Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover The Near-Surface Layer of the Ocean

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

  • 1362 Accesses

Abstract

Chapter 1 introduces the reader to the main theme of the book—the near-surface layer of the ocean as an element of the ocean–atmosphere system. The chapter starts with the formulation of the equations of fluid mechanics and thermodynamics that govern the ocean–atmosphere boundary layers. Most of the theoretical results in subsequent chapters of this book are based on these equations. Surface heat, momentum, and freshwater fluxes provide boundary conditions for solving equations. Solar radiation and its absorption in the near-surface layer of the ocean must be treated as a body (volume) source of thermal energy. Rainfall contributes to the surface and volume freshwater, momentum, and heat fluxes. Elements of surface wave theory directly relating to the dynamics of the near-surface layer of the ocean are introduced in this chapter as well. Matching the dynamics and thermodynamics of the ocean and atmosphere occurs in planetary boundary layers. The existing mixing models are briefly reviewed in the context of the planetary boundary layer. This general discussion of upper ocean dynamics and thermodynamics sets the stage for the content of Chaps. 2–7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla S, Cavaleri L (2002) Effect of wind variability and variable air density on wave modeling. J Geophys Res 107:3080. doi:10.1029/2000JC000639

    Google Scholar 

  • Apel JR (1994) An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J Geophys Res 99:16269–16291

    Google Scholar 

  • Balaguru K, Chang P, Saravananc R, Leung LR, Xu Z, Mingkui Li, Hsieh J-S (2012) Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the national academy of sciences of the United States of America. Earth, Atmospheric, and Planetary Sciences 109(36):14343–14347

    Google Scholar 

  • Baumert H, Peters H (2004) Turbulence closure, steady state, and collapse into waves. J Phys Oceanogr 34:505–512

    Google Scholar 

  • Berger BW, Grisogono B (1998) The baroclinic, variable eddy viscosity Ekman layer. Boundary-Layer Meteorol 87:363–380

    Google Scholar 

  • Bethoux JP (1968) Adaptation d’une thermipile à la mesure de éclairement sousmarin. Thèse 3ème cycle, Faculté des Sciences de Paris

    Google Scholar 

  • Bishop JKB, Rossow WB (1991) Spatial and temporal variability of global surface solar irradiance. J Geophys Res 96:16839–16858

    Google Scholar 

  • Bishop JKB, Rossow WB, Dutton EG (1997) Surface solar irradiance from the international satellite cloud climatology project 1983–1991. J Geophys Res 102:6883–6910

    Google Scholar 

  • Bishop JKB, Potylitsina T, Rossow WB (2000) Documentation and description of surface solar irradiance data sets produced for SeaWiFS. NASA Grant NAG5–6450, Department of Applied Physics, Columbia, University. http://esd.lbl.gov/pub/bishop/seawifs/documentation/seawifs.000217.pdf

  • Bolin B (1960) On the exchange of carbon dioxide between atmosphere and sea. Tellus 12(3):274–281

    Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354. doi:10.1016/0021–9991(92)90240-Y

    Google Scholar 

  • Budyko MI (1963) Atlas of the heat balance of the earth. Gidrometeorozdat, Moscow, p 255

    Google Scholar 

  • Burchard H, Petersen O, Rippeth T (1998)Comparing the performance of the Mellor-Yamada and the k-ϵ two-equation turbulence models. J Geophys Res 103: doi: 10.1029/98JC00261. issn: 0148–0227.

    Google Scholar 

  • Beljaars ACM, Holstlag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Google Scholar 

  • Businger JA (1982) Equations and concepts. Atmospheric turbulence and air pollution modeling. Nieuwstadt FTM, van Dop H (eds) D. Reidel Publishing Co., Dordrecht, pp 1–36

    Google Scholar 

  • Caldwell DR, Elliott WH (1971) Surface stresses produced by rainfall. J Phys Oceanogr 1:145–148

    Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteor Soc 81:639–640

    Google Scholar 

  • Chapman DS, Critchlow PR (1967) Formation of vortex rings from falling drops. J Fluid Mech 29:177–185

    Google Scholar 

  • Debnath L (1994) Nonlinear waves. Academic Press, London, p 544

    Google Scholar 

  • de Szoeke SP, Yuter S, Mechen D, Fairall CW, Burleyson CD, Zuidema P (2012) Observations of stratocumulus clouds and their effect on the eastern pacific surface heat budget along 20S. J Climate 25:8542–8567

    Google Scholar 

  • Dickey T, Banner ML, Bhandari P et al (2012) Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean. J Geophys Res 117:C00H20, doi:10.1029/2012JC007964

    Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea, water;version, 2, Dickson A G, Goyet C (eds) ORNL/CDIAC-74. p 22

    Google Scholar 

  • Donelan MA, Haus BK, Reul N, Plant W, Stiassnie M, Graber H, Brown O, Saltzman E (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306

    Google Scholar 

  • Donelan MA, Curcic M, Chen SS, Magnusson AK (2012) Modeling waves and wind stress, J Geophys Res 117:C00J23. doi:10.1029/2011JC007787

    Google Scholar 

  • Duncan JH (2001) Spilling breakers. Ann Rev Fluid Mech 33:519–547

    Google Scholar 

  • Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Arkiv Met Astr Fysik 2:1–53

    Google Scholar 

  • Elfouhaily T, Chapron B, Katsaros K, Vandemark D (1997) A unified directional spectrum for long and short wind-driven waves. J Geophys Res 102:15781–15796

    Google Scholar 

  • Fairall CW, Markson R, Schacher GE, Davidson KL (1980) An aircraft study of turbulence dissipation rate and temperature structure function in the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 19:453–469

    Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes in TOGA COARE. J Geophys Res 101:3747–3767

    Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571–591

    Google Scholar 

  • Fairall CW, Uttal T, Hazen D, Harre J, Cronin MF, Bond N, Veron DE (2008) Observations of cloud, radiation, and surface forcing in the Equatorial Eastern Pacific. J Climate 21:655–673

    Google Scholar 

  • Farrell BF, Ioannou PJ (2008) The stochastic parametric mechanism for growth of wind-driven surface water waves. J Phys Oceanogr 38:862–879

    Google Scholar 

  • Fedorov KN, Ginzburg AI (1988) The near-surface layer of the ocean. Hydrometeoizdat, Leningrad, p 304 (in Russian)

    Google Scholar 

  • Foukal P (2003) Can slow variations in solar luminosity provide missing link between the sun and climate? EOS, Trans, Am Geophys Union 84(22):205–208

    Google Scholar 

  • Fröhlich C (2000) Observations of irradiance variations. Space Sci Rev 94:15–24

    Google Scholar 

  • Frouin R, Lingner DW, Gautier C, Baker KS, Smith RC (1989) A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. J Geophys Res 94:9731–9742

    Google Scholar 

  • Galvin CJ (1972) Wave breaking in shallow water. In: Meyer RE (ed) Waves on beaches and resulting sediment transport. Academic Press, Boston, pp 413–455

    Google Scholar 

  • Garwood RW Jr (1977) An oceanic mixed layer model capable of simulating cyclic states. J Phys Oceanogr 7:455–468

    Google Scholar 

  • Garwood RW Jr, Gallacher PC (1985) Wind direction and equilibrium mixed layer depth: general theory. J Phys Oceanogr 15:1325–1331

    Google Scholar 

  • Gerstner FJ von (1802) Theorie der Wellen. Abhand. Köln Bömischen Gesel. Wiss., Prague

    Google Scholar 

  • Gnanadesikan A (1996a) Mixing driven by vertically variable forcing: An application to the case of Langmuir circulation. J Fluid Mech 322: 81–107

    Google Scholar 

  • Gnanadesikan A (1996b) Modeling the diurnal cycle of carbon monoxide: Sensitivity to physics, chemistry, biology, and optics. J Geophys Res 101: 12177–12191

    Google Scholar 

  • Gosnell R, Fairall CW, Webster PJ (1995) The sensible heat flux of rainfall in the tropical ocean. J Geophys Res 100(9):18437–18442

    Google Scholar 

  • Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31:1698–1711

    Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press.

    Google Scholar 

  • Green T, Houk DF (1979) The removal of organic surface films by rain. Limnol Oceanog 24:966–970

    Google Scholar 

  • Hsiao M, Lichter S, Quintero LG (1988) The critical weber number for vortex and jet formation for drops impinging on a liquid pool. Phys Fluids 31:3560–3562

    Google Scholar 

  • IOC, SCOR IAPSO (2010) The international thermodynamic equation of seawater—2010: calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No.56, UNESCO (English), p 196

    Google Scholar 

  • IOCCG (2000) Remote sensing of ocean color in coastal, and other optically-complex waters. Sathyendranath, S., Ed., Reports of the international ocean-colour coordinating group, no. 3. Published by the International Ocean-Colour Coordinating Group, P.O. Box 1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada, 145 pp.

    Google Scholar 

  • Ivanoff A (1977) Oceanic absorption of solar energy, In: Kraus EB (ed) Modelling and prediction of the upper layers of the ocean. Pergamon, New York, p 326

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, p 231

    Google Scholar 

  • Jin Z, Charlock TP, Rutledge K (2002) Analysis of the broadband solar radiation and albedo over the ocean surface at COVE. J Atmos Ocean Tech 19:1585–1601

    Google Scholar 

  • Johnston TMS, Rudnick DL (2009) Observation of the transtion layer. J Phys Oceanogr 39:780–797

    Google Scholar 

  • Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes. Academic Press, International Geophysics Series 66, p 940

    Google Scholar 

  • Kara AB, Rochford PA, Hulbert HE (2000) Mixed layer variability and barrier layer formation over the North Pacific Ocean. J Geophys Res 105:16783–16801

    Google Scholar 

  • Katsaros KB (1990) Parameterization schemes and models for estimating the surface radiation budget. In: Geernaert GL, Plant WJ (eds) Surface waves and fluxes, vol 2. Kluwer Academic Publishers, The Netherlands, pp 339–368

    Google Scholar 

  • Katsaros KB, Buettner KJK (1969) Influence of rainfall on temperature and salinity of the ocean surface. J Appl Meteorol 8:15–18

    Google Scholar 

  • Katsaros KB, McMurdie LA, Lind RJ, DeVault JE (1985) Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle, and wind speed. J Geophys Res 90:7313–7321

    Google Scholar 

  • Kettle AJ (2005) Comparison of the nonlocal transport characteristics of a series of one-dimensional oceanic boundary layer models. Ocean Model 8:301–336

    Google Scholar 

  • Kitaigorodskii SA (1962) Application of the theory of similarity to the analysis of wind generated wave motion as a stochastic process. Bulletin (Izvestya) of the Academy of Sciences of the USSR, Geophysics Series 1: 73–80 (English Translation)

    Google Scholar 

  • Klein P (1980) A simulation of the effects of air-sea transfer variability on the structure of marine upper layers. J Phys Oceanogr 10: 1824–1841

    Google Scholar 

  • Klein P, Coantic M (1981) A numerical study of turbulent processes in the marine upper layers. J Phys Oceanogr 11: 849–863

    Google Scholar 

  • Kraus EB, Businger JA (1994) Atmosphere-ocean interaction. Oxford University Press, New York, p 352

    Google Scholar 

  • Kudryavtsev VN, Soloviev AV (1990) Slippery near-surface layer of the ocean arising due to daytime solar heating. J Phys Oceanogr 20:617–628

    Google Scholar 

  • Laevastu T (1960) Factors affecting the temperature of the surface layer of the sea: A Study of the Heat Exchange Between the Sea and the Atmosphere, the Factors Affecting Temperature Structure in the Sea and Its Forecasting. Societas Scientiarum Fennica, Commentatisnes phisico-mathematicae, Helsinki XXV, 1, p 136

    Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Google Scholar 

  • Liu H, Grodsky SA, Carton JA (2009) Observed subseasonal variability of oceanic barrier and compensated layers. J Climate 22:6104–6119

    Google Scholar 

  • LeBlond PH, Mysak LA (1978) Waves in the Ocean. Elsevier, New York, p 60

    Google Scholar 

  • LeMéhauté B (1976) An introduction to hydrodynamics and water wave. Springer-Verlag, New York, p 315

    Google Scholar 

  • Longuet-Higgins MS, Turner JS (1974) An “entraining” plume model of a spilling breaker. J Fluid Mech 63:1–10

    Google Scholar 

  • Longuet-Higgins MS, Fox MJH (1978) Theory of the almost-highest wave, Part 2, Matching and analytic extension. J Fluid Mech 85:769–435

    Google Scholar 

  • Lukas R, Hacker P, DeCarlo S, Hummon J, Santiago-Mandujano F, Wright D (2001) Hydrographic observations during the joint air-sea monsoon interaction experimnet (JASMINE) pilot study. SOEST data report 5319, University of Hawaii at Manoa, Honolulu, p 246

    Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res C96 (Supplement):3343–3358

    Google Scholar 

  • Lumb FE (1964) The influence of cloud on hourly amount of total solar radiation at the sea surface. Q J Roy Meteor Soc 90:43–56

    Google Scholar 

  • Maes C, Belamari S (2011) On the impact of salinity barrier layer on the pacific ocean mean state and ENSO. Sola 7:97–100

    Google Scholar 

  • Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29(24):2206. doi:10.1029/2002GL016029

    Google Scholar 

  • Manton MJ (1973) On the attenuation of sea waves by rain. Geophys Fluid Dynam 5:249–260

    Google Scholar 

  • Marshall JS, Palmer WM (1948) The distribution of raindrops with size. J. Meteorol 5:165–166

    Google Scholar 

  • Mason MA (1952) Some observations of breaking waves. Gravity Waves. Natl Bur Stand Circ 521:215–20

    Google Scholar 

  • Matt S, Soloviev A, Rhee S (2011) Modification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. part ii: numerical simulations. Gas Transfer at Water Surfaces. Kyoto University Press pp 299–312

    Google Scholar 

  • Maxworthy T. (1972) The structure and stability of vortex rings. J Fluid Mech 51:15–32.

    Google Scholar 

  • McLean JW, Ma Y-C, Martin DU, Saffman PG, Yuen HC (1981) Three-dimensional instability of finite amplitude gravity waves. Phys Rev Lett 46:817–820

    Google Scholar 

  • McWilliams JC, Huckle E, Liang J-H (2012) The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds Stress. J Phys Oceanogr 42: 1793–1816

    Google Scholar 

  • McWilliams JC, Huckle E, Shchepetlin AF (2009) Buoyancy effects in a stratified Ekman layer. J Phys Oceanogr 39:2581–2599

    Google Scholar 

  • Mellor GL (1996) Introduction to physical oceanography. Princeton University, Princeton, p 260

    Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Google Scholar 

  • Melville WK (1996) The role of surface-wave breaking in air-sea interaction. Ann Rev Fluid Mech 28:279–321

    Google Scholar 

  • Michell JH (1893) On the highest waves in water. Philos Mag, Ser 5 365:430–437

    Google Scholar 

  • Miles JW (1957) On the generation of surface waves by shear flows. J Fluid Mech 3:185–204

    Google Scholar 

  • Miles JW (1959) On the generation of surface waves by shear flows. Part 2. J Fluid Mech 6:568–582

    Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1 MIT Press, Cambridge p 769

    Google Scholar 

  • Müller P (2006) The Equations of oceanic motions. Cambridge University Press, p 291

    Google Scholar 

  • Munk W (2009) An inconvenient sea truth: spread, steepness, and skewness of surface slopes. Annu Rev Mar Sci 1:377–415

    Google Scholar 

  • Niiler PP, Kraus EB (1977) One-dimensional models. In: Kraus EB (ed) Modeling and prediction of the upper layers of the ocean. Pergamon, New York pp 143–172

    Google Scholar 

  • Oguz HN, Prosperetti A (1991) Numerical calculation of the underwater noise of rain. J Fluid Mech 228:417–442

    Google Scholar 

  • Ohlmann JC, Siegel DA, Mobley CD (2000) Ocean radiant heating. part I: optical influences. J Phys Oceanogr 30:1833–1848

    Google Scholar 

  • Paulson CA, Simpson JJ (1981) The temperature difference across the cool skin of the ocean. J Geophys Res 86:11044–11054

    Google Scholar 

  • Payne RE (1972) Albedo of the sea surface. J Atmos Sci 29:959–970

    Google Scholar 

  • Peters H, Gregg MC, Toole JM (1988) On the parameterization of equatorial turbulence J Geophys Res 9 3:1199–1218

    Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully-developed wind seas based on the similarity theory of S.A. Kitaigorodsky. J. Geophys. Res. 69:5181–5190

    Google Scholar 

  • Phillips OM (1957) On the generation of waves by turbulent wind. J. Fluid Mech 2:417–445

    Google Scholar 

  • Phillips OM (1977) The dynamics of the upper ocean. Cambridge University Press, p 366

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press New York, (ISBN 978–0-521–59886–6)

    Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Google Scholar 

  • Preisendorfer RW (1976) Hydrologic Optics, Vol I: Introduction, U.S. Dept of Commerce, Washington, D.C.

    Google Scholar 

  • Price JF, Sunermeyer MA (1999) Stratified Ekman layers. J Geophys Res 104(C9):20467–20494

    Google Scholar 

  • Price JF, Weller RA, Pinkel R (1986) Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J Geophys Res 91:8411–8427

    Google Scholar 

  • Price JF, Weller RA, Schudlich RR (1987) Wind-driven ocean currents and Ekman transport. Science 238: 1534–1538

    Google Scholar 

  • Pruvost P (1972) Contribution à l’étude des échanges radiatifs Atmospère-Ocèan. Calcul des flux dans la mer. Thèse 3ème cycle. Universite de Lille, n 341

    Google Scholar 

  • Rascle N, Chapron B, Ardhuin F, Soloviev A (2013) A note on the direct injection of turbulence by breaking waves. Ocean Model 70: 145–151

    Google Scholar 

  • Rodriguez F, Mesler RJ (1988) The penetration of drop-formed vortex rings into pools of liquid. J Colloid Interface Sci 121:121–129

    Google Scholar 

  • Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603

    Google Scholar 

  • Schlüssel P, Soloviev AV, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Boundary-Layer Meteorol 95:82437–82472

    Google Scholar 

  • Schmidt W (1908) Absorption der sonnenstrahlung in wasser. Sitzungsber Acad Wiss Wien 117, p 321

    Google Scholar 

  • Shinoda T, Lukas R (1995) Lagrangian mixed layer modeling of the western equatorial Pacific. J Geophys Res 100:2523–2541

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Google Scholar 

  • Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93:15467–15472

    Google Scholar 

  • Smith SD, Fairall CW, Geernaert GL, Hasse L (1996) Air-sea fluxes: 25 years of progress. Boundary-Layer Meteorol 78(3–4):247–290

    Google Scholar 

  • Soloviev AV, Schlüssel P (1996) Evolution of cool skin and direct air-sea gas transfer coefficient during daytime. Boundary-Layer Meteorol 77:45–68

    Google Scholar 

  • Soloviev A, Klinger B (2001) Open ocean convection. Encyclopedia of Ocean Sciences. Academic Press, UK, pp 2015–2022

    Google Scholar 

  • Soloviev A, Lukas R (1997) Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res. 44: Part I, 1055–1076

    Google Scholar 

  • Soloviev A, Lukas R, Hacker P (2001) An approach to parameterization of the oceanic turbulent boundary layer in the western Pacific warm pool. J Geophys Res 106:4421–4435

    Google Scholar 

  • Soloviev A, Fujimura A, Matt S (2012) Air-sea interface in hurricane conditions, J Geophys Res 117:C00J34. doi:10.1029/2011JC007760

    Google Scholar 

  • Soloviev A, Lukas R, Donelan M, Haus B, Ginis I (2013) The air-sea interface and surface stress under tropical cyclones. Nature Geoscience (manuscript in preparation)

    Google Scholar 

  • Stokes GG (1880) On the theory of oscillatory waves, math. phys., paper 1, 314. Cambridge University Press, Cambridge, pp 197–229

    Google Scholar 

  • Strelets M (2001) Detached eddy simulation of massively separated flows. AIAA 2001–0879, 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht pp 670

    Google Scholar 

  • Stull RB, Kraus EB (1987) The transilient model of the upper ocean. J Geophys Res 92:10745–10755

    Google Scholar 

  • Su M-Y (1982) Three-dimensional deep-water waves, Part I, experimental measurement of skew and symmetric wave patterns. J Fluid Mech 124:73–108

    Google Scholar 

  • Tan Z-M (2001) An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Boundary-Layer Meteorol 98:361–385

    Google Scholar 

  • Tanre D, Herman M, Deschamps PY, De Leffe A (1979) Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. Appl Optics 18:3587–3594

    Google Scholar 

  • Tsai W (2001) On the formation of streaks on wind‐driven water surfaces. Geophys Res Lett 28(20):3959–3962. doi:10.1029/2001GL013190

    Google Scholar 

  • Tsai W-T, Hung L-P (2007) Three-dimensional modeling of small-scale processes in the upper boundary layer bounded by a dynamic ocean surface. J Geophys Res 112:C02019. doi:10.1029/2006JC003686

    Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University. Press, NY

    Google Scholar 

  • Ulbrich CW (1983) Natural variations in the analytical form of the raindrop size distribution. J Clim Appl Meteorol 22:1764–1775

    Google Scholar 

  • Verevochkin YuG, Startsev SA (2005) Effect of absorption of solar radiation by water of different optical types on convection and heat transfer just under the air-water interface. The case of zero wind speed. J Fluid Mech 523:109–120

    Google Scholar 

  • Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088

    Google Scholar 

  • Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. part II: barrier-layer formation and variability. J Phys Oceanogr 28:1089–1106

    Google Scholar 

  • Waliser DE, Weller RA, Cess RD (1999) Comparisons between buoy-observed, satellite-derived, and modeled surface shortwave flux over the subtropical North Atlantic during the Subduction Experiment. J Geophys Res104:31301–31320

    Google Scholar 

  • Webster PJ, Lukas R (1992) TOGA COARE: the coupled ocean-atmosphere response experiment. Bull Amer Met Soc 73:1377–1416

    Google Scholar 

  • Williams R (2001) Ocean subduction. Encyclopedia of ocean sciences. Academic Press, UK, pp 1982–1993

    Google Scholar 

  • Wyngaard JC, Cote OR, Izumi Y (1971) Local free convection similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28:1172–1182

    Google Scholar 

  • Zaneveld JRV (1989) An asumptotic closure theory for iradiance in the sea and its invsersion to obtain the inherent optical properties. Limnol Oceanogr 34(8):1442–1452

    Google Scholar 

  • Zhang G, Vivekanandan J, Brandes EA, Meneghini R, Kozu T (2003) The shape–slope relation in observed gamma raindrop size distributions: statistical error or useful information? J Atmos Ocean Tech 20:1106–1119

    Google Scholar 

  • Zilitinkevich SS (1966) Effect of humidity stratification on hydrostatic stability. Izvestiya: academy of sciences, USSR. Atmos Ocean Phys 2:1089–1094

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). Introduction. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_1

Download citation

Publish with us

Policies and ethics