kudryavtsev VN, Soloviev AV (1985) On parameterization of cool skin of the ocean. Izvestia, Atmos Ocean Phys 21(2):177–183

    Google Scholar 

  • Kurata N (2012) Sea Surface Microlayer Microbial Observation System. MS Degree Thesis. Nova Southeastern University Oceanographic Center, Dania Beach, Florida, pp 45

    Google Scholar 

  • Kurata N, Vella K, Tartar A, Matt S, Shivji M, Perrie WA, Lehner S, Soloviev A (2013) Surfactant-associated Bacteria in the Near Surface Layer of the Ocean. Geophysical Research Abstracts 15, EGU2013-13199, EGU General Assembly, pp. 1

    Google Scholar 

  • Lagerloef GSE, Swift CT, Le Vine DM (1995) Sea surface salinity: the next remote sensing challenge. Oceanography 8:44–50

    Article  Google Scholar 

  • Lesieur M (2008) Turbulence in fluids, Fourth Revised and Enlarged Edition. Springer pp 148

    Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832

    Article  Google Scholar 

  • Liss PS (1983) Gas transfer, experiments, and geochemical implications. In: Liss PS, Slinn GN (eds) Air-sea exchange of gases and particles. D. Reidel, Dordrecht, pp 241–298

    Google Scholar 

  • Liss PS, Duce RA (1997) Preface. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, UK, pp XIII-XV

    Chapter  Google Scholar 

  • Liss PS, Watson AJ, Bock EJ, Jaene B, Asher WE, Frew NM, Hasse L, Korenowski GM, Merlivat L, Phillips LF, Schlüssel P, Woolf DK (1997) Report group 1—physical processes in the microlayer and the air-sea exchange of trace gases. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, UK, pp 1–34

    Chapter  Google Scholar 

  • Liu WT, Businger JA (1975) Temperature profile in the molecular sublayer near the interface of fluid in turbulent motion. Geophys Res Lett 2:403–404

    Article  Google Scholar 

  • Longuet-Higgins MS (1992) Capillary rollers and bores. J Fluid Mech 240:659–679

    Article  Google Scholar 

  • Mammen TC, Bosse N von (1990) STEP – a temperature profiler for measuring the oceanic thermal boundary layer at the ocean-air interface. J Atmos Ocean Tech 7:312–322

    Article  Google Scholar 

  • Manton MJ (1973) On the attenuation of sea waves by rain. Geophys Fluid Dynam 5:249–260

    Article  Google Scholar 

  • Matt S, Soloviev A, Rhee S (2011) Modification of turbulence air-sea interface due to the presence of surfactants and implications for gas exchange. Part II: numerical simulations. In: Gas Transfer at Water Surfaces, Kyoto University Press, pp 299–312

    Google Scholar 

  • McAlister ED, McLeish W (1969) Heat transfer in the top millimeter of the ocean. J Geophys Res 74:3408–3414

    Article  Google Scholar 

  • McLeish W, Putland GE (1975) Measurements of wind-driven flow profiles in the top millimeter of water. J Phys Oceanogr 5:516–518

    Article  Google Scholar 

  • Melville WK (1996) The role of surface-wave breaking in air-sea interaction. Ann Rev Fluid Mech 28:279–321

    Article  Google Scholar 

  • Le Méhauté Bernard, Tarang Khangaonkar (1990) Dynamic interaction of intense rain with water waves. J Phys Oceanogr 20:1805–1812

    Article  Google Scholar 

  • Minnett PJ (2003) Radiometric measurements of the sea-surface skin temperature – the competing roles of the diurnal thermocline and the cool skin. Int J Remote Sens 24(24):5033–5047

    Article  Google Scholar 

  • Minnett PJ, Knuteson RO, Best FA, Osborne BJ, Hanafin JA, Brown OB (2001) The Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J Atmos Ocean Tech 18:994–1013

    Article  Google Scholar 

  • Motzfeld H (1937) Die turbulente Stromung an welligen Wanden. Z Angew Math Mech 17:193–212

    Article  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cy 14: 373–387

    Google Scholar 

  • Okuda K (1982) Internal flow structure of short wind waves, Part I. The vorticity structure. J Oceanogr Soc Japan 38:28–42

    Article  Google Scholar 

  • Ostapoff F, Tarbeyev Y, Worthem S (1973) Heat flux and precipitation estimates from oceanographic observations. Science 180:960–962

    Article  Google Scholar 

  • Paulson CA, Lagerloef GSE (1993) Fresh surface lenses caused by heavy rain over the western Pacific warm pool during TOGA COARE. EOS Trans AGU 74(Suppl. to No. 43):125

    Google Scholar 

  • Paulson CA, Simpson JJ (1981) The temperature difference across the cool skin of the ocean. J Geophys Res 86:11,044–11,054

    Google Scholar 

  • Peng TH, Takahashi T, Broecker WS (1974) Surface radon measurements in the North Pacific Ocean station PAPA. J Geophys Res 79:1772–1780

    Google Scholar 

  • Peng TH, Breocker WS, Mathieu GG, Li YH, Bainbrige EA (1979) Radon evasion rates in the Atlantic and Pacific Ocean as determined during the GEOSECS program. J Geophys Res 84:2471–2486

    Google Scholar 

  • Phillips OM, Banner ML (1974) Wave breaking in the presence of wind drift and swell. J Fluid Mech 66:625–640

    Article  Google Scholar 

  • Phongikaroon S, Judd KP, Smith GB, Handler RA (2004) Thermal structure of clean and contaminated free-surfaces subject to an impinging gas jet. Exp Fluids 37(2):153–158

    Google Scholar 

  • Plane JMC, Blough NV, Ehrhardt MG, Waters K, Zepp RG, Zika RG (1997) Report Group 3—Photochemistry in the sea-surface microlayer. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, UK, pp 71–92

    Chapter  Google Scholar 

  • Poon Y-K, Tang S, Wu J (1992) Interactions between wind and waves. J Phys Oceanogr 22:977–987

    Google Scholar 

  • Price JF, Weller RA, Pinkel R (1986) Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J Geophys Res 91:8411–8427

    Article  Google Scholar 

  • Prosperetti A, Oguz HN (1993) The impact of drops on liquid surfaces and the underwater noise of rain. Ann Rev Fluid Mech 25:577–602

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. D. Reidel Publishing Company, Dordrecht, 714pp

    Google Scholar 

  • Pumphrey HC, Elmore PA (1990) The entrainment of bubbles by drop impacts. J Fluid Mech 220:539–567

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23:601–639. doi:10.1146/annurev.fl.23.010191.003125

    Article  Google Scholar 

  • Rodriguez F, Mesler RJ (1988) The penetration of drop-formed vortex rings into pools of liquid. J Colloid Interface Sci 121:121–129

    Article  Google Scholar 

  • Rao KN, Narasima R, Badri Narayanan M (1971) The “bursting” phenomenon in a turbulent boundary layer. J Fluid Mech 48:339–352

    Article  Google Scholar 

  • Riley JP, Skirrow G (1965) Chemical oceanography, Bd I. Academic Press, London, pp 712pp

    Google Scholar 

  • Saunders PM (1967a) Shadowing on the ocean and the existence of the horizon. J. Geophys. Res. 72: 4643–4649

    Google Scholar 

  • Saunders PM (1967b) The temperature at the ocean-air interface. J Atmos Sci 24:269–273

    Article  Google Scholar 

  • Saylor JR, Handler RA (1997) Gas transport across an air/water interface populated with capillary waves. Phys Fluids 9:2529–2541

    Article  Google Scholar 

  • Saylor JR, Flack KA, Schultz MP, Smith GB (2002) The correlation between surface temperature and subsurface velocity during evaporative convection. Exp Fluids 32: 570–579

    Google Scholar 

  • Schlichting H (1979) Boundary-layer theory. McGraw-Hill, New York, pp 817pp

    Google Scholar 

  • Schlüssel P, Emery WJ, Grassl H, Mammen TC (1990) On the bulk-skin temperature difference and its impact on satellite remote sensing of the sea surface temperature. J Geophys Res 95:13,341–13,356

    Google Scholar 

  • Schlüssel P, Soloviev AV, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Bound.-Layer Meteor 95:82,437–82,472

    Google Scholar 

  • Siscoe GL, Levin Z (1971) Interaction of water drops with surface waves. J Geophys Res 76:5112

    Article  Google Scholar 

  • Soloviev AV (1990) Coherent structure at the ocean surface in the convectively unstable conditions. Nature 346:157–160

    Article  Google Scholar 

  • Soloviev AV (2007) Coupled renewal model of ocean viscous sublayer, thermal skin effect and interfacial gas transfer velocity. J Marine Syst (Elsevier) 66:19–27

    Google Scholar 

  • Soloviev AV (1992) Small-scale structure of the open ocean boundary layers. Dissertation for doctor of physical-mathematical sciences degree, Russian Academy of Sciences, Moscow (in Russian)

    Google Scholar 

  • Soloviev A, Donelan M, Graber H, and Haus B (2007) An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data. Journal of Marine Systems (Elsevier) 66: 182–194

    Google Scholar 

  • Soloviev A, Donelan M, Graber HC, Haus B, Schlussel P (2007) An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data. J. Marine Syst 66: 182–194

    Google Scholar 

  • Soloviev A, Kurata N, Vella K, Tartar A, Matt S, Shivji M, Fujimura A, Perrie W (2012) Effect of surfactants on sea surface temperature and salinity. IEEE Geoscience and Remote Sensing Society Symposium (IGARSS 2012) July 22–27, 2012, Munich, Germany. Abstract only

    Google Scholar 

  • Soloviev A, Lukas R (2010) Effects of bubbles and spray on air-sea exchange in hurricane conditions. Bound -Lay Meteorol 136:365–376

    Google Scholar 

  • Soloviev A, Matt S, Gilman M, Hühnerfuss H, Haus B, Jeong D, Savelyev I, Donelan M (2011) Modification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part I: laboratory experiment. In: Gas transfer at water surfaces. Kyoto University Press, pp 245–258

    Google Scholar 

  • Soloviev A, Schlüssel P (1998) Comments on “air-sea gas transfer: mechanisms and parameterizations.” J Phys Oceanogr 28:1643–1645

    Google Scholar 

  • Soloviev AV, Schlüssel P (1996) Evolution of cool skin and direct air-sea gas transfer coefficient during daytime. Bound Layer Meteor 77:45–68

    Article  Google Scholar 

  • Soloviev AV, Schlüssel P (1994) Parameterization of the temperature difference across the cool skin of the ocean and of the air-ocean gas transfer on the basis of modelling surface renewal. J Phys Oceanogr 24:1339–1346

    Article  Google Scholar 

  • Soloviev AV, Vershinsky NV (1982) The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep-Sea Res 29(12A):1437–1449

    Article  Google Scholar 

  • Spangenberg WG, Rowland WR (1961) Convective circulation in water induced by evaporative cooling. Phys Fluids 4:743–750

    Article  Google Scholar 

  • Stephen H, Stephen T (eds) (1964) Solubilities of inorganic and organic compounds; 2: Ternary Systems, Part I. Pergamon Press, McMillian Company, NY, pp 944p

    Google Scholar 

  • Stull RB, Kraus EB (1987) A transilient model of the upper ocean. J Geophys Res-Oceans 92:10,745–10,755

    Google Scholar 

  • Thorpe SA (1985) Small-scale processes in the upper ocean boundary layer. Nature 318:519–522

    Article  Google Scholar 

  • Tsai W (2001) On the formation of the streaks on wind-driven water surfaces. Geophys Res Lett 28(20):3959–3962

    Article  Google Scholar 

  • Tsimplis M (1992) The effect of rain in calming the sea. J Phys Oceanogr 22:404–412

    Article  Google Scholar 

  • Tsimplis M, Thorpe SA (1989) Wave damping by rain. Nature 342:893–895

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge Univ. Press, NY

    Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  Google Scholar 

  • Vladimirov VS (1976) Equations of mathematical physics. Nauka, Moscow (In Russian) 527 pp

    Google Scholar 

  • Volkov YA, Soloviev AV (1986) On vertical thermal structure of near-surface layer of atmosphere above the ocean. Izvestiya: Atmos Ocean Phys 22(9):899–903

    Google Scholar 

  • Volino RJ, Smith GB (1999) Use of simultaneous IR temperature measurements and DPIV to investigate thermal plumes in a thick layer cooled from above. Exp Fluids 27:70–78

    Article  Google Scholar 

  • Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(134):1889–1892 (Check on pg 48)

    Google Scholar 

  • Wanninkhof R, Hitchcock G, Wiseman W, Vargo G, Ortner P, Asher W, Ho D, Schlosser P, Dickson M-L, Anderson M, Masserini R, Fanning K, Zhang J-Z (1997) Gas exchange, dispersion, and biological productivity on the west Florida shelf: Results from a lagrangian tracer study. Geophys Res Lett 24: 1767–1770

    Google Scholar 

  • Ward B, Minnett PJ (2001) An autonomous profiler for near surface temperature measurements. Gas transfer at water surfaces. In: Donelan MA, Drennan WM, Saltzmann ES, and Wanninkhof R (eds) American Geophys Union Monogr 127:167–172

    Google Scholar 

  • Wu J (1975) Wind-induced drift current. J. Fluid Mech 68: 49–70

    Google Scholar 

  • Woods JD (1980) Diurnal and seasonal variation of convection in the wind-mixed layer of the ocean. Q J Roy Meteor Soc 106:379–394

    Article  Google Scholar 

  • Woolf DK (1997) Bubbles and their role in air-sea gas exchange. In: The Sea Surface and Global Change. P.S. Liss and R.A. Duce, Eds., Cambridge University Press, UK: 173–205

    Google Scholar 

  • Wurl O, Holmes M (2008) The gelatinous nature of the sea-surface microlayer. Marine Chem 110:89–97

    Article  Google Scholar 

  • Yakimov YL (1959) Why waves are extinguished by rain. Izvestiya: Sib. Akad. Nauk SSR 5: 125–126 (in Russian)

    Google Scholar 

  • Yang Z, Tang S, Wu J (1997) An experimental study of rain effects on fine structures of wind waves, J Phys Oceanogr 27: 419–430

    Google Scholar 

  • Yeh (1992) Vorticity generation at a fluid interface. In Breaking Waves, edited by M. Banner and R.H.J. Grimshaw, Springer-Verlag, New York: 257–265

    Google Scholar 

  • Zaitsev YP (1971) Marine neustonology (translated from Russian). National Marine Fisheries Service, NOAA and National Science Foundation, National Technical Information Service, Springfield, Virginia, 207 pp

    Google Scholar 

  • Zaitsev Y (1997) Neuston of seas and oceans. In: The Sea Surface and Global Change. P.S. Liss and R.A. Duce, Eds., Cambridge University Press, UK: 371–382

    Google Scholar 

  • Zhang X, Harrison S (2004) A laboratory observation of the surface temperature and velocity distributions on a wavy and windy air-water interface. Physics of Fluids 16: L5–L8

    Google Scholar 

  • Zhang Y, Zhang X (2012) Ocean haline skin layer and turbulent surface convections. J Geophys Res-Oceans 117, 10.1029/2011jc00746

    Google Scholar 

  • Zhao D. and Toba Y (2001) Dependence of whitecap coverage on wind and wind-wave properties. J Oceanography 57: 603–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). Sea Surface Microlayer. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_2

Download citation

Publish with us

Policies and ethics