Skip to main content

Crustal Evolution and Deformation in a Non-Plate-Tectonic Archaean Earth: Comparisons with Venus

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

Evidence for modern plate tectonics in the Archaean is equivocal to absent, and alternative environments for formation and deformation of greenstone sequences are summarized. We focus on proposals for an unstable stagnant lid basaltic plateau crust, with cratonization occurring initially above major mantle plumes. Archaean continental drift initiated as a result of mantle traction forces acting on newly-formed subcontinental mantle keels, with further cratonic growth occurring as a result of terrane accretion to the leading edges of the migrating cratonic nuclei.

Venus is presented as an analogue for a non-plate-tectonic Archaean Earth. Despite the absence of evidence for characteristic plate tectonic environments on Venus (i.e. subduction = trenches and volcanic arcs; seafloor-spreading = volcanic ridges and transforms), the form, scale, and geometry of folds, brittle-ductile shear zones, and faults interpreted on the surface of Venus from radar imagery are comparable to mid-upper crustal structures on Earth. Anastomosing rifts link coronae interpreted to form above upwelling mantle plumes. The Lakshmi Planum highland plateau in the western Ishtar Terra region of Venus lacks extensive, regional-scale internal deformation structures, but a fold-thrust belt produced mountains on its northern margin, folds and sinistral strike-slip faults occur on its NW margin, and both regional dextral and sinistral strike slip belts occur in a zone of lateral escape to its NE. Rift zones are present along the southern margin to Lakshmi Planum. The scale and kinematics of structures in western Ishtar Terra closely resemble those of the Indian-Asia collision zone, and we propose that lateral displacement of some coronae and ‘craton-like’ highlands or plana result from mantle tractions at their base in a stagnant lid convection regime, i.e. a similar regime as interpreted to have preceded development of plate tectonics on Earth.

In the Wawa-Abitibi Subprovince of the Superior Craton in Canada, the formation of granite greenstone sequences in a plume-related volcanic plateau and subsequent deformation can be generated through geodynamic processes similar to those on Venus without having to invoke modern-style plate tectonics. 3D S-wave seismic tomographic images of the Superior Province reveal a symmetrical rift in the sub-continental lithospheric mantle (SCLM) beneath the Wawa-Abitibi Subprovince, with no evidence for ‘fossil’ subduction zones. Major gold deposits and kimberlites are located above rift-bounding faults in the SCLM. Early rift structures localized subsequent deformation and hydrothermal fluid flow during N-S shortening and lateral escape ahead of a southwardly moving indenter (the Northern Superior Craton—Hudson’s Bay terrane) in the ca. 2696 Ma Shebandowanian orogeny. The geometry of reverse and strike-slip shear zones in the Abitibi Subprovince of the SE Superior Province is similar to that of shear zones developed in western Ishtar Terra, Venus, which also formed ahead of a rigid indenter whose displacement is attributed to mantle tractions. Similarly, shortening and rift inversion in the Abitibi is ascribed to cratonic mobilism where displacement of the N Superior Province ‘proto-craton’ resulted from mantle flow acting upon its deep lithospheric keel. Deformation in other Archaean cratons previously interpreted in terms of plate tectonics may also be the result of similar, mantle-driven processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See reviews by Phillips et al. (1981); Nikishin (1990); Schaber and Kozak (1990); Solomon et al. (1991, 1992), Phillips and Hansen (1994), Basilevsky and Head (2003); Hansen and Young (2007); and Ivanov and Head (2011) for descriptions of the geology and tectonics of Venus and Ivanov and Head (2011) for a global Venus geological map.

  2. 2.

    Venus may, however, theoretically have had a period of plate tectonics during its early history (van Thienen et al. 2005), for which no evidence remains following its resurfacing.

  3. 3.

    Tectonic features interpreted from Magellan radar imagery (Saunders 1992) and definitions of terms used are summarized by Stofan et al. (1993).

  4. 4.

    Such gravity interpretations are not, however, unique as the subsurface density distribution is unknown.

  5. 5.

    These interpretations, although contrary to current views on granite genesis, received considerable world-wide press coverage (e.g. Amos 2009; CBC News 2009; Dorminey 2009), especially as the European Space Agency (2009) quotes Müller as saying ‘If there is granite on Venus, there must have been an ocean and plate tectonics in the past’. Treiman (2007) also stated that granites ‘required abundant water to form’, pushing this conjecture even further by suggesting that if granite were discovered on Ishtar Terra it would ‘yield evidence on whether Venus once had an ocean, and thus the possibility of life’. A Nature editorial (Dorminey 2009) similarly reported ‘granite highlands point to past water — and perhaps life’… Granite (s.l.) genesis does not require plate tectonics and recycling of water between mantle and atmosphere as stated by Dorminey (2009). Similarly, there is no basis from the presence of granites on Venus for comments that ‘Venus might have once been almost entirely underwater’ (N. Sleep, Stanford University, quoted in Dorminey 2009, and similarly proposed by Gramling (2009).

  6. 6.

    All comparative planetology is, naturally, fraught with inherent uncertainties, as addressed by Baker (2013), so interpretations must remain speculative.

  7. 7.

     = alternating long (ca. 50–100 km), narrow (ca. 1–3 km), shallow (< 0.5 km) flat-bottomed graben (Hansen and Willis 1998; Phillips and Hansen 1998; Ghent and Hansen 1999; Hansen et al. 1999)

  8. 8.

    The existence of a Great Meteor hotspot trail is questioned by Bédard (1985) and Matton and Jébrak (2009).

  9. 9.

    Using a Butterworth filter to separate shallow source components determined from the radially averaged energy/power spectrum. Depth estimates are calculated by Geosoft Oasis Montaj™ software using the algorithm of Spector and Grant (1970).

  10. 10.

    Arc-accretion models for the Yilgarn Craton are similarly questioned by Van Kranendonk (2011b).

References

  • Abbott DH, Drury R, Mooney WD (1997) Continents as lithological icebergs: The importance of buoyant lithospheric roots. Earth Planet Sci Lett 149:15–27

    Google Scholar 

  • Abbott DH, Isley AE (2002) Extraterrestrial influences on mantle plume activity. Earth Planet Sci Lett 205:53–62

    Google Scholar 

  • Aktas K, Eaton DW (2006) Upper-mantle velocity structure of the lower Great Lakes region. Tectonophysics 420:267–281

    Google Scholar 

  • Allard GO (1976) Doré Lake Complex and its importance to Chibougamau geology and metallogeny. Ministère des Richesses naturelles du Québec Report DP-368, 484 pp

    Google Scholar 

  • Alvarez W (2010) Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet Sci Lett 296:434–442

    Google Scholar 

  • Amos J (2009) Probe hints at past Venus ocean. BBC News. http://news.bbc.co.uk/2/hi/8149361.stm. Accessed 3 Feb 2013

  • Anderson DL (1981) Plate tectonics on Venus. J Geophys Res 8:309–311

    Google Scholar 

  • Anhaeusser CR, Mason R, Viljoen MJ, Viljoen RP (1969) Reappraisal of some aspects of Precambrian shield geology. Geol Soc Am Bull 80:2175–2200

    Google Scholar 

  • Anhaeusser CR, Stettler E, Gibson RI, Cooper GRJ (2010) A possible Mesoarchaean impact structure at Setlagole, North West Province, South Africa: aeromagnetic and field evidence. S Afr J Geol 113:413–436

    Google Scholar 

  • Annen C (2011) Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships. Tectonophysics 500:3–10

    Google Scholar 

  • Ansan V, Vergely P (1995) Evidence of vertical and horizontal motions on Venus: Maxwell Montes. Earth Moon Planets 69:285–310

    Google Scholar 

  • Ansan V, Vergely P, Masson P (1996) Model of formation of Ishtar Terra, Venus. Planet Space Sci 44:817–831

    Google Scholar 

  • Armann M, Tackley PJ (2012) Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J Geophys Res 117:E12003. doi:10.1029/2012JE00423

    Google Scholar 

  • Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res Solid Earth 108[B6]. doi:10.1029/2002JB002157

    Google Scholar 

  • Arndt NT, Lewin É, Albarède F (2002) Strange partners: formation and survival of continental crust and lithospheric mantle. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The early Earth: physical, chemical and biological development. Spec Publ, Geol Soc London, 199:91–103

    Google Scholar 

  • Arth JG, Barker F, Peterman ZE, Frideman I (1978) Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J Petrol 19:289–316

    Google Scholar 

  • Atherton MP, Petford N (1996) Plutonism and the growth of Andean crust at 9°S from 100 to 3 Ma. J S Am Earth Sci 9:1–9

    Google Scholar 

  • Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precamb Res 115:63–95

    Google Scholar 

  • Ayres LD, Thurston PC (1985) Archean supracrustal sequences in the Canadian Shield: an overview. In: Ayres LD, Thurston PC, Card KD, Weber W (eds) Evolution of Archean Supracrustal Sequences. Geol Assoc Can Spec paper 28:343–380

    Google Scholar 

  • Bailey RC (1999) Gravity-driven continental overflow and Archaean tectonics. Nature 398:413–415

    Google Scholar 

  • Baker VR (2013) Terrestrial analogs, planetary geology, and the nature of geological reasoning. Planet Space Sci (in press). doi:10.1016/j.pss.2012.10.008

    Google Scholar 

  • Bannister RA, Hansen VL (2010) Geologic map of the Artemis Chasma quadrangle (V-48) Venus: U.S. Geological Survey Scientific Investigations Map 3099. http://pubs.usgs.gov/sim/3099/sim3099_map.pdf (map) and http://pubs.usgs.gov/sim/3099/sim3099_pamphlet.pdf. Accessed 19 July 2012

  • Barker F, Arth JG (1976) Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 4:596–600

    Google Scholar 

  • Barley ME, Krapež B, Groves DI, Kerrich R (1998) The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precamb Res 91:65–90

    Google Scholar 

  • Barley ME, Kerrich R, Reudavy I, Xie Q (2000) Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. Aust J Earth Sci 47:873–883

    Google Scholar 

  • Barsukov VL et al (1986) The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J Geophys Res 91D (supplement):378–398

    Google Scholar 

  • Basilevsky AT, Head JW (2003) The surface of Venus. Rep Prog Phys 66:1699–1734

    Google Scholar 

  • Becker TW, Faccenna C (2011) Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett 310:453–46

    Google Scholar 

  • Bédard JH (1985) The opening of the Atlantic, the Mesozoic New England igneous province, and mechanisms of continental breakup. Tectonophysics 113:209–232

    Google Scholar 

  • Bédard JH (2001) Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib Mineral Petrol 141:747–771

    Google Scholar 

  • Bédard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Google Scholar 

  • Bédard JH (2010) Parental magmas of Grenville Province massif-type anorthosites, and conjectures about why massif anorthosites are restricted to the Proterozoic. Earth Environ Sci Trans R Soc Edin 100:77–103

    Google Scholar 

  • Bédard JH (2013) How many arcs can dance on the head of a plume? A ‘Comment’ on: a critical assessment of Neoarchean ‘plume only’ geodynamics: Evidence from the Superior province, by Derek Wyman, Precambrian Research, 2012. Precamb Res. 229, 189–197 doi:10.1016/j.precamres.2012.05.004

    Google Scholar 

  • Bédard JH, Brouillette P, Madore L, Berclaz A (2003) Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precamb Res 127:61–87

    Google Scholar 

  • Bédard JH, Harris LB, Thurston P (2013) The hunting of the snArc. Precamb Res 229: 20–48 http://dx.doi.org/10.1016/j.precamres.2012.04.001

    Google Scholar 

  • Bédard JH, Leclerc F, Harris LB, Goulet N (2009) Intra-sill magmatic evolution in the Cummings Complex, Abitibi greenstone belt: Tholeiitic to calc-alkaline magmatism recorded in a subvolcanic conduit system. Lithos 111:47–71

    Google Scholar 

  • Bédard JH, Marsh BD, Hersum TG, Naslund HR, Mukasa SB (2007) Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar dolerites, Antarctica: Petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. J Petrol 48:2289–2326

    Google Scholar 

  • Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, Hronsky JMA, Djomani YP, Swain CJ, Deen T, Bowden P (2009) The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5:23–50

    Google Scholar 

  • Beintema KA, Mason PRD, Nelson DR, White SH, Wijbrans JR (2003) New constraints on the timing of tectonic events in the Archaean central Pilbara Craton, Western Australia. J Virtual Explorer 13, pp 21. http://goo.gl/P9xEM. Accessed 3 Feb 2013

  • Benn K (2006) Tectonic delamination of the lower crust during Late Archean collision of the Abitibi-Opatica and Pontiac Terranes, Superior Province, Canada. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments, Geophysical Monograph Series 164:267–282

    Google Scholar 

  • Benn K, Moyen J-F (2008) The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau. GSA Special Papers 440:173–197

    Google Scholar 

  • Benn KB, Sawyer EW, Bouchez J-L (1992) Orogen parallel and transverse shearing in the Opatica belt, Quebec: implications for the structure of the Abitibi Subprovince. Can J Earth Sci 29:2429–2444

    Google Scholar 

  • Bennett VC (2004) Compositional evolution of the mantle. Treatise on Geochemistry 4, chapter 13:493–519

    Google Scholar 

  • Berclaz A, Leclair A, Far NT (2004) Structural evolution of the Northeastern Superior Province (NESP) over 1 billion years, with emphasis on greenstone belts and their relation with enclosing granitoids. American Geophysical Union, Spring Meeting 2004, abstract #V31A–03

    Google Scholar 

  • Bézard B, Tsang CCC, Carlson RW, Piccioni G, Marcq E, Drossart P (2009) Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J Geophys Res 114:E00B39. doi:10.1029/2008JE003251

    Google Scholar 

  • Bhattacharji S, Koide H (1975) Mechanistic model for triple junction fracture geometry. Nature 255:21–24

    Google Scholar 

  • Bickle MJ (1978) Heat loss from the Earth: a constraint on Archaean tectonics from the relation between geothermal gradients and the rate of heat production. Earth Planet Sci Lett 40:301–315

    Google Scholar 

  • Bickle MJ (1986) Implications of melting for stabilization of the lithosphere and heat loss in the Archean Earth Planet. Sci Lett 80:314–324

    Google Scholar 

  • Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH, de Laeter JR (1989) The age and origin of younger granitic plutons of the Shaw batholith in the Archaean Pilbara Block, Western Australia. Contrib Mineral Petrol 101:361–376

    Google Scholar 

  • Bickle MJ, Nisbet EG, Martin A (1995) Archean greenstone belts are not oceanic crust. J Geol 102:121–138

    Google Scholar 

  • Biczok J, Hollings P, Klipfel P, Heaman L, Maas R, Hamilton M, Kamo S, Friedman R (2012) Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine. Precamb Res 192–195:209–230

    Google Scholar 

  • Bierlein FP, Groves DI, Goldfarb RJ, Dubé B (2006) Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner Deposita 40:874–886

    Google Scholar 

  • Bilotti F, Suppe J (1999) The global distribution of wrinkle ridges on Venus. Icarus 139:37–157

    Google Scholar 

  • Bindschadler DL, Schubert G, Kaula WM (1992) Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J Geophys Res 97:13495–13532

    Google Scholar 

  • Bleamaster LF, Hansen VL (2004) Effects of crustal heterogeneity on the morphology of chasmata, Venus. J Geophys Res 109: E02004. doi:10.1029/2003JE002193

    Google Scholar 

  • Bleeker W (2002) Archaean tectonics: a review, with illustrations from the Slave Craton. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The Early Earth: Physical, Chemical and Biological Development. Geol Soc London Spec Publ 199:151–181

    Google Scholar 

  • Bleeker W (2012) Targeted Geoscience Initiative 4. Lode gold deposits in ancient deformed and metamorphosed terranes: the role of extension in the formation of Timiskaming basins and large gold deposits, Abitibi Greenstone Belt—A discussion. Summary of Field Work and Other Activities 2012, Ontario Geological Survey. Open File Report 6280:47-1–47-12

    Google Scholar 

  • Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke Swarms—time markers of crustal evolution. Taylor and Francis/Balkema, London, pp 3–26

    Google Scholar 

  • Bleeker W, Breemen O van, Berger B (2008). The Pipestone Thrust and the fundamental architecture of the south-central Abitibi greenstone belt, Superior craton, Canada. Quebec 2008 GAC-MAC-SEG-SGA Joint annual meeting, session SY8: Abitibi (Québec, May 27–30, 2008). http://goo.gl/9BVmT. Accessed 3 Feb 2013

  • Blewett RS, Champion DC, Whitaker AJ, Bell B, Nicoll M, Goleby BR, Cassidy KF, Groenewald PB (2002) Three dimensional (3D) model of the Leonora-Laverton transect area: implications for Eastern Goldfields tectonics and mineralisation. In: Cassidy KF (ed) Geology, geochronology and geophysics of the north eastern Yilgarn Craton, with an emphasis on the Leonora-Laverton transect area. Geoscience Australia, Record 2002/18:83–100

    Google Scholar 

  • Blewett RS, Czarnota K, Henson PA (2010a) Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precamb Res 183:203–229

    Google Scholar 

  • Blewett RS, Henson PA, Roy IG, Champion DC, Cassidy KF (2010b) Scale-integrated architecture of a world-class gold mineral system: the Archaean eastern Yilgarn Craton, Western Australia. Precamb Res 183:230–250

    Google Scholar 

  • Blichert-Toft J, Arndt NT, Gruau G (2004) Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chem Geol 207:261–275

    Google Scholar 

  • Boily M, Leclair A, Maurice C, Bédard JH, David J (2009) Paleo- to Mesoarchean basement recycling and terrane definition in the Northeastern Superior Province, Québec, Canada. Precamb Res 168:23–44

    Google Scholar 

  • Bonin B (2012) Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis. Lithos 153:3–24. doi: 10.1016/j.lithos.2012.04.007

    Google Scholar 

  • Bonin B, Bébien J, Masson P (2002) Granite: A planetary point of view. Gondwana Res 5:261–273

    Google Scholar 

  • Bowden P, Black R, Martin RF, Ike EC, Kinnaird JA, Batchelor RA (1987) Niger-Nigerian alkaline ring complexes: a classic example of African Phanerozoic anorogenic mid-plate magmatism. In: Fitton JG, Upton BGJ (eds) Alkaline Igneous Rocks. Geol Soc London Spec Pub 30:357–379

    Google Scholar 

  • Boyd FR (1998) The origin of cratonic peridotites: A major-element approach. Int Geol Rev 40:755–764

    Google Scholar 

  • Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR)-type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual. high-temperature silicic super-eruptions. Bull Volcanol 70:293–314

    Google Scholar 

  • Brown CD, Grimm RE (1995) Tectonics of Artemis Chasma: a Venusian ’plate’ boundary. Icarus 117:219–249

    Google Scholar 

  • Brown CD, Grimm RE (1999) Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139:40–48

    Google Scholar 

  • Brown CD, Phillips RJ (1999) Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139:40–48

    Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: A record of secular change. Int Geol Rev 49:193–234

    Google Scholar 

  • Brown M (2009) Metamorphic patterns in orogenic systems and the geological record. In: Cawood PA, Kröner A (eds) Earth Accretionary Systems in Space and Time. Geol Soc London Special Pub 318:37–74

    Google Scholar 

  • Bruegge RWV, Head JW (1990) Orogeny and large-scale strike-slip faulting on Venus: Tectonic Evolution of Maxwell Montes. J Geophys Res 95:8357–8381

    Google Scholar 

  • Brun J-P, Tron V (1993) Development of the North Viking Graben; inferences from laboratory modelling. In: Cloetingh S, Sassi W, Horvath F, Puigdefabregas C (eds) Basin Analysis and Dynamics of Sedimentary Basin Evolution. Sediment Geol 86:31–51

    Google Scholar 

  • Buchan KL, Hamilton MA (2009). New geochronologic and paleomagnetic results for the Grenville Dyke Swarm and implications for the Ediacaran APWP for Laurentia. EOS 90, n. 22, Jt. Assem. Suppl., Abstract GA12A–04

    Google Scholar 

  • Bursnall JT, Leclair AD, Moser DE, Percival JA (1994) Structural correlation within the Kapuskasing uplift. Can J Earth Sci 31:1081–1095

    Google Scholar 

  • Burov EB (2010) The equivalent elastic thickness (Te), seismicity and the long-term rheology of continental lithosphere: Time to burn-out “crème brûlée”? Insights from large-scale geodynamic modeling. Tectonophysics 484:4–26

    Google Scholar 

  • Burov EB, Cloetingh S (2010) Plume-like upper mantle instabilities drive subduction initiation. Geohys Res Lett 37:L03309. doi:10.1029/2009GL041535

    Google Scholar 

  • Burov EB, Watts AB (2006) The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today 16:4–10

    Google Scholar 

  • Cadéron S (2003) Interpretation tectonometamorphique du nord de la province du Supérieur, Québec, Canada. PhD thesis, l’Université du Québec à Chicoutimi. http://constellation.uqac.ca/493/1/24684368.pdf. Accessed 3 Feb 2013

  • Cadéron S, Rivers T (2006) Inverted metamorphism at the eastern margin of the Superior Province: new insights on regional metamorphic overprinting along the Grenville Front in Québec, Canada. Abstract Volume, Montreal 2006, GAC-MAC: 22–23. www.gac.ca/activities/abstracts/ABSTRACT_VOLUME31.pdf. Accessed 3 Feb 2013

    Google Scholar 

  • Cagnard F, Brun J-P, Gapais D (2006a) Modes of thickening of analogue weak lithospheres. Tectonophysics 421:145–160

    Google Scholar 

  • Cagnard F, Durrieu N, Gapais D, Brun J-P, Ehlers C (2006b) Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova 18:72–78

    Google Scholar 

  • Calvert AJ, Ludden JN (1999) Archean continental assembly in the southeastern Superior Province of Canada. Tectonics 18:412–429

    Google Scholar 

  • Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674

    Google Scholar 

  • Camiré GE, Burg J-P (1993) Late Archaean thrusting in the northwestern Pontiac Subprovince, Canadian Shield. Precamb Res 61:51–66

    Google Scholar 

  • Camiré GE, Ludden JN, La Flèche MR, Burg J-P (1993) Mafic and ultramafic amphibolites from the northwestern Pontiac Subprovince: chemical characterization and implications for tectonic setting. Can J Earth Sci 30:1110–1122

    Google Scholar 

  • Campbell IH (2001) Identification of ancient mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle Plumes: their identification through time. Geol Soc Am Spec paper 352:5–21

    Google Scholar 

  • Campbell IH, Griffiths RW, Hill RI (1989) Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339:697–699

    Google Scholar 

  • Campbell IH, Taylor SR (1983) No water, no granites—no oceans, no continents. J Geophys Res 10:1061–1064

    Google Scholar 

  • Canadian Aeromagnetic Data Base (2012) Abitibi, Quebec-Ontario Compilation. Geoscience Data Repository, Geological Survey of Canada, Earth Sciences Sector, Natural Resources Canada, Government of Canada

    Google Scholar 

  • Canadian Geodetic Information System (2012) Geoscience Data Repository, Geodetic Survey Division, Earth Sciences Sector, Natural Resources Canada, Government of Canada

    Google Scholar 

  • Canil D (2008) Canada’s craton: a bottoms-up view. GSA Today 18:4–10

    Google Scholar 

  • Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precamb Res 48:99–156

    Google Scholar 

  • Card KD (1991) General comparison of the Canadian and Baltic shields. In: Ojakangas RW (ed) Precambrian Geology Of The Southern Canadian Shield and the eastern Baltic Shield, Minnesota Geological Survey Information Circular 34, iv–v

    Google Scholar 

  • Card KD, Poulsen KH (1998) Geology and mineral deposits of the Superior Province of the Canadian Shield: Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America. In: Lucas, SB, St-Onge MR (eds) Geology of North America vol. 3-1, Geological Survey of Canada, Ottawa, pp. 13–204

    Google Scholar 

  • Carrier A, Jébrak M, Angelier J, Holyland P (2000) The Silidor deposit, Rouyn-Noranda District, Abitibi Belt: Geology, structural evolution, and paleostress modeling of an Au quartz vein-type deposit in an Archean trondhjemite. Econ Geol 95:1049–1055

    Google Scholar 

  • Cathey HE, Nash BP (2004) The Cougar Point Tuff: Implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27–58

    Google Scholar 

  • Cawood PA, Kröner A, Pisarevsky S (2006) Precambrian plate tectonics: Criteria and evidence. GSA Today 16:4–11

    Google Scholar 

  • CBS News (2009) Venus probe images hint at ancient ocean. Quirks and Quarks Blog. http://www.cbc.ca/news/technology/story/2009/07/14/venus-ocean-water-express.html. Accessed 3 Feb 2013

  • Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes. Precamb Res 83:109–132

    Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for early Archean crustal growth. In: Van Kranendonk M, Smithies RH, Bennett VC (eds) Earth’s Oldest rocks, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 369–409

    Google Scholar 

  • Chappell BW, Stephens WE (1988) Origin of infracrustal (I-type) granite magmas. In: Brown PE, Chappel BW (eds) Second Hutton Symposium: The Origin of Granites and Related Rocks, Trans Royal Soc Edin Earth Sci 83:71–86

    Google Scholar 

  • Chardon D, Andronicos CL, Hollister LS (1999) Large-scale transpressive shear zone patterns and displacements within magmatic arcs: The coast plutonic complex, British Columbia. Tectonics 18:278–292

    Google Scholar 

  • Chardon D, Choukroune P, Jayananda M (1996) Strain patterns, décollement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (south India). J Struct Geol 18:991–1004

    Google Scholar 

  • Chardon D, Choukroune P, Jayananda M (1998) Sinking of the Dharwar Basin (south India): implications for Archaean tectonics. Precamb Res 91:15–39

    Google Scholar 

  • Chardon D, Jayananda M, Chetty TRK, Peucat JJ (2008) Precambrian continental strain and shear zone patterns: South Indian case. J Geophys Res 113:B08402. Doi:10.1029/2007JB005299

    Google Scholar 

  • Chardon D, Jayananda M, Peucat JJ (2011) Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst 12. Doi:10.1029/2010GC003398

    Google Scholar 

  • Chardon D, Peucat JJ, Jayananda M, Choukroune P, Fanning CM (2002) Archean granite-greenstone tectonics at Kolar (South India): interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics 21(3) art. 1016

    Google Scholar 

  • Chavagnac V (2004) A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281

    Google Scholar 

  • Chen C-W, Li A (2012) Shear wave structure in the Grenville Province beneath the lower Great Lakes region from Rayleigh wave tomography. J Geophys Res 117: B01303. doi:10.1029/2011JB008536.

    Google Scholar 

  • Chetty TRK, Venkatrayudu M, Venkatasivappa V (2010) Structural architecture and a new tectonic perspective of Ovda Regio, Venus. Planet Space Sci 58:1286–1297

    Google Scholar 

  • Choukroune P, Bouhallier H, Arndt NT (1995) Soft lithosphere during periods of Archaean crustal growth or crustal reworking. Geol Soc London Spec Pubs 95:67–86

    Google Scholar 

  • Chown EH, Daigneault R, Mueller W, Mortensen JK (1992) Tectonic evolution of the Northern Volcanic Zone, Abitibi Belt, Quebec. Can J Earth Sci 29:2211–2225

    Google Scholar 

  • Chown EH, Harrap R, Moukhsil A (2002) The role of granitic intrusions in the evolution of the Abitibi belt, Canada. Precamb Res 115:291–310

    Google Scholar 

  • Clowes RM, White DJ, Hajnal Z (2010) Mantle heterogeneities and their significance: Results from Lithoprobe seismic reflection and refraction/wide-angle reflection studies. Can J Earth Sci 47:409–443

    Google Scholar 

  • Cobbold PR, Davy P (1988) Indentation tectonics in nature and experiment. 2. Central Asia. Bull Geol Instit Uppsala 14:143–162

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36

    Google Scholar 

  • Coffin MF, Gahagan LM (1995) Ontong Java and Kerguelen plateaux: Cretaceous Icelands? J Geol Soc London 152:1047–1052

    Google Scholar 

  • Coldwell B, Clemens J, Petford N (2011) Deep crustal melting in the Peruvian Andes: felsic magma generation during delamin Geological Survey of Canada, ation and uplift. Lithos 125:272–286

    Google Scholar 

  • Collins WJ (1993) Melting of Archaean sialic crust under high aH2O conditions: genesis of 3300 Ma Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, Western-Australia. Precamb Res 60:151–174

    Google Scholar 

  • Collins WJ, Van Kranendonk MJ, Teyssier C (1998) Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications. J Struct Geol 20:1405–1424

    Google Scholar 

  • Coltice N, Bertrand H, Rey P, Jourdan F, Phillips BR, Ricard Y (2009) Global warming of the mantle beneath continents back to the Archaean. Gondwana Res 15:254–266

    Google Scholar 

  • Condie KC (1981) Archean Greenstone Belts. Elsevier, Amsterdam, pp 434

    Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4. doi:2002GC000333

    Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504

    Google Scholar 

  • Connolly BD, Puchtel IS, Walker RJ, Arevalo R, Piccoli PM, Byerly G, Robin-Popieul C, Arndt N (2011) Highly siderophile element systematics of the 3.3 Ga Weltevreden Komatiites, South Africa: implications for early Earth history. Earth Planet Sci Lett 311:253–263

    Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2006) Influence of continental roots and asthenosphere on plate-mantle coupling, Geophys Res Lett 33: L05312. doi:10.1029/2005GL025621

    Google Scholar 

  • Cook FA, van der Velden AJ (2012) Crustal seismic reflection profiles of collisional orogens. In: Roberts DG, Bally AW (eds) Regional Geology and Tectonics: Principles of Geologic Analysis, Elsevier, 179–213. doi:10.1016/B978-0-444-53042-4.00007-8

    Google Scholar 

  • Corrigan D, Hanmer S (1997) Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere? Geology 25:61–64

    Google Scholar 

  • Crisp D et al (2002) Divergent Evolution Among Earth-like Planets: The Case for Venus Exploration. In: Sykes MV (ed) The Future of Solar System Exploration (2003–2013) Astronomical Society of the Pacific Conference Proceedings 272: 5–34

    Google Scholar 

  • Cruden AR, Nasseri MHB, Pysklywec R (2006) Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models. In: Buiter SJH, Schreurs G (eds). Analogue and Numerical Modelling of Crustal-Scale Processes. Geol Soc London Spec Pubs 253:79–104

    Google Scholar 

  • Crumpler LS, Head JH, Campbell DB (1988) Orogenic belts on Venus. Geology 14:1031–1034

    Google Scholar 

  • Cunningham WD (2001) Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331:389–411

    Google Scholar 

  • Czarnota K, Champion DC, Cassidy KF, Goscombe B, Blewett RS, Henson PA, Groenewald PB (2010) The geodynamics of the Eastern Goldfields Superterrane. Precamb Res 183:175–202

    Google Scholar 

  • Daigneault R (1991) Évolution structurale du segment de roches vertes de Chibougamau, Sous-Province archéenne de l’Abitibi, Québec. PhD thesis, Université Laval. 352 p. doi:01–1494946

    Google Scholar 

  • Daigneault R (1996) Couloirs de déformation de la Sous-Province de l’Abitibi. MB 96–33, Ministère des Ressources naturelles, Secteur des mines, Québec, 128 pp

    Google Scholar 

  • Daigneault R, St-Julien P, Allard GO (1990) Tectonic evolution of the northeast portion of the Archean Abitibi greenstone belt, Chibougamau area, Quebec. Can J Earth Sci 27:1714–1736

    Google Scholar 

  • Daigneault R, Mueller WU, Chown EH (2002) Oblique Archean subduction: accretion and exhumation of an oceanic arc during dextral transpression, Southern Volcanic Zone, Abitibi Subprovince Canada. Precamb Res 115:261–290

    Google Scholar 

  • Darling J, Storey C, Hawkesworth C (2009) Impact melt sheet zircons and their implications for the Hadean crust. Geology 37:927–930

    Google Scholar 

  • Davies GF (1979) Thickness and thermal history of continental crust and root zones. Earth Planet Sci Lett 44:231–238

    Google Scholar 

  • Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966

    Google Scholar 

  • Davies GF (2006) Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet Sci Lett 243:376–382

    Google Scholar 

  • Davies GF (2008) Episodic layering of the early mantle by the ’basalt barrier’ mechanism. Earth Planet Sci Lett 275:382–392

    Google Scholar 

  • Davis DW, Edwards G (1986) Crustal evolution of Archean rocks in the Kakagi Lake area, Wabigoon subprovince, northwest Ontario. Can J Earth Sci 23:182–192

    Google Scholar 

  • Davis WJ, Machado N, Gariépy C, Sawyer EW, Benn K (1995) U—Pb geochronology of the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt, Superior Province, Quebec. Can J Earth Sci 32:113–127

    Google Scholar 

  • Davy P, Cobbold PR (1988) Indentation tectonics in nature and experiment. 1. Experiments scaled for gravity. Bull Geol Inst Uppsala 14:129–141

    Google Scholar 

  • Debaille V, O’Neill C, Brandon AD, Haenecour P, Yin Q-Z, Mattielli N, Treiman AH (2012) Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. 22nd VM Goldschmidt Conference, Earth in Evolution, June 24–29, Montreal, Canada, Abstract, session 5, p 35

    Google Scholar 

  • de Brémond d’Ars J, Lécuyer C, Reynard B (1999) Hydrothermalism and diapirism in the Archean: gravitational instability constraints. Tectonophysics 304:29–39

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Google Scholar 

  • DeLaughter JE, Jurdy DM (1999) Corona classification by evolutionary stage. Icarus 139:81–92

    Google Scholar 

  • De Smet J, Van den Berg AP, Vlaar NJ (2000) Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle. Tectonophysics 322:19–33

    Google Scholar 

  • Desrochers J-P, Hubert C, Ludden JN, Pilote P (1993) Accretion of Archean oceanic plateau fragments in the Abitibi greenstone belts, Canada. Geology 21:451–454

    Google Scholar 

  • de Wit MJ (1982) Gliding and overthrust nappe tectonics in the Barberton greenstone belt. J Struct Geol 4:117–136

    Google Scholar 

  • de Wit MJ (1998) Early Archean processes: evidence from the South African Kaapvaal craton and its greenstone belts. Geol Mijnbouw 76:369–373

    Google Scholar 

  • de Wit MJ, de Ronde CEJ, Tredoux M, Roering C, Hart RJ, Armstrong RA, Green RWE, Pebedy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bull Geol Soc Am 123:387–411

    Google Scholar 

  • Dimroth E, Imreh L, Rocheleau M, Goulet N (1982) Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part I: Stratigraphy and paleogeographic model. Can J Earth Sci 19:1729–1758

    Google Scholar 

  • Dimroth E, Imreh L, Goulet N, Rocheleau M (1983) Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part III: Plutonic and metamorphic evolution and geotectonic model. Can J Earth Sci 20:1374–1388

    Google Scholar 

  • Dimroth E, Rocheleau M, Mueller W (1984) Paleogeography, isostasy and crustal evolution of the Archean Abitibi Belt: a comparison between the Rouyn-Noranda and Chibougamau areas. Guha J Chown EH (eds) Chibougamau—Stratigraphy Mineralization Can Inst Mining Spec 34:73–91

    Google Scholar 

  • Dimroth E, Mueller W, Daigneault R, Brisson H, Poitras A, Rocheleau M (1986) Diapirism during regional compression: the structural pattern in the Chibougamau region of the Archean Abitibi Belt, Quebec: Geol Rund 75:715–736

    Google Scholar 

  • Dinel E, Bleeker W, Ayer J, Dubé B (2008) Structural investigation and mineral potential of the Kidd-Munro assemblage in Clergue and Walker townships. Geo Surv Canada Current Res 2008-23, pp 10

    Google Scholar 

  • Donaldson JA, de Kemp EA (1998) Archaean quartz arenites in the Canian Shield; examples from the Superior and Churchill provinces. Sediment Geol 120:153–176

    Google Scholar 

  • Dorminey B (2009) Venus may have had continents and oceans. Nature. doi:10.1038/news.2009.24. http://www.nature.com/news/2009/090113/full/news.2009.24.html. Accessed 3 Feb 2013

  • Dostal J, Mueller WU (2013) Deciphering an Archean mantle plume: Abitibi greenstone belt, Canada. Gondwana Res 23:493–505

    Google Scholar 

  • Dubé B (1990) Metallogénie aurifere du filon-couche de Bourbeau, région de Chibougamau, Québec. PhD Thesis, Université du Quebec à Chicoutimi. http://constellation.uqac.ca/1590/1/1458270.pdf. Accessed 3 Feb 2013

  • Dubé B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. In: Goodfellow WD (ed). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Spec Pub 5:49–73

    Google Scholar 

  • Dubé B, Guha J (1992) Relationship between NE trending regional faults and Archean mesothermal gold-copper mineralization: Cooke mine, Abitibi greenstone belt, Quebec, Canada. Econ Geol 87:1525–1540

    Google Scholar 

  • Ducea M, Saleeby J (1998) A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev 40:78–93

    Google Scholar 

  • Duchesne JC, Wilmart E (1997) Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway). A jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. J Petrol 38:337–369

    Google Scholar 

  • Dufréchou G (2011) Origine et implications tectoniques de structures transverses profondes interprétées à partir de données de champ potentiel, Province de Grenville, Canada. PhD Thesis, INRS-ETE, Québec. http://www1.ete.inrs.ca/pub/theses/T000603.pdf

  • Dufréchou G, Harris LB (2013) Tectonic models for the origin of regional transverse structures in the SW Grenville Province interpreted from regional gravity. J. Geodynamics 64:15–39

    Google Scholar 

  • Duncan RA (1981) Hotspots in the southern oceans—An absolute frame of reference for motion of the Gondwana continents. Tectonophysics 74:29–42

    Google Scholar 

  • Drury SA (1993) Image Interpretation in Geology, 2nd Edition. Chapman and Hall, London

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Eaton DW, Frederiksen A (2007) Seismic evidence for convection-driven motion of the North American plate. Nature 446:428–431

    Google Scholar 

  • Ellis BS, Barry T, Branney MJ, Wolff JA, Bindeman I, Wilson R, Bonnichsen B (2011) Petrologic constraints on the development of a large-volume, high temperature, silicic magma system the Twin Falls eruptive centre, central Snake River Plain. Lithos 120:475–489

    Google Scholar 

  • Elkins-Tanton LT (2007) Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J Geophys Res Solid Earth 112(B3) doi 10.1029/2005JB004072

    Google Scholar 

  • Elkins-Tanton LT, Hager BH (2005) Giant meteoroid impacts can cause volcanism. Earth Planet Sci Lett 239:219–232

    Google Scholar 

  • Elkins-Tanton LT, Hager BH, Grove TL (2004) Magmatic effects of the lunar late heavy bombardment. Earth Planet Sci Lett 222:17–27

    Google Scholar 

  • Erickson EJ (2010) Structural and kinematic analysis of the Shagawa Lake Shear Zone, Superior Province, Northern Minnesota: Implications for the role of vertical versus horizontal tectonics in the Archean. Can J Earth Sci 47:1463–1479

    Google Scholar 

  • Ernst RE (2007) Large Igneous Provinces (LIPs) in Canada through time and their metallogenic potential. In: Goodfellow WD (ed) Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, geological association of Canada, mineral deposits division, Special Publication 5, pp 929–937.

    Google Scholar 

  • Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to present. Can J Earth Sci 47:695–739

    Google Scholar 

  • Ernst RE, Buchan KL (2003) Recognizing mantle plumes in the geological record. Ann Rev Earth Planet Sci 31:469–523

    Google Scholar 

  • Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on Earth. Phys Earth Planet Int 146:195–229

    Google Scholar 

  • Ernst RE, Head JW, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58

    Google Scholar 

  • Ernst WG (2007) Speculations on evolution of the terrestrial lithosphere-asthenosphere system—Plumes and plates. Gondwana Res 11:38–49

    Google Scholar 

  • European Space Agency (2009) New map hints at Venus’ wet volcanic past. http://goo.gl/9HRwX. Accessed 3 Feb 2013

  • Faure S (2001) Analyse des linéaments géophysiques en relation avec les minéralisations en or et métaux de base de l’Abitibi. Rapport, Projet CONSOREM 2000-03A, 26 p

    Google Scholar 

  • Faure S (2009) Reconnaissance des structures synvolcaniques fertiles pour les minéralisations de sulfures massifs volcanogènes (Cu-Zn) dans le groupe de Blake River, Abitibi. Rapport du projet CONSOREM 2007-03, 48p

    Google Scholar 

  • Faure S (2010) World Kimberlites CONSOREM Database (Version 3), Consortium de Recherche en Exploration Minérale CONSOREM, Université du Québec à Montréal

    Google Scholar 

  • Faure S, Rafini S (2004) Modélisation des paléocontraintes et des paléopressions le long de la Faille Porcupine-Destor: Implication pour la formation de bassins sédimentaires, d’intrusions et de minéralisations aurifères. Rapport du projet CONSOREM 2003-03, 47 pp. https://consorem.uqac.ca/production_scien/2003_03/2003-03_paleo_fpdm.pdf. Accessed 1 Feb 2013

  • Faure S, Daigneault R, Godey S (2008) La géométrie et la fertilité des ceintures de roches vertes archéennes de la Province du lac Supérieur: Reflet de l’architecture et de la modification du manteau lithosphérique. Abstract, Québec Exploration 2008. http://goo.gl/fKlcA and poster http://goo.gl/EvrVO. Accessed 3 Feb 2013

  • Faure S, Godey S, Fallara F (2010a) Tomographie sismique des cratons et des ceintures de roches vertes: exploration régionale pour le diamant et l’or. Ateliers CONSOREM: Utilisation des outils et méthodes du CONSOREM, Québec Exploration 2010, http://goo.gl/61dOX. Accessed 1 Feb 2013

  • Faure S, Rafini S, Trépanier S (2010b) Modélisation géomécanique des paléocontraintes pour l’exploration de l’or orogénique en Abitibi. Québec Exploration 2010– Ateliers CONSOREM: Utilisation des outils et méthodes du CONSOREM. http://goo.gl/kbevC Accessed 1 Feb 2013

  • Faure S, Godey S, Fallara F, Trépanier S (2011) Seismic architecture of the Archean North American mantle and its relationship to diamondiferous kimberlite fields. Econ Geol 106:223–240

    Google Scholar 

  • Fayol N, Harris LB, Jébrak M (2011) Dynamique transpressive et rôle des hétérogénéités crustales dans la localisation du bassin de Desmaraisville (Abitibi): étude géophysique et modélisation analogique. Résumés des conférences et des photoprésentations, Québec Exploration 2011, DV 2011-03, 41

    Google Scholar 

  • Fayol N, Harris LB, Jébrak M (2012) Transpressional dynamics and the role of crustal heterogeneities in the localization of the Desmaraisville basin (Abitibi): Geophysical study and analogue modelling. Abstract, PDAC 2012 International Convention, Trade Show and Investors Exchange, Toronto. http://goo.gl/uhxqx. Accessed 1 Feb 2013

    Google Scholar 

  • Fernández C, Anguita F, Ruiz J, Romeo I, Martín-Herrero ÁI, Rodríguez A, Pimentel C (2010) Structural evolution of Lavinia Planitia, Venus: Implications for the tectonics of the lowland plains. Icarus 206:210–228

    Google Scholar 

  • Flament N (2009) Secular cooling of the solid Earth, emergence of the continents, and evolution of Earth’s external envelopes. PhD thesis, U Sydney. http://goo.gl/2fN20. Accessed 3 Feb 2013

    Google Scholar 

  • Forte AM, Moucha R, Simmons NA, Grand SP, Mitrovica JX (2010) Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophysics 481:3–15

    Google Scholar 

  • Foster A, Nimmo F (1996) Comparisons between the rift systems of East Africa, Earth and Beta Regio, Venus. Earth Planet Sci Lett 143:183–195

    Google Scholar 

  • Fowler AC, O’Brien SBG (2003) Lithospheric failure on Venus. Proc R Soc Lond 459:2663–2704

    Google Scholar 

  • Fralick P, Wu J, Williams HR (1992) Trench and slope basin deposits in an Archean metasedimentary belt, Superior Province, Canadian Shield. Can J Earth Sci 29:2551–2557

    Google Scholar 

  • Frederiksen S, Braun J (2001) Numerical modelling of strain localisation during extension of the continental lithosphere. Earth Planet Sci Lett 188:241–251

    Google Scholar 

  • Frederiksen AW, Miong S-K, Darbyshire FA, Eaton DW, Rondenay S, Sol S (2007) Lithospheric variations across the Superior Province, Ontario, Canada: Evidence from tomography and shear wave splitting. J Geophys Res 112:B07318. doi:10.1029/2006JB004861

    Google Scholar 

  • Friend CRL, Nutman AP (2010) Eoarchean ophiolites? New evidence for the debate on the Isua Supracrustal Belt, Southern West Greenland. Am J Sci 310:826–861

    Google Scholar 

  • Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13:30–44

    Google Scholar 

  • Frost CD, Frost BR, Lindsley DH, Chamberlain KR, Swapp SM, Scoates JS (2010) Geochemical and isotopic evolution of the anorthositic plutons of the Laramie Anorthosite Complex: Explanations for variations in silica activity and oxygen fugacity of massif anorthosites. Can Mineral 48:925–946

    Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007a) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007b) Response to comments on ”A vestige of Earth’s oldest ophiolite”. Science 318:U4–U5

    Google Scholar 

  • Furnes H, de Wit M, Robins B, Sandsta NR (2011) Volcanic evolution of the upper Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precamb Res 186:28–50

    Google Scholar 

  • Galley A, Hannington M, Jonasson I (2008) Volcanogenic Massive Sulphide Deposits. In: Goodfellow WD (ed) Mineral Deposits of Canada: A Synthesis of Major Deposit Types. Geological Association of Canada, Mineral Deposits Division and Geological Survey of Canada Special Publication 5 ISBN-13: 978-1-897095-24-9, pp 141–162

    Google Scholar 

  • Gariépy C, Allègre CJ (1985) The lead isotope geochemistry of late kinematic intrusives from the Abitibi greenstone belt, and their implications for late Archean crustal evolution. Geochim Cosmochim Acta 49:2371–2384

    Google Scholar 

  • Ghent R, Hansen V (1999) Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139:116–136

    Google Scholar 

  • Gibson IL, Roberts RG, Gibbs A (1986) An extensional fault model for the early development of greenstone belts, with reference to a portion of the Abitibi belt, Ontario, Canada. Earth Planet Sci Lett 79:159–167

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer Verlag, Berlin, p 390

    Google Scholar 

  • Girardi JD, Patchett PJ, Ducea MN, Gehrels GE, Cecil MR, Rusmore ME, Woodsworth GJ, Pearson DM, Manthei C, Wetmore P (2012) Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains Batholith, British Columbia. J Petrol 53:1505–1536

    Google Scholar 

  • Glukhovskiy MZ, Pavlovskiy YeV, Moralev VM (1986) Ring structures and granite-gneiss domes. Int Geol Rev 28:1202–1212

    Google Scholar 

  • Godey S (2002) Structure of the uppermost mantle beneath North America: Regional surface wave tomography and thermo-chemical interpretation, Tekst Proefschrift Universiteit Utrecht. http://goo.gl/pB5Lw. Accessed 1 Feb 2013

  • Godey S, Deschamps F, Trampert J, Snieder R (2004) Thermal and compositional anomalies beneath the North American continent, J Geophys Res 109, B01308. doi:10.1029/2002JB002263

    Google Scholar 

  • Godey S, Snieder R, Villaseñor A, Benz HM (2003) Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: phase velocity maps and limitations of ray theory. Geophys J Int 152:620–632

    Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Robert F, Gosselin P (2005) World distribution, productivity, character, and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniversary Volume 407–450

    Google Scholar 

  • Goodwin AM (1977) Archean volcanism in Superior Province, Canadian Shield. Geol Assoc Can Spec Pap 16:205–241

    Google Scholar 

  • Goodwin AM (1981) Archaean plates and greenstone belts. In: Kröner A (ed) Precambrian Plate Tectonics, Elsevier Amsterdam, pp 105–135

    Google Scholar 

  • Goodwin AM (1996) Principles of Precambrian Geology. Academic Press, London, pp 327

    Google Scholar 

  • Gorczyk W, Hobbs B, Gerya TV (2012) Initiation of Rayleigh–Taylor instabilities in intra-cratonic settings. Tectonophysics 514–517:146–155

    Google Scholar 

  • Gosselin G (1998) Veines de quartz aurifères précoces à la zone ouest de la mine Doyon, Canton de Bousquet, Preissac, Abitibi. Mémoire, Université du Québec à Chicoutimi. http://constellation.uqac.ca/1029/1/11644776.pdf Accessed 1 Feb 2013

  • Gosselin P, Dubé B (2005) Gold deposits and gold districts of the world. Geological Survey of Canada, Open File, 4893

    Google Scholar 

  • Goutier J (2006) Géologie de la région du lac au Goéland (32F/15). RG 2005-05, Géologie Québec, Ministère des Ressources naturelles et de la Faune, Québec

    Google Scholar 

  • Goutier J, Melançon M (2007) Compilation géoologique de la Sous-province de l’Abitibi (version préliminaire): Ministère des Ressources naturelles et de la Faune du Québec, Report RP2010-04 (1:250,000)

    Google Scholar 

  • Gramling C (2009) Venus’ gentler, Earth-like past. Earth Magazine. http://www.earthmagazine.org/article/venus-gentler-earth-past. Accessed 3 Feb 2013

  • Gray R, Pysklywec RN (2010) Geodynamic models of Archean continental collision and the formation of mantle lithosphere keels. Geophys Res Lett 37:L19301. doi:10.1029/2010GL043965

    Google Scholar 

  • Green DH, Falloon TJ (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson I (ed) The Earth’s Mantle: Composition, Structure and Evolution. Cambridge University Press, Cambridge, UK, pp 311–378

    Google Scholar 

  • Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: Is anything subducted? Episodes 30:43–53

    Google Scholar 

  • Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precamb Res 127:19–41

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2010) The evolution and extent of Archean continental lithosphere: implications for tectonic models. In: Planet Formation, Crustal Growth and the Evolving Lithosphere: 5th International Archean Symposium. http://goo.gl/GTvz1. Accessed 3 Feb 2013

  • Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the north American plate. Lithos 77:873–922

    Google Scholar 

  • Grimm RE (1998) What do we really know about the heat flow of Venus (or anyplace else we can’t stick with probes?). The Leading Edge, Nov. 1998:1,544-1,546

    Google Scholar 

  • Grimm RE, Phillips RJ (1992) Anatomy of a Venusian hot spot: Geology, gravity, and mantle dynamics of Eistla Regio. J Geophys Res 97E:16,035–16,054

    Google Scholar 

  • Grimm RE, Hess PC (1997) The Crust of Venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson, 1205–1244

    Google Scholar 

  • Grimm RE, Barr AC, Harrison KP, Stillman DE, Neal KL, Vincent MA, Delory GT (2012) Aerial electromagnetic sounding of the lithosphere of Venus. Icarus 217:462–473

    Google Scholar 

  • Groves DI, Goldfarb RJ, Knox-Robinson CM, Ojala J, Gardoll S, Yun GY, Holyland P (2000) Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geol Rev 17:1–38

    Google Scholar 

  • Gueydan F, Morency C, Brun J-P (2008) Continental rifting as a function of lithosphere mantle strength. Tectonophysics 460:83–93

    Google Scholar 

  • Halls HC, Zhang B (1998) Uplift structure of the southern Kapuskasing zone from 2.45 Ga dike swarm displacement. Geology 26:67–70

    Google Scholar 

  • Hamilton WB (1998) Archean tectonics and magmatism. Int Geol Rev 40:1–39

    Google Scholar 

  • Hamilton WB (2005) Plumeless Venus has ancient impact-accretionary surface. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, Plumes, and Paradigms, GSA Spec Paper 388: 781–814

    Google Scholar 

  • Hamilton WB (2007) Earth’s first two billion years—The era of internally mobile crust. In: Hatcher RD Jr, Carlson MP., McBride JH., Martinez-Catalan JR (eds) 4-D Framework of Continental Crust, Geol Soc Amer Memoir 200:233–296

    Google Scholar 

  • Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20

    Google Scholar 

  • Hansen VL (2007a) Subduction origin on early Earth: A hypothesis. Geology 35:1059–1062

    Google Scholar 

  • Hansen VL (2007b) Venus: a thin-lithosphere analog for early Earth? In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s Oldest Rocks, Developments in Precambrian Geology 15, Chapter 8.1, 987–1012

    Google Scholar 

  • Hansen VL, Willis JJ (1996) Structural analysis of a sampling of tesserae: Implications for Venus geodynamics. Icarus 123:296–312

    Google Scholar 

  • Hansen VL, Willis JJ (1998) Ribbon terrane formation, southwestern Fortuna Tessera, Venus: Implications for lithospheric evolution. Icarus 132:321–343

    Google Scholar 

  • Hansen VL, Young DA (2007) Venus’s evolution: a synthesis. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent Margin Terranes and Associated Regions: a Tribute to W.G. Ernst: GSA Special Paper 419:255–273

    Google Scholar 

  • Hansen VL, Banks BK, Ghent RR (1999) Tessera terrain and crustal plateaus, Venus. Geology 27:1,071-1:074

    Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    Google Scholar 

  • Harig C, Zhong S, Simons FJ (2010) Constraints on upper mantle viscosity from the flow-induced pressure gradient across the Australian continental keel. Geochem Geophys Geosys 11, Q06004. doi:10.1029/2010GC003038

    Google Scholar 

  • Harris LB (1987) A tectonic framework for the Western Australian Shield and its significance to gold mineralisation—a personal view. In: Ho SE, Groves DI (eds) Recent Advances in the Understanding of Precambrian Gold Deposits. Geology Department and University Extension, University of Western Australia Publication 11:1–27

    Google Scholar 

  • Harris LB (2013) Interactive 3D S-wave tomographic isosurfaces for the Superior Province, Canada, http://goo.gl/U8fMh

  • Harris LB, Byrne DR, Wetherly S, Beeson J (2004) Analogue modelling of structures developed above single and multiple mantle plumes: applications to brittle crustal deformation on Earth and Venus. In: Bertotti G, Buiter S, Ruffo P, Schreurs G (eds) GeoMod 2004– From mountains to sedimentary basins: modelling and testing geological processes. Boll Geofis teorica applicata 45(Supp. 1):301–303

    Google Scholar 

  • Harris LB, Dufréchou G, Armengaud C, Johnson E (2010) The role of deep-crustal transverse structures interpreted from regional gravity in the localization and deformation of zinc deposits in the North American Grenville Province. In: Archibald SM (ed) Zinc2010, Proceedings of the Zinc2010 Meeting, Cork, Irish Association for Economic Geology, 49–52. http://www.iaeg.org/docs/2010/Zinc2010_Abstracts.pdf. Accessed 1 Feb 2013

  • Harris LB, Godin L, Yakymchuk (2012) Regional shortening followed by channel flow induced collapse: A new mechanism for “dome and keel” geometries in Neoarchaean granite-greenstone terrains. Precamb Res 212–213,139–154

    Google Scholar 

  • Hart TR, Gibson HL, Lesher CM (2004) Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulfide deposits. Econ Geol 99:1003–1013

    Google Scholar 

  • Hashimoto GL, Roos-Serote M, Sugita S, Gilmore MS, Kamp LW, Carlson RW, Baines KH (2008) Felsic highland crust on Venus suggested by Galileo near-infrared mapping spectrometer data, J Geophys Res 113, E00B24. doi:10.1029/2008JE003134

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817

    Google Scholar 

  • Head JW (1990a) Processes of crustal formation and evolution on Venus: an analysis of topography, hypsometry, and crustal thickness variations. Earth Moon Planets 50/51:25–55

    Google Scholar 

  • Head JW (1990b) Formation of mountain belts on Venus: Evidence for large-scale convergence, underthrusting, and crustal imbrication in Freyja Montes, Ishtar Terra. Geology 18:99–102

    Google Scholar 

  • Head JW, Campbell DB, Elachi C, Guest JE, McKenzie D, Saunders RS, Schaber GG, Schubert G (1991) Venus volcanism: initial analysis of Magellan data. Science 252:276–288

    Google Scholar 

  • Head JW, Hurwitz DM, Ivanov MA, Basilevsky AT, Kumar PS (2008) Geological mapping of Fortuna Tessera (V-2): Venus and Earth’s Archean process comparisons. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ. http://hdl.handle.net/2060/20080040991. Accessed 3 Feb 2013

  • Hegner E, Emslie RF, Iaccheri LM, Hamilton MA (2010) Sources of the Mealy Mountains and Atikonak River anorthosite-granitoid complexes, Grenville Province, Canada. Can Mineral 48:787–808

    Google Scholar 

  • Helmstaedt HH, Schulze DJ (1986) Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In: Ross J (ed) Kimberlites and Related Rocks, Blackwell, Carleton, Spec Publ Geol Soc Aust 14:358–368

    Google Scholar 

  • Herrick RR, Phillips RJ (1992) Geological correlations with the interior density structure of Venus. J Geophys Res 97:16,017–16,034

    Google Scholar 

  • Herrick RR, Dufek J, McGovern PJ (2005) Evolution of large shield volcanoes on Venus. J Geophys Res 110:E01002, pp 19. doi:10.1029/2004JE002283

    Google Scholar 

  • Herzberg C (1999) Phase equilibrium constraints on the formation of cratonic mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle Petrology, Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, The Geochemical Society Special Publication, Washington DC 6:241–257

    Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Google Scholar 

  • Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem Geophys Geosys 8:2006GC001390

    Google Scholar 

  • Herzberg CT, Rudnick R (2012) Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 149:4–15. doi:10.1016/j.lithos.2012.01.010

    Google Scholar 

  • Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Google Scholar 

  • Hess PC, Head JW (1990) Derivation of primary magmas and melting of crustal materials on Venus: some preliminary petrogenetic considerations. Earth Moon Planets 50/51:57–80

    Google Scholar 

  • Hewitt DF (1963) The Timiskaming series of the Kirkland Lake area. Can Mineral 7:497–523

    Google Scholar 

  • Hickman AH (1984) Archaean diapirism in the Pilbara Block, Western Australia. In: Kröner A; Greiling R (eds) Precambrian Tectonics Illustrated, E.Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 113–127

    Google Scholar 

  • Hill RI (1993) Mantle plumes and continental tectonics. Lithos 30:193–206

    Google Scholar 

  • Hill RI, Campbell IH, Compston W (1989) Age and origin of granitic rocks in the Kalgoorlie-Norseman region of Western Australia: Implications for the origin of Archaean crust. Geochim Cosmochim Acta 53:1259–1275

    Google Scholar 

  • Hill RI, Campbell IH, Davies GF, Griffiths RW (1992) Mantle plumes and continental tectonics. Science 256:186–193

    Google Scholar 

  • Hoernle K, Hauff F, Van Den Bogaard P, Werner R, Mortimer N, Geldmacher J, Garbe-Schönberg D, Davy B (2010) Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim Cosmochim Acta 74:7196–7219

    Google Scholar 

  • Hoffmann JE, Carsten MC, Næraa T, Rosing MT, Herwartz D, Garbe-Schönberg D, Svahnberg H (2011) Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochim Cosmochim Acta 75:4157–4178

    Google Scholar 

  • Hollings P, Kerrich R (2004) Geochemical systematics of tholeiites from the 2.86 Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb-Hf anomalies. Precamb Res 134:1–20

    Google Scholar 

  • Hoogenboom T, Houseman GA (2006) Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180:292–307

    Google Scholar 

  • Houseman GA, Houseman DK (2010) Stability and periodicity in the thermal and mechanical evolution of the early continental lithosphere. Lithos 120:42–54

    Google Scholar 

  • Hronsky JMA, Groves DI, Loucks RR, Begg GC (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Mineral Deposita 47:339–358

    Google Scholar 

  • Hubert C, Trudel P, Gélinas L (1984) Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Can J Earth Sci 21:1024–1032

    Google Scholar 

  • Husson L, Conrad CP, Faccenna C (2012) Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet Sci Lett 316–317:126–135

    Google Scholar 

  • Huston DL, Blewett RS, Keillor B, Standing J, Smithies RH, Marshall A, Mernagh TP, Kamprad J (2002) Lode gold and epithermal deposits of the Mallina Basin, North Pilbara Terrain, Western Australia. Econ Geol 97:801–818

    Google Scholar 

  • Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600

    Google Scholar 

  • Jackson SL, Cruden AR (1995) Formation of the Abitibi greenstone belt by arc-trench migration. Geology 23:471–474

    Google Scholar 

  • Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for early crustal evolution. Geochim Cosmochim Acta 45:1633–1652

    Google Scholar 

  • Janes DM, Squyres SW, Bindschadler DL, Baer G, Schubert G, Sharpton VL, Stofan ER (1992) Geophysical models for the formation and evolution of coronae on Venus. J Geophys Res 97E:16,055–16,068

    Google Scholar 

  • Janle P, Jannsen D (1986) Gravity studies of Aphrodite Terra on Venus. Earth Moon Planets 36:275–287

    Google Scholar 

  • Jones AP (2005) Meteorite impacts as triggers to large igneous provinces. Elements 1:277–281

    Google Scholar 

  • Jordan TH (1988) Structure and formation of the continental tectosphere. J Petrol Special Lithosphere Issue:11–37

    Google Scholar 

  • JPL (undated) Magellan Mission at a Glance, NASA Jet Propulsion Laboratory, California Institute of Technology. http://www2.jpl.nasa.gov/magellan/fact.html. Accessed 3 Feb 2013

  • Jull MG, Arkani-Hamed J (1995) The implications of basalt in the formation and evolution of mountains on Venus. Phys Earth Planet Int 89:163–175

    Google Scholar 

  • Jull MG, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106:6423–6446

    Google Scholar 

  • Kamber BS (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry. Chem Geol 274:19–28

    Google Scholar 

  • Kamber BS, Kramers JD, Napier R, Cliff RA, Rollinson HR (1995) The Triangle Shear zone, Zimbabwe, revisited: an important event at 2.0 Ga in the Limpopo Belt. Precamb Res 70:191–213

    Google Scholar 

  • Kameyama M, Ogawa M (2000) Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box. Earth Planet Sci Lett 180:355–367

    Google Scholar 

  • Kamo S, Krogh T, Kumarapeli P (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implications for the timing of Iapetan rifting. Can J Earth Sci 32:273–280

    Google Scholar 

  • Kaula WM, Phillips RJ (1981) Quantitative tests for plate tectonics on Venus. Geophys Res Lett 8:1187–1190

    Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2005) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust, Treatise on Geochemistry. Elsevier, Pergamon San Diego, v. 3:593–659

    Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort D, DuFrane SA (2010) Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Google Scholar 

  • Kerr AC, White RV, Saunders AD (2000) LIP Reading: Recognizing oceanic plateaux in the geological record. J Petrol 41:1041–1056

    Google Scholar 

  • Kerrich R, Xie Q (2002) Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revisited. Contrib Mineral Petrol 142:476–484

    Google Scholar 

  • Kerrich R, Polat A (2006) Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 415:141–165

    Google Scholar 

  • Kerrich R, Polat A, Wyman D, Hollings P (1999) Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46:163–187

    Google Scholar 

  • Kerrich R, Polat A, Xie Q (2008) Geochemical systematics of 2.7 Ga Kinojevis Group (Abitibi) and Manitouwadge and Winston Lake (Wawa) Fe-rich basalt-rhyolite associations: Backarc rift oceanic crust? Lithos 101:1–23

    Google Scholar 

  • Ketchum JWF, Ayer JA, Breemen O van, Pearson NJ, Becker JK (2008) Pericontinental Crustal Growth of the Southwestern Abitibi Subprovince, Canada—U-Pb, Hf, and Nd Isotope Evidence. Econ Geol 103:1151–1184

    Google Scholar 

  • Kiefer WS (1991) Models for the formation of highland regions on Venus. PhD thesis, California Institute of Technology. http://thesis.library.caltech.edu/4744/1/Kiefer_ws_1991.pdf. Accessed 3 Feb 2013

  • Kiefer WS, Hager BH (1991a) A mantle plume model for the equatorial highlands of Venus. J Geophys Res 96:E4. doi:10.1029/91JE02221

    Google Scholar 

  • Kiefer WS, Hager BH (1991b) Mantle downwelling and crustal convergence: a model for Ishtar Terra, Venus. J Geophys Res 96:20,967-20,980. doi:10.1029/91JE02219

    Google Scholar 

  • Kimura G, Ludden JN, Desrochers JP, Hori R (1993) A model of ocean-crust accretion for the Superior Province, Canada. Lithos 30:337–355

    Google Scholar 

  • Kisters AFM, Belcher RW, Poujol M, Dziggel A (2010) Continental growth and convergence-related arc plutonism in the Mesoarchaean: Evidence from the Barberton granitoid-greenstone terrain, South Africa. Precamb Res 178:15–26

    Google Scholar 

  • Kitney KE, Olivo GR, Davis DW, Desrochers J-P, Tessier A (2011) The Barry Gold Deposit, Abitibi Subprovince, Canada: A greenstone belt-hosted gold deposit coeval with Late Archean deformation and magmatism. Econ Geol 106:1129–1154

    Google Scholar 

  • Koch DM, Manga M (1996) Neutrally buoyant diapirs: A model for Venus coronae. Geophys Res Lett 23:225–228

    Google Scholar 

  • Koenig E, Aydin A (1998) Evidence for large-scale strike-slip faulting on Venus. Geology 2:551–554

    Google Scholar 

  • Kohlstedt DL, Mackwell SJ (2009) Strength and deformation of planetary lithospheres. In: Watters TR, Schultz, RA (eds) Planetary Tectonics, Cambridge University Press, 397–456

    Google Scholar 

  • Kopylova MG, Afanasiev VP, Bruce LF, Thurston PC, Ryder J (2011) Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth Planet Sci Lett 312:213–225

    Google Scholar 

  • Krassilnikov AS, Kostama V-P, Aittola M, Guseva EN, Cherkashina OS (2012) Relationship of coronae, regional plains and rift zones on Venus. Planet Space Sci 68:56–75. doi:10.1016/j.pss.2011.11.017

    Google Scholar 

  • Kreissig K, Holze L, Frei R, Villa IM, Kramers JD, Kröner A, Smit CA, van Reenen DD (2001) Geochronology of the Hout River Shear Zone and the metamorphism in the Southern Marginal Zone of the Limpopo Belt, Southern Africa. Precamb Res 109:145–173

    Google Scholar 

  • Krogh TE, Moser DE (1994) U-Pb zircon and monazite ages from the Kapuskasing uplift: age constraints on deformation within the Ivanhoe Lake fault zone. Can J Earth Sci 31:1096–1103

    Google Scholar 

  • Kröner A (1985) Evolution of the Archaean continental crust. Annual Rev Earth Planet Sci 13:49–74

    Google Scholar 

  • Kröner A (1991) Tectonic evolution in Archaean and Proterozoic. Tectonophysics 187:393–410

    Google Scholar 

  • Kucinskas AB, Turcotte DL (1994) Isostatic compensation of equatorial highlands on Venus. Icarus 112:27–33

    Google Scholar 

  • Kuiper YD, Lin S, Böhm CO (2011) Himalayan-type escape tectonics along the Superior Boundary Zone in Manitoba, Canada. Precamb Res 187:248–262

    Google Scholar 

  • Kumar PS (2005) An alternative kinematic interpretation of Thetis Boundary Shear Zone, Venus: Evidence for strike-slip ductile duplexes. J Geophys Res 110:E07001. doi:10.1029/2004JE002387

    Google Scholar 

  • Kusky TM (1998) Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology 26:163–166

    Google Scholar 

  • Kusky TM (2002) Is the Dongwanzi complex an Archean ophiolite? Response. Science 295:923. doi:10.1126/science.295.5557.923a

    Google Scholar 

  • Kusky TM, Kidd WSF (1992) Remnants of an Archean oceanic plateau, Belingwe Greenstone Belt, Zimbabwe. Geology 20:43–46

    Google Scholar 

  • Kusky TM, Li JH (2008) Note on the paper by Guochun Zhao, Simon A. Wilde, Sanzhong Li, Min Sun, Matthew l. Grant and Xuping Li (2007) ‘U-Pb zircon age constraints on the Dongwanzi ultramafic-mafic body, North China, confirm it is not an Archean ophiolite’. Earth Planet Sci Lett 273:227–230

    Google Scholar 

  • Kusky TM, Li JH, Tucker RD (2001) The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science 292:1142. doi:10.1126/science.1059426

    Google Scholar 

  • Kusky TM, Polat A (1999) Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics 305:43–73

    Google Scholar 

  • Lacroix S (1998) Géométrie Structurale et Evolution Tectonique de la Ceinture de Roches Vertes de L’Abitibi (Partie Nord-ouest): L’influence des Failles à Faible Pendage. PhD Thesis, L’Université du Québec à Chicoutimi. http://constellation.uqac.ca/1028/1/11647000.pdf. Accessed 3 Feb 2013

  • Lacroix S, Sawyer EW (1995) An Archean fold—thrust belt in the northwestern Abitibi Greenstone Belt: structural and seismic evidence. Can J Earth Sci 32:97–112

    Google Scholar 

  • Lacroix S, Sawyer EW, Chown EH (1998) Pluton emplacement within an extensional transfer zone during dextral strike-slip faulting: an example from the late Archaean Abitibi Greenstone Belt. J Struct Geol 20:43–59

    Google Scholar 

  • Laflèche MR, Dupuy C, Bougault H (1992a) Geochemistry and petrogenesis of Archean mafic volcanic rocks of the southern Abitibi Belt, Québec. Precamb Res 57:207–241

    Google Scholar 

  • Laflèche MR, Dupuy C, Dostal J (1992b) Tholeiitic volcanic rocks of the late Archean Blake River Group, southern Abitibi greenstone belt: Origin and geodynamic implications. Can J Earth Sci 29:1448–1458

    Google Scholar 

  • LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48

    Google Scholar 

  • Leclair A (2005) Géologie du nord-est de la province du Supérieur, Québec: Ministère des Ressources naturelles, Québec DV 2004–04, pp 19

    Google Scholar 

  • Leclair A, Berclaz A, David J, Percival JA (2001) Regional geological setting of Archean rocks in the northeastern Superior Province. Geol Assoc Can/Mineral Assoc Can Meeting, Abstract volume 26:84

    Google Scholar 

  • Leclerc F (2011) Géochimie et contexte tectonique du Groupe de Roy et du Complexe de Cummings dans la région de Chibougamau, Québec. PhD Thesis, INRS-ETE, Québec. http://www1.ete.inrs.ca/pub/theses/T000572.pdf. Accessed 3 Feb 2013

  • Leclerc F, Bédard JH, Harris LB, McNicoll VJ, Goulet N, Roy P, Houle P (2011) Tholeiitic to calc-alkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi greenstone belt—Revised stratigraphy and implications for VHMS exploration. Can J Earth Sci 48:661–694

    Google Scholar 

  • Leclerc F, Harris LB, Bédard JH, van Breemen O, Goulet N (2012) Structural and stratigraphic controls on magmatic, volcanogenic, and syn-tectonic mineralization in the Chapais-Chibougamau Mining Camp, northeastern Abitibi, Canada. Econ Geol 107:963–989

    Google Scholar 

  • Lee CTA (2006) Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K., Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments, AGU Geophys Monogr 164:89–114

    Google Scholar 

  • Lee CTA, Luffi P, Hoink T, Li ZXA, Lenardic A (2008) The role of serpentine in preferential craton formation in the late Archean by lithosphere underthrusting. Earth Planet Sci Lett 269:96–104

    Google Scholar 

  • Lee CTA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Ann Rev Earth Planet Sci 39:59–90

    Google Scholar 

  • Lenardic A, Moresi LN, Muhlhaus H (2003) Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res, Solid Earth 108[B6], art. no. 2303. Doi:10.1029/2002JB001859

    Google Scholar 

  • Lesher CM, Goodwin AM, Campbell IH, Gorton MP (1986) Trace element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior province, Canada. Can J Earth Sci 23:222–237

    Google Scholar 

  • Liu Z, Bird P (2002) North America plate is driven westward by lower mantle flow. Geophys Res Lett 29(24):2164. doi:10.1029/2002GL016002

    Google Scholar 

  • Lin S, Percival JA, Skulski T (1996) Structural constraints on the tectonic evolution of a late Archean greenstone belt in the northeastern Superior Province, northern Quebec (Canada). Tectonophysics 265:151–167

    Google Scholar 

  • Lowe DR (1999) Geologic evolution of the Barberton greenstone belt and vicinity. In: MacGregor AM (1951) Some milestones in the Precambrian of Southern Africa. Proc Geol Soc South Africa 54:27–71

    Google Scholar 

  • Lowe DR, Byerly GR (eds) (1999) Geologic Evolution of the Barberton Greenstone Belt, South Africa, Geol Soc Am Spec Paper 329:87–312

    Google Scholar 

  • Luais B, Hawkesworth CJ (1994) The generation of continental crust: an integrated study of crust-forming processes in the Archaean of Zimbabwe. J Petrol 35:43–93

    Google Scholar 

  • Lukonin D (2008) Archean and Proterozoic Gold Deposits of the Fennoscandian Shield, MSc Thesis, Luleå University of Technology, epubl.ltu.se/1653-0187/2008/083/LTU-PB-EX-08083-SE.pdf

    Google Scholar 

  • Ludden JN, Hubert C, Gariépy C (1986) The tectonic evolution of the Abitibi greenstone belt of Canada. Geol Mag 123:153–166

    Google Scholar 

  • MacGregor AM (1951) Some milestones in the Pre-Cambrian of Southern Rhodesla. Trans Proc Geol Soc S Africa 54, pp xxvii–lxxi

    Google Scholar 

  • MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134:313–324

    Google Scholar 

  • Magee KP, Head JW (1995) The role of rifting in the generation of melt: Implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus. J Geophys Res 100E:1527–1552

    Google Scholar 

  • Marchenkov KI, Zharkov VN, Nikishin AM (1990) The stress state of Venusian crust and variations of its thickness: implication for tectonics and geodynamics. Earth Moon Planets 50–51:81–98

    Google Scholar 

  • Mareschal J-C, West GF (1980) A model for Archaean tectonism: numerical models of vertical tectonism in greenstone belts. Can J Earth Sci 17:60–71

    Google Scholar 

  • Martin H (1987) Petrogenesis of Archean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust—Comparison with modern processes. Lithos 30:373–388

    Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Google Scholar 

  • Matton G, Jébrak M (2009) The Cretaceous peri-Atlantic alkaline pulse (PAAP): Deep mantle plume origin or shallow lithospheric break-up? Tectonophysics 469:1–12

    Google Scholar 

  • Maurice C, David J, Bédard JH, Francis D (2009) Evidence for a widespread mafic cover sequence and its implications for continental growth in the Northeastern Superior Province. Precamb Res 168:45–65

    Google Scholar 

  • McBride JH, Snyder DB, England RW, Hobbs RW (1996) Dipping reflectors beneath old orogens: A Perspective from the British Caledonides. GSA Today 6:1–5

    Google Scholar 

  • McCall GJH (2003) A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran. Precamb Res 127:5–17

    Google Scholar 

  • McCuaig TC, Kerrich R (1998) P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453

    Google Scholar 

  • McCulloch MT, Wasserburg GJ (1978) Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200:1003–1011

    Google Scholar 

  • McCurry M, Hayden K, Morse LH, Mertzman S (2008) Genesis of post-hotspot, A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bull Volcanol 70:14835–14855

    Google Scholar 

  • McGill GE (1983) The Geology of Venus. Episodes 1983:10–17

    Google Scholar 

  • McKenzie D, McKenzie JM, Saunders RS (1992) Dike emplacement on Venus and on Earth. J Geophys Res 97E:15,977–15,990

    Google Scholar 

  • Meade BJ (2007) Present-day kinematics at the India-Asia collision zone. Geology 35:81–84

    Google Scholar 

  • Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. In: Ernst RE, Buchan KL (eds) Mantle Plumes: Their Identification Through Time, GSA Spec Paper 352:103–140

    Google Scholar 

  • Minnesota Minerals Coordinating Committee (2012) Explore Minnesota: Diamonds, files.dnr.state.mn.us/lands_minerals/mcc_docs/2012_diamonds.pdf

    Google Scholar 

  • Mocquet A, Rosenblatt P, Dehant V, Verhoeven O (2011) The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements. Planet Space Sci 59:1048–1061

    Google Scholar 

  • Mole DR, Fiorentini ML, Théebaud N, McCuaig TC, Cassidy KF, Kirkland CL, Wingate MTD, Romano SS, Doublier MP, Belousova EA (2012) Spatio-temporal constraints on lithospheric development in the southwest—central Yilgarn Craton, Western Australia. Aust J Earth Sci 59:625–656

    Google Scholar 

  • Molnar P, Tapponnier P (1977) Relation of the tectonics of eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics. Geology 5:212–21

    Google Scholar 

  • Morgan P (1983) Hot spot heat loss and tectonic style on Venus and in the Earth’s Archean. Lunar Planet Sci 14:515–516

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Google Scholar 

  • Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291:465–468

    Google Scholar 

  • Moser DE, Heaman LM, Krogh TE, Hanes JA (1996) Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology. Tectonics 15:1093–1109

    Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 112:556–574

    Google Scholar 

  • Moyen JF (2011) The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Google Scholar 

  • Moyen JF, Champion D, Smithies RH (2010) The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth Environ Sci Trans Roy Soc Edin 100:35–50

    Google Scholar 

  • Moyen JF, Martin H, Jayananda M (2001) Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth: the Closepet granite (South India). Precamb Res 112:87–105

    Google Scholar 

  • Moyen JF, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archaean geodynamics. In: Benn K, Condie K, Mareschal JC (eds) AGU Geophysical Monograph 164; Archaean Geodynamics and Environments, Chapter 10:149–175

    Google Scholar 

  • Moyen JF, Stevens G, Kisters A (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562. doi:10.1038/nature04972

    Google Scholar 

  • Moyen JF, Van Hunen J (2012) Short-term episodicity of Archaean plate tectonics. Geology 40:451–454

    Google Scholar 

  • Mueller A, Harris LB (1988) Application of wrench tectonic models to mineralized structures in the Golden Mile, Kalgoorlie. In: Ho SE, Groves DI (eds) Recent Advances in the Understanding of Precambrian Gold Deposits. University of Western Australia Geology Department and University Extension, University of Western Australia Publication 11:97–108

    Google Scholar 

  • Mueller A, Harris LB, Lungan A (1988) Structural control of greenstone-hosted gold mineralization by transcurrent shearing: a new interpretation of the Golden Mile district, Kalgoorlie, Western Australia. Ore Geol Rev 3:359–387

    Google Scholar 

  • Mueller WU, Daigneault R, Mortensen JK, Chown EH (1996) Archean terrane docking: upper crust collision tectonics, Abitibi greenstone belt, Quebec, Canada. Tectonophysics 265:127–150

    Google Scholar 

  • Mueller W, Pickett C (2005) Relative sea level change along the Slave craton coastline: characteristics of Archean continental rifting. Sedim Geol 176:97–119

    Google Scholar 

  • Müller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P (2008) Venus surface thermal emission at 1 micron in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J Geophys Res 113:E00B17, pp 21. doi:10.1029/2008JE003118

    Google Scholar 

  • Namiki N, Solomon SC (1994) Impact crater densities on volcanoes and coronae on Venus: Implications for volcanic resurfacing. Science 265:929–933

    Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Hounsell V, Liegeois JP, Vander Auwera J (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52:487–539

    Google Scholar 

  • NASA (undated) Venus: Facts & Figures. http://sse.jpl.nasa.gov/planets/profile.cfm?Object=Venus&Display=Facts&System=Metric. Accessed 3 Feb 2013

  • Neal CR, Mahoney JJ, Kroenke LW, Duncan RA, Petterson MG (1997) The Ontong Java Plateau. In: Mahoney JJ, Coffin MF (eds) large igneous provinces: continental, Oceanic and Planetary Flood Volcanism. Am Geophys Union Geophys Monog 100, pp. 183–216

    Google Scholar 

  • Nikishin AM (1990) Tectonics of Venus: a review. Earth Moon Planets 50–51:101–125

    Google Scholar 

  • Nikolayeva OV (1990) Geochemistry of the Venera 8 material demonstrates the presence of continental crust on Venus. Earth Moon Planets 50–51:329–341

    Google Scholar 

  • Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26:23–51

    Google Scholar 

  • Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993a) Constraining the potential temperature of the Archaean mantle—a review of the evidence from komatiites. Lithos 30:291–307

    Google Scholar 

  • Nisbet EG, Martin A, Bickle MJ, Orpen JL (1993b) The Ngezi Group: Komatiites, basalts and stromatolites on continental crust. In: Bickle MJ, Nisbet EG (eds) Geology of the Belingwe Greenstone Belt, Zimbabwe, Rotterdam, Netherlands, Balkema. Geol Soc Zimbabwe Spec Publ Series 2, p 121–165

    Google Scholar 

  • Nitescu B, Cruden AR, Bailey RC (2006) Crustal structure and implications for the tectonic evolution of the Archean Western Superior craton from forward and inverse gravity modeling. Tectonics 25, TC1009. doi:10.1029/2004TC001717

    Google Scholar 

  • Noltimier H, Sahagian D (1992) Tectonic style of venus: An analog to polar “icepack tectonics”. J Geodyn 16:65–79

    Google Scholar 

  • Nutman AP, Friend CRL (2007) Adjacent terranes with ca. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: complexities of neoarchaean collisional orogeny. Precamb Res 155:159–203

    Google Scholar 

  • Nutman AP, Friend CRL (2009) New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny. Precamb Res 172:189–211

    Google Scholar 

  • Obaje NG (2009) Geology and Mineral Resources of Nigeria, Lecture Notes in Earth Sciences 120, Springer-Verlag Berlin Heidelberg, pp 31–48

    Google Scholar 

  • Obrebski M, Allen RM, Xue M, Hung S-H (2010) Slab-plume interaction beneath the Pacific Northwest. Geophys Res Lett 37:L14305. doi:10.1029/2010GL043489

    Google Scholar 

  • O’Donovan G, Armitage M (undated) Technical Report on Norplat Limited Exploration Properties in the Kola Peninsula, SRK Consulting. In: Ovoca Resources PLC, Admission to trading on AIM. http://goo.gl/P9gjS Accessed 1 Feb 2013

  • Olsson JR, Söderlund U, Hamilton MA, Klausen MB, George R, Helffrich GR (2011) A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex. Nature Geosci 4:865–869

    Google Scholar 

  • O’Reilly SY, Zhang M, Griffin WL, Begg G, Hronsky J (2009) Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 211:1043–1054

    Google Scholar 

  • Oxburgh R (1972) Flake tectonics and continental collisions. Nature 239:202–204. doi:10.1038/239202a0

    Google Scholar 

  • Parfitt EA, Head JW (1993) Buffered and unbuffered dyke emplacement on Earth and Venus: Implictions for magma reservoir size, depth and rate of magma replenishment. Earth Moon Planets 61:249–261

    Google Scholar 

  • Parman SW, Grove TL, Kelley KA, Plank T (2011) Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths. J Petrol 52:257–278

    Google Scholar 

  • Pauer M (2004) The Gravity Field of Venus and Its Relationship to the Dynamic Processes in the Mantle. Research report to the Czech National Grant No. 205/02/1306, diploma thesis, Charles University, Prague, geo.mff.cuni.cz/theses/2004-Pauer-Mgr.pdf

    Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Percival JA, Bursnall JT, Moser DE, Shaw DM (1991) Site survey for the Canadian continental drilling program’s pilot project in the Kapuskasing Uplift; Ontario Geol Surv Ontario. Open File Report 5790:34 pp

    Google Scholar 

  • Percival JA, Mortensen JK (2002) Water-deficient calc-alkaline plutonic rocks of northeastern Superior Province, Canada: Significance of charnockitic magmatism. J Petrol 43:1617–1650

    Google Scholar 

  • Percival JA, McNicoll V, Brown JL, Whalen JB (2004) Convergent margin tectonics, central Wabigoon subprovince, Superior Province, Canada. Precamb Res 132:213–244

    Google Scholar 

  • Percival JA, West GF (1994) The Kapuskasing uplift: a geological and geophysical synthesis. Can J Earth Sci 31:1256–1286

    Google Scholar 

  • Percival JA, Skulski T, Sanborn-Barrie M, Stott GM, Leclair AD, Corkery MT, Boily M, (2012) Geology and tectonic evolution of the Superior Province, Canada. In: Percival JA, Cook FA, Clowes RM (eds) Tectonic Styles in Canada: The Lithoprobe Perspective. Geol Assoc Canada Spec Paper 49:321–378

    Google Scholar 

  • Percival JA, western SNATMAPworkinggroup (2004) Orogenic framework for the Superior Province: Dissection of the “Kenoran Orogeny”. The LITHOPROBE Celebratory Conference: From Parameters to Processes—Revealing the Evolution of a Continent. http://www.lithoprobe.ca/about/events/CC-Abs-Vol-CD-reduced%20size.pdf. Accessed 3 Feb 2013

  • Peschler AP, Benn K, Roest WR (2006) Gold-bearing fault zones related to Late Archean orogenic folding of upper and middle crust in the Abitibi granite-greenstone belt, Ontario. Precamb Res 151:143–159

    Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521

    Google Scholar 

  • Petford N, Gallagher K (2001) Partial melting of mafic (Amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499

    Google Scholar 

  • Petters S (1991) Regional Geology of Africa, Lect Notes Earth Sci 40, Springer-Verlag, Berlin Heidelberg, pp 722

    Google Scholar 

  • Peucat J-J, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette J-L (2013) The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains. Precamb Res 227:4–28. doi:10.1016/j.precamres.2012.06.009,

    Google Scholar 

  • Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22:597–654

    Google Scholar 

  • Phillips RJ, Hansen VL (1998) Geological evolution of Venus: Rises, plains, plumes, and plateaus. Science 279(5356):1492–1497

    Google Scholar 

  • Phillips RJ, Grimm RT, Makin MC (1991) Hot-spot evolution and the global tectonics of Venus. Science 252:651–658

    Google Scholar 

  • Phillips RJ, Kaula WM, McGill GE, Malin MC (1981) Tectonics and evolution of Venus. Science 212:879–887

    Google Scholar 

  • Pilote P, Guha J, Daigneault R, Robert F, Golightly JP (1990) Contexte structural et minéralisations aurifères des gîtes Casa-Berardi, Abitibi, Québec. Can J Earth Sci 27:1672–1685

    Google Scholar 

  • Pinheiro RVL, Holdsworth RE (1997) Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. J Geol Soc London 154:99–104

    Google Scholar 

  • Pirajno F (2007) Ancient to Modern Earth: The Role of Mantle Plumes in the Making of Continental Crust. Developments in Precambrian Geology 15:1037–1064

    Google Scholar 

  • Pitcher WS (1985) Magmatism at a plate edge: the Peruvian Andes. Glasgow: Blackie Academic & professional, pp 328

    Google Scholar 

  • Pohn HA, Schaber GG (1992) Indenter type deformation on Venus as evidence for large-scale tectonic slip, and multiple strike-slip events as a mechanism for producing tesselated terrain. Lunar Planet Sci 23:1095. www.lpi.usra.edu/meetings/lpsc1992/pdf/1539.pdf. Accessed 3 Feb 2013

    Google Scholar 

  • Polat A, Kerrich R (2000) Archean greenstone belt volcanism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa Subprovince, Superior Province, Canada. Earth Planet Sci Lett 175:41–54

    Google Scholar 

  • Polat A, Kerrich R (2001) Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada. Precamb Res 112:5–25

    Google Scholar 

  • Polat A, Kerrich R, Wyman DA (1999) Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precamb Res 94:139–173

    Google Scholar 

  • Poudjom-Djomani YH, O’Reilly SY, Griffin WL, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett 184:605–621

    Google Scholar 

  • Poulsen KH, Card KD, Franklin JM (1992) Archean tectonic and metallogenic evolution of the Superior Province of the Canadian Shield. Precamb Res 58:25–54

    Google Scholar 

  • Pronin AA, Stofan ER (1990) Coronae on Venus: Morphology and distribution. Icarus 87:452–474

    Google Scholar 

  • Puchtel IS, Hofmann AW, Mezger K, Jochum KP, Shchipansky AA, Samsonov AV (1998) Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet Sci Lett 155:57–74

    Google Scholar 

  • Puchtel IS, Walker RJ, Anhaeusser CR, Gruau G (2009) Re-Os isotope systematics and HSE abundances of the 3.5 Ga Schapenburg komatiites, South Africa: hydrous melting or prolonged survival of primordial heterogeneities in the mantle? Chem Geol 262:355–369

    Google Scholar 

  • Pysklywec RN, Cruden AR (2004) Coupled crust-mantle dynamics and intraplate tectonics: two-dimensional numerical and three-dimensional analogue modeling, Geochem Geophys Geosyst 5, Q10003. doi:10.1029/2004GC000748

    Google Scholar 

  • Pysklywec RN, Gogus O, Percival J, Cruden AR, Beaumont C (2010) Insights from geodynamical modeling on possible fates of continental mantle lithosphere: collision, removal, and overturn. Can J Earth Sci 47:541–563

    Google Scholar 

  • Raharimahefa T, Kusky TM (2006) Structural and remote sensing studies of the southern Betsimisaraka Suture, Madagascar. Gondwana Res 10:186–197

    Google Scholar 

  • Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991a) Lateral extrusion in the eastern Alps, Part 2: Structural analysis. Tectonics 10:257–271. doi:10.1029/90TC02623.

    Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991b) Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity. Tectonics 10:245–256. doi:10.1029/90TC02622

    Google Scholar 

  • Ravenelle J-F, Dubé B, Malo M, McNicoll V, Nadeau L, Simoneau J (2010) Insights on the geology of the world-class Roberto gold deposit, Éléonore property, James Bay area, Quebec. Geological Survey of Canada, Current Research 2010–1, 26 p.

    Google Scholar 

  • Reston TJ (1990) Mantle shear zones and the evolution of the northern North Sea basin. Geology 18:272–275

    Google Scholar 

  • Rey PF, Houseman G (2006) Lithospheric scale gravitational flow: the impact of body forces on orogenic processes from Archaean to Phanerozoic. In: Buiter SJH, Schreurs G (eds) Analogue and Numerical Modelling of Crustal-Scale Processes. Geol Soc London Spec Pub 253:153–167

    Google Scholar 

  • Rey PF, Philippot P, Thébaud N (2003) Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75-2.65 Ga global crisis. Precamb Res 127:43–60

    Google Scholar 

  • Richardson WP, Okal EA, Van der Lee S (2000) Rayleigh-wave tomography of the Ontong-Java Plateau. Phys Earth Planet Int 118:29–51

    Google Scholar 

  • Ridley JR, Vearncombe JR, Jelsma HA (1997) Relations between greenstone belts and associated granitoids. In: de Wit MJ, Ashwal LD (eds) Greenstone Belts. Oxford Science Publications, Oxford, pp 376–397

    Google Scholar 

  • Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geolo Paleontol B:354–368

    Google Scholar 

  • Rino S, Komiya T, Windley BF, Katayama I, Motoki A, Hirata T (2004) Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys Earth Planet Int 146:369–394

    Google Scholar 

  • Rivard B, Corriveau L, Harris LB (1999) Structural reconnaissance of a deep crustal orogen using RADARSAT and Landsat satellite imagery and airborne geophysics. Can J Remote Sensing 25:258–267

    Google Scholar 

  • Robert F (1989) Internal structure of the Cadillac tectonic zone southeast of Val d’Or, Abitibi greenstone belt, Quebec. Can J Earth Sci 26:2661–2675

    Google Scholar 

  • Robert F (2001) Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada. Mineral Deposita 36:503–516

    Google Scholar 

  • Robert F, Brommecker R, Bourne BT, Dobak PJ, McEwan CJ, Rowe RR, Zhou X (2007) Models and Exploration Methods for Major Gold Deposit Types. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 691–711

    Google Scholar 

  • Robert F, Poulsen KH, Cassidy KF, Hodgson CJ (2005) Gold Metallogeny of the Superior and Yilgarn Cratons. Econo Geolo 100th Anniversary Volume:1001–1034

    Google Scholar 

  • Robin CMI, Bailey RC (2009) Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37:523–526

    Google Scholar 

  • Rock NMS, Duller P, Haszeldine RS, Groves DI (1987) Lamprophyres as potential gold exploration targets: some preliminary observations and speculations. In: Ho SE, Groves DI (eds) Recent Advances in Understanding Precambrian Gold Deposits, Geology Dept. and University Extension, Univ WA Publ 11:271–286

    Google Scholar 

  • Rock NMS, Groves DI (1988) Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geology 16:538–541

    Google Scholar 

  • Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis R (2000). Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville teleseismic experiment. J Geophys Res 105(B6): doi:10.1029/2000JB900022

    Google Scholar 

  • Rondenay S, Bostock MG, Hearn TM, White DJ, Wu H, Sénéchal G, Ji S, Mareschal M (2002) Teleseismic studies of the lithosphere below the Abitibi—Grenville Lithoprobe transect. Can J Earth Sci 37:415–426

    Google Scholar 

  • Roering C, van Reenen DD, Smit CA, Barton Jr JM, de Beer JH, de Wit MJ, Stettler EH, van Schalkwyk JF, Stevens G, Pretorius S (1992) Tectonic model for the evolution of the Limpopo Belt. Precamb Res 55:539–552

    Google Scholar 

  • Rollinson H (2007) Early Earth Systems, A Geochemical Approach. Blackwell Publishing Oxford, pp 285

    Google Scholar 

  • Romeo I, Turcotte DL (2008) Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet Sci Lett 276:85–97

    Google Scholar 

  • Romeo I, Capote R (2011) Tectonic evolution of Ovda Regio: An example of highly deformed continental crust on Venus? Planetary Space Sci 59:1428–1445

    Google Scholar 

  • Romeo I, Capote R, Anguita F (2005) Tectonic and kinematic study of a strike-slip zone along the southern margin of Central Ovda Regio, Venus: Geodynamical implications for crustal plateaux formation and evolution. Icarus 175:320–334

    Google Scholar 

  • Ross PS, Goutier J, Mercier-Langevin P, Dubé B (2011a) Basaltic to andesitic volcaniclastic rocks in the Blake River Group, Abitibi Greenstone Belt: 1. Mode of emplacement in three areas. Can J Earth Sci 48:728–756

    Google Scholar 

  • Ross PS, McNicoll V, Goutier J, Mercier-Langevin P, Dubé B (2011b) Basaltic to andesitic volcaniclastic rocks in the Blake River Group, Abitibi Greenstone Belt: 2. Origin, geochemistry, and geochronology. Can J Earth Sci 48:757–777

    Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Google Scholar 

  • Sandwell DT, Schubert G (1992) Evidence for retrograde lithospheric subduction on Venus In: Papers presented to the international colloquium on Venus. LPI Contribution 789. Lunar and Planetary Institute, United States, pp 97–99

    Google Scholar 

  • Sandiford M, Van Kranendonk M, Bodorkos S (2004) Conductive incubation and the origin of granite-greenstone dome and keel structure: the Eastern Pilbara Craton, Australia. Tectonics 23, C1009. doi:10.1029/2002TC001452

    Google Scholar 

  • Santosh M, Zhao D, Kusky Y (2010) Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. J Geodyn 49:39–53

    Google Scholar 

  • Saunders RS et al (1992) Magellan Mission Summary. J Geophys Res 97(E8):13,067–13,090. doi:10.1029/92JE01397

    Google Scholar 

  • Schaber GG, Kozak RC (1990) Geologic/Geomorphic and Structure Maps of the Northern Quarter of Venus. US Geol Surv Open-File Report 90–24

    Google Scholar 

  • Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL, Chadwick DJ, Dawson DD, Gaddis LR, Boyce JM, Russel J (1992) Geology and distribution of impact craters on Venus: What are they telling us? J Geophys Res 97:13,257–13,301

    Google Scholar 

  • Schoene B, de Wit MJ, Bowring SA (2008) Mesoarchean assembly and stabilization of the eastern Kaapvaal craton: a structural-thermochronological perspective. Tectonics 27, TC5010. doi:10.1029/2008TC002267

    Google Scholar 

  • Schubert G, Moore WB, Sandwell DT (1994) Gravity over Coronae and Chasmata on Venus. Icarus 112:130–146

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press

    Google Scholar 

  • Shervais JW (2006) Plumes, plateaux, and the significance of subduction-related accretionary complexes in early Earth processes. In: Reimold U, Gibson R (eds) Early Earth Processes, GSA Special Paper 405:173–192

    Google Scholar 

  • Simard M, Labbé J-Y, Maurice C, Lacoste P, Leclerc A, Boily M (2008) Synthèse du nord-est de la Province du Supérieur. Géologie Québec, MRNF Québec, MM 2008–02, pp 196

    Google Scholar 

  • Simoneau J, Prud’homme N, Bourassa Y (2007) Mineral resource estimation Eleonore gold project, Quebec. Report Prepared for Goldcorp Inc., SRK Consulting (Canada) Inc., 209.89.176.189/_resources/eleonore_tech_report_aug9.pdf

    Google Scholar 

  • Simons M, Hager BH, Solomon SC (1994) Global Variations in the geoid/topography admittance of Venus. Science 264:798–803

    Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:209–229

    Google Scholar 

  • Slabunov AI, et al (2006) The Archean of the Baltic Shield: Geology, geochronology, and geodynamic settings. Geotectonics 40:409–433

    Google Scholar 

  • Sleep NH (2000) Evolution of the mode of convection within terrestrial planets. J Geophys Res 105(E7):17563–17578

    Google Scholar 

  • Sleep NH, Windley BF (1982) Archean plate tectonics: constraints and inferences. J Geol 90:363–379

    Google Scholar 

  • Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306

    Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Howard HM, Hickman AH (2005a) Modern style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth Planet Sci Lett 231:221–237

    Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2005b) It started with a plume—early Archaean basaltic proto-continental crust. Earth Planet Sci Lett 238:284–297

    Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2007) The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:50–68

    Google Scholar 

  • Smithies RH, Witt WK (1997) Distinct basement terranes identified from granite geochemistry in late Archaean granite-greenstones, Yilgarn Craton, Western Australia. Precamb Res 83:185–201

    Google Scholar 

  • Smrekar SE, Elkins-Tanton L, Leitner JJ, Lenardic A, Mackwell S, Moresi L, Sotin C, Stofan ER (2007) Tectonic and thermal evolution of Venus and the role of volatiles: Implications for understanding the terrestrial planets. In: Esposito LW, Stofan ER, Cravens TE (eds) Exploring Venus as a Terrestrial Planet, AGU Geophys Monogr Ser 176:45–71

    Google Scholar 

  • Smrekar SE, Hoogenboom T, Stofan ER, Martin P (2010) Gravity analysis of Parga and Hecate chasmata: implications for rift and corona formation. J Geophys Res 115:E07010. doi:10.1029/2009JE003435

    Google Scholar 

  • Smrekar SE, Parmentier EM (1996) The interaction of mantle plumes with surface thermal and chemical boundary layers: applications to hotspots on Venus. J Geophys Res 101:5397–410

    Google Scholar 

  • Smrekar SE, Stofan ER (1997) Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277:1289–1294

    Google Scholar 

  • Smrekar SE, Sotin C (2012) Constraints on mantle plumes on Venus: Implications for volatile history. Icarus 217:510–523

    Google Scholar 

  • Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316

    Google Scholar 

  • Sokolov SYu, Trifonov VG (2012) Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian–Afar superplume and the Alpine–Himalayan belt. Geotectonics 46:171–184

    Google Scholar 

  • Sol S, Thomson CJ, Kendall J-M, White D, VanDecar JC, Asudeh I (2002) Seismic tomographic images of the cratonic upper mantle beneath the Western Superior Province of the Canadian Shield—a remnant Archean slab? Phys Earth Planet Int 134:53–69

    Google Scholar 

  • Solomon SC, Head JW (1982) Mechanisms for lithospheric heat transport on Venus: Implications for tectonic style and volcanism. J Geophys Res 87:9236–9246

    Google Scholar 

  • Solomatov VS, Moresi L-N (1996) Stagnant lid convection on Venus. J Geophys Res 101(E2):4737–4753

    Google Scholar 

  • Solomatov VS, Moresi LN (1997) Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys Res Lett 24:1907–1910

    Google Scholar 

  • Solomatov VS, Moresi LN (2000) Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J Geophys Res—Solid Earth 105:21795–21817

    Google Scholar 

  • Solomon SC, Head JW, Kaula WM, McKenzie D, Parsons B, Phillips RJ, Schubert G, Talwani M (1991) Venus tectonics—initial analysis from Magellan. Science 252:297–312

    Google Scholar 

  • Solomon SC, Smrekar SE, Duane I, Bindschadler L, Grimm RE, Kaula WM, McGill GE, Phillips RJ, Saunders RS, Schubert G, Squyres SW, Stofan ER (1992) Venus tectonics: An overview of magellan observations. J Geophys Res 97:13,199–13,255

    Google Scholar 

  • Sorohtin OG, Ushakov SA (2002) Природа Тектонической Активности Земли, Глава 6, Развитие Земли) (Tectonic activity nature of the Earth. Chapter 6, Development of the Earth), Moscow State University Press, 144–199. http://evolbiol.ru/sorohtin.htm. Accessed 3 Feb 2013

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Google Scholar 

  • Spencer JE (2001) Possible giant metamorphic core complex at the center of Artemis Corona, Venus. GSA Bull 113:333–345

    Google Scholar 

  • Spiricheva VV, Nikishin AM (1990) Comparison of tessera grabens on Venus and grabens of Baikal region and Basin and Range Province on Earth. Abst Lunar Planet Sci Confer 21:1186–1187

    Google Scholar 

  • Sproule RA, Lesher CM, Ayer JA, Thurston PC, Herzberg CT (2002) Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precamb Res 115:153–186

    Google Scholar 

  • Squyres SW, Janes DM, Baer G, Bindschadler DL, Schubert G, Sharpton VL, Stofan ER (1992) The morphology and evolution of coronae on Venus. J Geophys Res E 97:13,611–13,634

    Google Scholar 

  • Stachel T, Banas A, Muehlenbachs K, Kurszlaukis S, Walker EC (2006) Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province. Contrib Mineral Petrol 151:737–750

    Google Scholar 

  • Stanistreet IG, T McCarthyTS, Charlesworth EG, Myers RE, Armstrong RA (1986) Pre-transvaal wrench tectonics along the northern margin of the witwatersrand basin, South Africa. Tectonophysics 131:53–74

    Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Google Scholar 

  • Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292

    Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–560

    Google Scholar 

  • Stern RJ (2008) Modern-type plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history. In: Condie KC, Pease V (eds) When Did Plate Tectonics begin on Planet Earth? Geol Soc Am Spec Paper 440, pp 265–280

    Google Scholar 

  • Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238

    Google Scholar 

  • Stern RA, Percival JA, Mortensen JK (1994) Geochemical evolution of the Minto block: a 2.7 Ga continental magmatic arc built on the Superior proto-craton. Precamb Res 65:115–153

    Google Scholar 

  • Stevenson R, Henry P, Gariépy C (1999) Assimilation-fractional crystallization origin of Archean Sanukitoid Suites: Western Superior Province, Canada. Precamb Res 96:83–99

    Google Scholar 

  • Stevenson RK, O’Neil J, Machado N (2004) Isotope (Nd and Sr) and Geochronology studies of Quebec Kimberlites and Lamprophyres. Rapport Final, Sous-projet SC8b, DIVEX. www.divex.ca/projets/doc/SC8b-Machado-2004.pdf. Accessed 3 Feb 2013

    Google Scholar 

  • Stofan ER, Senske DA, Michaels G (1993) Tectonic Features in Magellan Data, Chapter 8, Guide to Magellan Image Interpretation, JPL-93-94, NASA, pp 20. http://history.nasa.gov/JPL-93-24/ch8.htm. Accessed 1 Feb 2013

  • Stofan ER, Sharpton VL, Schubert G, Baer G, Bindschadler DL, Janes DM, Squyres SW (1992) Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. J Geophys Res 97E:13,347–13,378

    Google Scholar 

  • Stott G, Mueller W (2009) Superior Province: the nature and evolution of the Archean continental lithosphere. Precamb Res 168:1–3

    Google Scholar 

  • Stott GM, Corkery T, Leclair A, Boily M, Percival J (2007) A revised terrane map for the Superior Province as interpreted from aeromagnetic data; Institute on Lake Superior Geology Proceedings, 53rd Annual Meeting, Lutsen, MN, v.53, part 1, pp 74–75

    Google Scholar 

  • Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703

    Google Scholar 

  • Suppe J, Connors C (1992) Critical-taper wedge mechanics of fold-and-thrust belts on Venus: initial results from Magellan. J Geophys Res 97:3545–13561

    Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90. doi:10.1016/j.pepi.2010.02.004

    Google Scholar 

  • Tackley PJ (2000a) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, 1, Pseudoplastic yielding. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000036

    Google Scholar 

  • Tackley PJ (2000b). Self-consistent generation of tectonic plates in time†dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere Geochem Geophys Geosyst 1, 1026. doi:10.1029/2000GC000043

    Google Scholar 

  • Tapponnier P, Molnar P (1976) Slip-line field theory and large-scale continental tectonics. Nature 264:319–324

    Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain A-Y, Armijo R, Cobbold PR (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10:611–616

    Google Scholar 

  • Tchalenko JS (1968) The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics 6:159–174

    Google Scholar 

  • Tchalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640

    Google Scholar 

  • Taylor SR, McLennan SM (1986) The geochemical composition of the Archaean crust. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The Nature of the Lower Continental Crust, Geol Soc London Spec Publ 24:173–178

    Google Scholar 

  • Telmat H, Mareschal J-C, Gariépy C, David J, Antonuk CN (2000) Crustal models of the eastern Superior Province, Quebec, derived from new gravity data. Can J Earth Sci 37:385–397

    Google Scholar 

  • Tessalina SG, Bourdon B, Van Kranendonk MJ, Birk J-L, Philippot P (2010) Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nat Geosci 3:214–217

    Google Scholar 

  • Thébaud N, Rey P (2013) Archean gravity-driven tectonics on hot and flooded continents controls on long-lived hydrothermal systems away from continental margins. Precam Res. 229:93–104 doi:10.1016/j.precamres.2012.03.001

    Google Scholar 

  • Theriault R (2002) Carte Géologique du Québec, MRNF Québec, DV 2002–06

    Google Scholar 

  • Thurston PC (2002) Autochthonous development of Superior Province greenstone belts? Precamb Res 115:11–36

    Google Scholar 

  • Thurston P, Ayer JA, Goutier J, Hamilton MA (2008) Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. Econ Geol 103:1097–1134

    Google Scholar 

  • Thurston PC, Ayres LD (1986) Volcanological constraints on Archaean tectonics. Lunar and Planetary Inst. Workshop on the Tectonic Evolution of Greenstone Belts, 126–128

    Google Scholar 

  • Thurston PC, Chivers KM (1990) Secular variation in greenstone sequence development emphasizing Superior Province, Canada. Precamb Res 46:21–58

    Google Scholar 

  • Thurston PC, Fryer BJ (1983) The geochemistry of repetitive cyclical volcanism from basalt through rhyolite in the Uchi-Confederation greenstone belt, Canada. Contrib Mineral Petrol 83:204–226

    Google Scholar 

  • Tomlinson KY, Condie KC (2001) Archean mantle plumes: evidence from greenstone belt geochemistry. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am Spec Paper 352, pp 341–357

    Google Scholar 

  • Tomlinson KY, Hughes DJ, Thurston PC, Hall RP (1999) Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos 46:103–136

    Google Scholar 

  • Tomlinson KY, Stott GM, Percival JA, Stone D (2004) Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N.Ontario, Canada. Precamb Res 132:245–274

    Google Scholar 

  • Treiman AH (2007) Geochemistry of Venus’ surface: Current limitations as future opportunities. In: Esposito LW, Stofan ER, Cravens TE (eds) Exploring Venus as a Terrestrial Planet, Geophys Monogr Ser 176, AGU, Washington, DC. http://www.lpi.usra.edu/science/treiman/venus1.pdf. Accessed 3 Feb 2013

  • Treloar PJ, Coward MP, Nigel BW, Harris NBW (1992) Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precamb Res 55:571–587

    Google Scholar 

  • Tuckwell GW, Ghail RC (2003) A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet Sci Lett 211:45–55

    Google Scholar 

  • Turcotte DL (1996) Magellan and comparative planetology. J Geophys Res 101:4765–4773

    Google Scholar 

  • Turcotte DL, Morein G, Roberts D, Malamud BD (1999) Catastrophic resurfacing and episodic subduction on Venus. Icarus 139:49–54

    Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354

    Google Scholar 

  • van der Velden AJ, Cook FA (2005) Relict subduction zones in Canada. J Geophys Res 110, B08403. doi:10.1029/2004JB003333

    Google Scholar 

  • van der Velden AJ, Cook FA, Drummond BJ, Goleby BR (2006) Reflections of the neoarchean: a global perspective. Archean geodynamics and environments. Geophys Monogr Ser 164:255–265

    Google Scholar 

  • van Hunen J, Moyen J-F (2012) Archean subduction: fact or fiction? Ann Rev Earth Planet Sci 40:195–219. doi:10.1146/annurev-earth-042711-105255

    Google Scholar 

  • van Hunen J, van den Berg AP (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235

    Google Scholar 

  • van Keken PE, Kiefer B, Peacock M (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3– art. no. 1056 doi:10.129/2001GC000256

    Google Scholar 

  • Van Kranendonk MJ (2010) Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am J Sci 310:1187–1209. Doi:10.2475/10.2010.01

    Google Scholar 

  • Van Kranendonk MJ (2011a) Cool greenstone drips and the role of partial convective overturn in Barberton Greenstone Belt evolution. J Afr Earth Sci 60:346–352

    Google Scholar 

  • Van Kranendonk MJ (2011b) No arc-accretion tectonics in Yilgarn Craton. West Australian Geologist (WAG) 48:3–4. http://www.wa.gsa.org.au/WAG/WAG_April_May_2011.pdf. Accessed 3 Feb 2013

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DR, Pike G (2002) Geology and tectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732

    Google Scholar 

  • Van Kranendonk MJ, Collins WJ, Hickman A, Pawley MJ (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precamb Res 131:173–211

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007a) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) The East Pilbara Terrane of the Pilbara Craton, Western Australia: formation of a continental nucleus through repeated plume magmatism. In: Van Kranendonk M, Smithies RH, Bennett V (eds) Earth’s Oldest rocks, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 307–337

    Google Scholar 

  • Van Schmus WR (1992) Tectonic setting of the Midcontinent Rift system. Tectonophysics 213:1–15

    Google Scholar 

  • Van Thienen P, van den Berg AP, Vlaar NJ (2004a) On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394:111–124

    Google Scholar 

  • Van Thienen P, van den Berg AP, Vlaar NJ (2004b) Production and recycling of oceanic crust in the early Earth. Tectonophysics 386:41–65

    Google Scholar 

  • Van Thienen P, Vlaar NJ, van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Int 150:287–315

    Google Scholar 

  • Vezolainen AV (2003) Dynamics of equatorial highlands on venus. PhD thesis, New Mexico State University. www.geophysics.nmsu.edu/a_vez/res/phd/diser.pdf. Accessed 3 Feb 2013

    Google Scholar 

  • Villemaire M, Darbyshire FA, Bastow ID (2012) P-wave tomography of eastern North America: evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hot spot tectonism. J Geophys Res Solid Earth 117(12). doi:10.1029/2012JB009639

    Google Scholar 

  • Vlaar NJ, van Keken PE, van den Berg AP (1994) Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle. Earth Planet Sci Lett 121:1–18

    Google Scholar 

  • Weihed P, Arndt N, Billström K, Duchesne J-C, Eilu P, Martinsson O, Papunen H, Lahtinen R (2005) 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geol Rev 27:273–322

    Google Scholar 

  • Weijermars R (undated) Structural Geology & Map Interpretation, Chapter 16: Remote-sensing maps, TU Delft OpenCourseWare, http://goo.gl/PDBKf

  • Weertman J (1979) Height of mountains on Venus and the creep properties of rock. Phys Earth Planet Int 19:197–207

    Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2004) Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: implications for Late Archean tectonomagmatic processes. Precamb Res 132:303–326

    Google Scholar 

  • White DJ, Musacchio G, Helmstaedt HH, Harrap RM, Thurston PC, Velden A van der, Hall K (2003) Images of a lower-crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province. Geology 31:997–1000

    Google Scholar 

  • Whitehouse MJ, Kalsbeek F, Nutman AP (1998) Crustal growth and crustal recycling in the Nagssugtoqidian orogen of West Greenland: constraints from radiogenic isotope systematics and U-Pb zircon geochronology. Precamb Res 91:365–381

    Google Scholar 

  • Whitney JA (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100:1886–1897

    Google Scholar 

  • Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321

    Google Scholar 

  • Wilcox RE, Harding TP, Seely DR (1973) Basic wrench tectonics. Am Assoc Pet Geol Bull 57:74–96

    Google Scholar 

  • Wilkinson L, Cruden AR, Krogh TE (1999) Timing and kinematics of post-Timiskaming deformation within the Larder Lake—Cadillac deformation zone, southwest Abitibi greenstone belt, Ontario, Canada. Can J Earth Sci 36:627–647

    Google Scholar 

  • Williams H (1990) Subprovince accretion tectonics in the south-central Superior Province. Can J Earth Sci 27:570–581

    Google Scholar 

  • Willis JJ, Hansen VL (1996) Conjugate shear fractures at “Ki Corona,” southeast Parga Chasma, Venus. Lunar Planet Sci 27:1443–1444

    Google Scholar 

  • Wilson JR, Overgaard G (2005) Relationship between the Layered Series and the overlying evolved rocks in the Bjerkreim-Sokndal Intrusion, Southern Norway. Lithos 83:277–298

    Google Scholar 

  • Wilson JT (1965) Evidence from ocean islands suggesting movement in the earth. In: Blackett PMS, Bullard E, Runcorn SK (eds) A symposium on continental drift. Philos Trans Royal Soc London A 258:145–167

    Google Scholar 

  • Windley BF (1984) The Evolving Continents. Wiley, London, p 399

    Google Scholar 

  • Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth Sci Rev 93:1–30

    Google Scholar 

  • Wyborn LAI (1993) Constraints on interpretations of lower crustal structure, tectonic setting and metallogeny of the Eastern Goldfields and Southern Cross provinces provided by granite geochemistry. Ore Geol Rev 8:125–140

    Google Scholar 

  • Wyman DA, Kerrich R (2002) Formation of Archean continental lithospheric roots: the role of mantle plumes. Geology 30:543–546

    Google Scholar 

  • Wyman DA, Kerrich R (2009) Plume and arc magmatism in the Abitibi subprovince: implications for the origin of Archean continental lithospheric mantle. Precamb Res 168:4–22

    Google Scholar 

  • Wyman DA, Kerrich R, Polat A (2002) Assembly of Archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex. Precamb Res 115:37–62

    Google Scholar 

  • Yin A, Taylor MH (2011) Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation. GSA Bull 123:1798–1821

    Google Scholar 

  • Zhai M, Zhao G, Zhang Q (2002) Is the Dongwanzi complex an Archean ophiolite? Science 295:923. doi:10.1126/science.295.5557.923a

    Google Scholar 

  • Zhang P-Z, et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Google Scholar 

  • Zhao G, Wilde SA, Li S, Sun M, Grant ML, Li X (2008) Response to Note on ’U-Pb zircon constraints on the Dongwanzi ultramafic-mafic body, North China, confirm it is not an Archean ophiolite’ by Kusky and Li. Earth Planet Sci Lett 273:231–234

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66

    Google Scholar 

  • Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51:2411–2444

    Google Scholar 

Download references

Acknowledgements

NASA Venus radar imagery was provided by the U.S. Geological Survey Astrogeology Science Center and the Jet Propulsion Laboratory at the California Institute of Technology. Stéphanie Godey is thanked for making available online her seismic tomographic database for North America. Geophysical data were processed using Geosoft’s Oasis Montaj™ software and software developed and kindly provided by Pierre Keating (GSC), who also provided the detailed GSC aeromagnetic grid for the central Québec Abitibi enhanced by LH. Our ideas for the Abitibi benefited from previous studies (too numerous to cite all) and discussions with colleagues, notably Phil Thurston, who is also thanked for providing the Abitibi geological map, François Leclerc, Patrick Lengyel, and Sandrine Cadéron (who sadly passed away before publishing her research on Archaean tectonics adjacent to the Grenville Front). Initial gravity interpretations in the central Abitibi were undertaken by Noémie Fayol. LH acknowledges NSERC for funding of early stages of this research through a Discovery Grant, Laurentian Goldfields for funding initial research in the SE Superior Craton and NW Grenville Province, and the CFI, MELS-Québec, INRS-ETE, and Sun Microsystems for funding computing facilities and software used for processing of geophysical data. Yildirim Dilek, Benoît Dubé, Michel Jébrak, and Jean Goutier are thanked for their comments on an earlier draft. This is NRCAN/ESS/GSC contribution number 20120436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyal B Harris .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Differences between Venus and Earth

Despite its similar size (0.94 times the Earth’s diameter), average density, and surface gravity (8.87 m/s2 on Venus compared to 9.81 m/s2 on Earth), Venus differs from Earth (McGill 1983; Schaber and Kozak 1990; Bonin 2012; Mocquet et al. 2011; NASA undated) in:

  • The presence of a dense atmosphere (atmospheric pressure is 9.8 MPa compared to 0.1 MPa on Earth). Because of the dense clouds, visual means cannot be used to study Venus’ surface (hence radar is used for imaging surface features).

  • Absence of surface water on Venus; note that liquid water was present on the surface of an Archaean Earth (Sagan and Mullen 1972).

  • An atmosphere of mainly carbon dioxide and nitrogen.

  • Differences in surface processes and chemical weathering.

  • Absence of plate tectonics—mantle plumes dominate the tectonics of Venus.

  • Likely absence of an asthenosphere (weak layer in mantle) .

  • Its high surface temperature of 460 °C, with variations of ca. 100° depending on altitude. The difference in thermal structure results in a different rheological profile to Earth (Kohlstedt and Mackwell 2009).

  • A liquid, instead of a solid, core.

  • The absence of a magnetic field (either because a core dynamo does not exist or because temperatures are close to the Curie temperature).

    Head (1990a) and Hansen (2007b) add the additional differences that:

  • Although Earth presents a bimodal hypsometric curve (i.e. cumulative elevation frequency curve), that for Venus is unimodal.

  • Venus lacks obvious evidence of weathering, erosion, and sediment transport and deposition processes, or extensive sedimentary layers clearly deposited by wind or water.

  • The thickness of crust on Venus is generally uniform and variations in topography are due to crustal thickening processes (e.g. in orogenic/fold belts) and due to local variations in the thermal structure.

  • Differences in relative average crustal thickness between Earth (continental = 40 km/oceanic 5 km) and Venus (upland plateaus/ highlands = ‘continents’ 30 km compared to lowlands at ca. 15 km.

  • The Earth has a larger percentage of ‘continents’. (Venus has two main highlands that are likened to continents on Earth: Ishtar Terra and Aphrodite Terra.)

  • Lithospheric thickness estimates vary on Venus and may be equal or less than on Earth: 100–150 km is estimated by Smrekar and Parmentier (1996) and 100–200 km by Pauer (2004), however Kucinskasl and Turcotte (1994) estimate a lithospheric thickness of ca. 300 km beneath equatorial highlands of Venus. In comparison, lithospheric thicknesses of continental areas on Earth vary between 90 to 300 km (Conrad and Lithgow-Bertelloni 2006).

Appendix 2 Interpretation criteria for structural interpretation of Venus radar imagery

Interpretation criteria of SAR images for Venus in our study follow techniques used in previous SAR interpretations (e.g. Tuckwell and Ghail 2003; Romeo et al. 2005; Fernández et al. 2010; Romeo and Capote 2011):

  • Marker horizons (i.e. with distinctive dark or light tones and/or textures) are used to trace regional fold closures and to interpret fold axial traces. Folds of tectonic origin are separated from volcanic flow features due to their similar orientation over 100s of kilometres, the regular wavelength of regional structures that are accompanied by superposed folds of shorter wavelength, their association with reverse, thrust, and strike-slip faults, and the formation of classical fold interference patterns; see discussion on folding by Romeo and Capote (2011).

  • Faults with dominant strike-slip displacement are interpreted where marker layers or other structural features (e.g. fold closures or linear features in tessera terrains) are consistently offset in the same sense along the fault’s strike.

  • Identical features as mapped on Earth (e.g. Wilcox et al. 1973; Sylvester 1988) are used to interpret brittle-ductile transcurrent shear zones. Folds or linear features progressively curve towards, and are offset across, linear structures. Faults with consistent lateral offset at a small angle (15° to 30°) to large, through-going structures are interpreted as Riedel shear arrays (c.f. Riedel 1929; Tchalenko 1968, 1970).

  • Reverse or thrust faults or shear-zones are interpreted where linear features sub-parallel to axial traces of regional folds locally cross-cut folded lithological layering.

  • Normal faults are linear features truncating lithological layering or other structural elements that bound down-thrown blocks (i.e. graben).

  • Venus interpretations are aided by comparisons with radar interpretations of folds and shear zones on Earth that are constrained by field mapping (e.g. Rivard et al. 1999; Raharimahefa and Kusky 2006).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Her Majesty the Queen in Right of Canada

About this chapter

Cite this chapter

Harris, L., Bédard, J. (2014). Crustal Evolution and Deformation in a Non-Plate-Tectonic Archaean Earth: Comparisons with Venus. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_9

Download citation

Publish with us

Policies and ethics