Skip to main content

Rare Earth Elements in Stromatolites—1. Evidence that Modern Terrestrial Stromatolites Fractionate Rare Earth Elements During Incorporation from Ambient Waters

  • Chapter
  • First Online:

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

Ancient chemical sediments may provide critical information about early microbial life and ancient environmental conditions. For example, the rare earth element (REE) content and fractionation patterns of Archean and Proterozoic banded iron formations (BIF) and other chemical sediments are thought to preserve the REE patterns of ancient seawater, and as such have been employed to investigate secular trends in seawater chemistry through geologic time. Recently it was suggested that REEs could provide evidence for distinguishing between biotic and abiotically precipitated chemical sediments. However, it is important to underscore that very little is actually known about how stromatolites and other microbialites obtain their REE concentrations and fractionation patterns, including what biological processes, if any, the REEs may record. Here, we present REE concentration and fractionation patterns for modern, lacustrine stromatolites and the ambient waters within which they form. We show that the REE patterns of the stromatolites are highly fractionated compared to the ambient waters. Specifically, the stromatolites exhibit heavy REEs (HREE) enrichments relative to upper crustal proxies (i.e., shale composites), whereas the ambient waters are substantially depleted in the HREEs. We propose that surface complexation and subsequent preferential incorporation of HREEs by organic ligands associated with bacterial cell walls, microbialite biofilms, and/or exopolymeric substances may explain the HREE enrichments of the stromatolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander BW, Bau M, Andersson P, Dulski P (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta 72:378–394

    Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Pilbara Craton of Western Australia. Nature 441:714–718

    Google Scholar 

  • Anderson CR, Pedersen K (2003) In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiol 1:169–178

    Google Scholar 

  • Appel PWU (1983) Rare earth elements in the Early Archaean Isua iron-formation, West Greenland. Precambrian Res 20:243–258

    Google Scholar 

  • Arp G, Reimer A, Reitner J (1999a) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403

    Google Scholar 

  • Arp G, Theil V, Reimer A, Michaelis W, Reitner J (1999b) Biofilm exopolymers control microbialite formation at thermal springs discharging into alkaline Pyramid Lake, Nevada, USA. Sed Geol 126:159–176

    Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Google Scholar 

  • Baker CL (1970) Geologic reconnaissance in the Eastern Cordilleran of Mexico. Geol Soc Am, Special Paper 131

    Google Scholar 

  • Barrat JA, Boulègue J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim Cosmochim Acta 64:287–298

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Google Scholar 

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Google Scholar 

  • Bau M, Möller P (1993) Rare earth element systematics of the chemically precipitated component of Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere. Geochim Cosmochim Acta 57:2239–2249

    Google Scholar 

  • Bau M, Dulski P, Möller P (1995) Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation behavior. Chem Erde 55:1–15

    Google Scholar 

  • Bau M, Alexander B, Chesley JT, Dulski P, Brantley SL (2004) Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I. Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distributions. Geochim Cosmochim Acta 68:1199–1216

    Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sed Geol 185:131–145

    Google Scholar 

  • Ben Chekroun K, Rodriguez-Navarro C, Gonzalez-Munoz MT, Arias JM, Cultrone G, Rodriguez-Gallegos M (2004) Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J Sed Res 74:868–876

    Google Scholar 

  • Bertram CJ, Elderfield H (1993) The geochemical balance of the rare earth elements an neodymium isotopes in the oceans. Geochim Cosmochim Acta 57:1957–1986

    Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical reaction modeling. Cambridge University Press, Cambridge, p 543

    Google Scholar 

  • Bethke CM, Yeakel S (2010) Geochemist’s Workbench® Release 8.0. Reaction modeling guide. University of Illinois, Urbana, p 84

    Google Scholar 

  • Biddau R, Cidu R, Frau F (2002) Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy. Chem Geol 182:1–14

    Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60

    Google Scholar 

  • Bolhar R, Van Kranendonk MJ, Kamber BS (2005) A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—formation from hydrothermal fluids and shallow seawater. Precambrian Res 137:93–114

    Google Scholar 

  • Bozau E, Göttlicher J, Stärk H-J (2008) Rare earth element fractionation during the precipitation and crystallisation of hydrous ferric oxides from anoxic lake water. Appl Geochem 23:3473–3486

    Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterial induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sed Res 73:485–490

    Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiol 5:401–411

    Google Scholar 

  • Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol 11:16–34

    Google Scholar 

  • Burne RV, Moore LA (1987) Microbialites: organosedimentary deposits of benthic microbial communications. Palaios 2:241–254

    Google Scholar 

  • Burns BP, Goh F, Allen M, Nellan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101

    Google Scholar 

  • Byrne RH, Kim K-H (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656

    Google Scholar 

  • Byrne RH, Li B (1995) Comparative complexation behavior of the rare earths. Geochim Cosmochim Acta 59:4575–4589

    Google Scholar 

  • Byrne RH, Liu X (1998) A coupled riverine-marine fractionation model for dissolved rare earths and yttrium. Aquatic Geochem 4:103–121

    Google Scholar 

  • Byrne RH, Liu X, Schijf J (1996) The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochim Cosmochim Acta 60:3341–3346

    Google Scholar 

  • Cantrell KJ, Byrne RH (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim Cosmochim Acta 51:597–605

    Google Scholar 

  • Carroll SA (1993) Precipitation of Nd-Ca carbonate solids at 25 °C. Geochim Cosmochim Acta 57:3383–3393

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Google Scholar 

  • Danielson A, Möller P, Dulski P (1992) The europium anomalies in banded iron formation and the thermal history of the oceanic crust. Chem Geol 97:89–100

    Google Scholar 

  • Davranche M, Pourret O, Gruau G, Dia A, Le Coz-Bouhnik M (2005) Adsorption of REE(III)-humate complexes onto MnO2: experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochim Cosmochim Acta 69:4825–4835

    Google Scholar 

  • Davranche M, Pourret O, Gruau G, Dia A, Jin D, Gaertner D (2008) Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on Ce anomaly development and REE adsorption. Chem Geol 247:154–170

    Google Scholar 

  • Davranche M, Grybos M, Gruau G, Pédrot M, Dia A, Marsac R (2011) Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem Geol 284:127–137

    Google Scholar 

  • De Baar HJW, Schijf J, Byrne RH (1991) Solution chemistry of the rare earth elements in seawater. Eur J Solid State Inorg Chem 28:357–373

    Google Scholar 

  • De Carlo EH, Green WJ (2002) Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta 66:1323–1333

    Google Scholar 

  • De Carlo EH, Wen X-Y, Irving M (1998) The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particle. Aquatic Geochem 3:357–392

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Marine Biol Rev 28:73–154

    Google Scholar 

  • Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer-Verlag, Berlin, pp 1–9

    Google Scholar 

  • Delaney JM, Lundeen SR (1989) The LLNL thermochemical database. Lawrence Livermore National Laboratory Report UCRL–21658

    Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54:2965–2977

    Google Scholar 

  • Dia A, Gruau G, Olivié-Lauquet G, Riou C, Molénat J, Curmi P (2000) The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochim Cosmochim Acta 64:4131–4151

    Google Scholar 

  • Duncan T, Shaw TJ (2003) The mobility of rare earth elements and redox sensitive elements in the groundwater/seawater mixing zone of a shallow coastal aquifer. Aquatic Geochem 9:233–255

    Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162

    Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare-earth elements. Phil Transactions R Soc London A 325:105–126

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Google Scholar 

  • Elderfield H, Greaves MJ (1983) Determination of rare earth elements in sea water. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 427–445

    Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991

    Google Scholar 

  • Elzinga EJ, Reeder RJ, Withers SH, Peale RE, Mason RA, Beck KM, Hess WP (2002) EXAFS study of rare-earth element coordination in calcite. Geochim Cosmochim Acta 66:2875–2885

    Google Scholar 

  • Escalante AE, Eguiarte LE, Espinosa-Asuar L, Forney LJ, Noguez AM, Souza Saldivar A (2008) Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 65:50–60

    Google Scholar 

  • Evans SB (2005) Using chemical data to define flow systems in Cuatro Cienegas, Coahuila, Mexico. Thesis, University of Texas, Austin

    Google Scholar 

  • Falcón LI, Cerritos R, Eguiarte LE, Souza V (2007) Nitrogen fixation in microbial mats and stromatolite communities from Cuatro Cienegas, Mexico. Microbiol Ecol 54:363–373

    Google Scholar 

  • Fenchel T, King GM, Blackburn H (2012) Bacterial Biogeochemistry: the ecophysiology of mineral cycling, 3rd edn. Academic Press, Amsterdam, p 303

    Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257

    Google Scholar 

  • Firsching FH, Mohammadzadel J (1986) Solubility products of the rare-earth carbonates. J Chem Eng Data 31:40–42

    Google Scholar 

  • Friend CRL, Nutman AP, Bennett VC, Norman MD (2008) Seawater-like trace element signature (REE + Y) of Eoarchaean chemical sedimentary rocks from southern West Greenland, and their corruption during high-grade metamorphism. Contrib Mineral Petrol 155:229–246

    Google Scholar 

  • Garcia-Pichel F, Al-Horani FA, Farmer JD, Ludwig R (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiol 2:49–57

    Google Scholar 

  • Gautret P, Trichet J (2005) Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia: biochemical parameters underlying their formation. Sed Geol 178:55–73

    Google Scholar 

  • Gerdes G (2010) What are microbial mats? In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Cellular Origin, Life in Extreme Habitats and Astrobiology 14:5–25

    Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89:35–47

    Google Scholar 

  • Greaves MJ, Elderfield H, Klinkhammer GP (1989) Determination of rare earth elements in natural waters by isotope-dilution mass spectrometry. Anal Chim Acta 218:265–280

    Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383:423–425

    Google Scholar 

  • Guido A, Mastandrea A, Tosti F, Russo F (2010) Importance of rare earth elements patterns in discrimination between biotic and abiotic mineralization. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology. Lecture notes in earth sciences 131. Springer, Berlin, pp 433–442

    Google Scholar 

  • Guo C, Stetzenbach KJ, Hodge VF (2005) Determination of 56 trace elements in three aquifer-type rocks by ICP-MS and approximation of the solubilities of these elements in a carbonate system by water-rock concentration ratios. In: Johannesson KH (ed) Rare earth elements in groundwater flow systems. Springer, Dordrecht, pp 39–65

    Google Scholar 

  • Han G, Liu C-Q (2007) Dissolved rare earth elements in river waters draining karst terrains in Guizhou Province, China. Aquatic Geochem 13:95–107

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous systems. Ann Rev Earth Planet Sci 8:371–406

    Google Scholar 

  • Høgdahl OT, Bowen BT, Melson S (1968) Neutron activation analysis of lanthanide elements in seawater. Adv Chem Ser 73:308–325

    Google Scholar 

  • Hoyle J, Elderfield H, Gledhill A, Greaves M (1984) The behaviour of the rare earth elements during the mixing of river and sea waters. Geochim Cosmochim Acta 48:143–149

    Google Scholar 

  • Jakeš P, Gill J (1970) Rare earth elements and the island arc tholeiitic series. Earth Planet Sci Lett 9:17–28

    Google Scholar 

  • Johannesson KH (2012) Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite by Webb et al., Sedimentology, 56, 1433–1463: Discussion. Sedimentology 59:729–732

    Google Scholar 

  • Johannesson KH, Burdige DJ (2007) Balancing the global oceanic neodymium budget: evaluating the role of groundwater. Earth Planet Sci Lett 253:129–142

    Google Scholar 

  • Johannesson KH, Hendry MJ (2000) Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim Cosmochim Acta 64:1493–1509

    Google Scholar 

  • Johannesson KH, Lyons WB (1994) The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing. Limnol Oceanogr 39:1141–1154

    Google Scholar 

  • Johannesson KH, Lyons WB, Bird DA (1994) Rare earth element concentrations and speciation in alkaline lakes from the western U.S.A. Geophys Res Lett 21:773–776

    Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF, Lyons WB (1996) Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions. Earth Planet Sci Lett 139:305–319

    Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF, Kreamer DK, Zhou X (1997) Delineation of ground-water flow systems in the Southern Great Basin using aqueous rare earth element distributions. Ground Water 35:807–819

    Google Scholar 

  • Johannesson KH, Zhou X, Guo C, Stetzenbach KJ, Hodge VF (2000) Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chem Geol 164:239–257

    Google Scholar 

  • Johannesson KH, Cortés A, Kilroy KC (2004a) Reconnaisance isotopic and hydrochemical study of Cuatro Ciénegas groundwater, Coahuila, México. J South Am Earth Sci 17:171–180

    Google Scholar 

  • Johannesson KH, Tang J, Daniels JM, Bounds WJ, Burdige DJ (2004b) Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chem Geol 209:271–294

    Google Scholar 

  • Johannesson KH, Cortés A, Ramos Leal JA, Ramírez AG, Durazo J (2005) Geochemistry of rare earth elements in groundwaters from a rhyolite aquifer, central México. In: Johannesson KH (ed) Rare earth elements in groundwater flow systems. Springer, Dordrecht, pp 187–222

    Google Scholar 

  • Johannesson KH, Hawkins DL Jr, Cortés A (2006) Do Archean chemical sediments record ancient seawater rare earth element patterns ? Geochim Cosmochim Acta 70:871–890

    Google Scholar 

  • Johannesson KH, Chevis DA, Burdige DJ, Cable JE, Martin JB, Roy M (2011) Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA. Geochim Cosmochim Acta 75:825–843

    Google Scholar 

  • Kawaguchi T, Decho AW (2002) Characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) and its inhibitory effect on CaCO3 precipitation. Preparative Biochem Biotechnol 32:51–63

    Google Scholar 

  • Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes, vol 13. Bull l’Institute Océanogr, Monaco, pp 61–117

    Google Scholar 

  • Kim K-H, Byrne RH, Lee JH (1991) Gadolinium behavior in seawater: a molecular basis for gadolinium anomalies. Mar Chem 36:107–120

    Google Scholar 

  • Klinkhammer G, Elderfield H, Hudson A (1983) Rare earth elements in seawater near hydrothermal vents. Nature 305:185–188

    Google Scholar 

  • Klinkhammer G, German CR, Elderfield H, Greaves MJ, Mitra A (1994) Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry. Mar Chem 45:170–186

    Google Scholar 

  • Klungness GD, Byrne RH (2000) Comparative hydrolysis behavior of the rare earth elements and yttrium: the influence of temperature and ionic strength. Polyhedron 19:99–107

    Google Scholar 

  • Koeppenkastrop D, DeCarlo EH (1992) Sorption of rare earth elements from seawater onto synthetic mineral particles: an experimental approach. Chem Geol 95:251–263

    Google Scholar 

  • Koeppenkastrop D, DeCarlo EH (1993) Uptake of rare earth elements from solution by metal oxides. Environ Sci Technol 27:1796–1806

    Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Malden, p 425

    Google Scholar 

  • Lee JH, Byrne RH (1992) Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim Cosmochim Acta 56:1127–1137

    Google Scholar 

  • Lehmann C, Osleger DA, Montañez IP, Sliter W, Arnaud-Vanneau A, Banner J (1999) Evolution of the Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico. Geol Soc Am Bull 111:1010–1029

    Google Scholar 

  • Lesser Jones H (1965) Confined fresh water aquifers in limestone, exploited in the north of Mexico with deep wells below sea level. In: Proceedings Dubrovnik Symposium, 1965, Hydrology of Fractured Rocks. vol 2. International Association of Scientific Hydrology, pp 526–539

    Google Scholar 

  • Lesser y Asociados (2001) Sinopsis del estudio de evaluación hidrogeologógica e isotópica en el Valle del Hundido, Coahuila. Guadalajara, Jalisco. Comisin Nacional del Agua, Subdirección General Técnica, Gerencia de Aguas Subterráneas, Mexico

    Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Google Scholar 

  • Leybourne MI, Cousens BL (2005) Rare earth elements (REE) and Nd and Sr isotopes in groundwater and suspended sediments from the Bathurst Mining Camp, New Brunswick: water-rock reactions and elemental fractionation. In: Johannesson KH (ed) Rare earth elements in groundwater flow systems. Springer, Dordrecht, pp 253–293

    Google Scholar 

  • Leybourne MI, Johannesson KH (2008) Rare earth elements (REE) and yittrium in stream waters, stream sediments, and Fe-Mn oxyhydroxides: fractionation, speciation, and controls over REE + Y patterns in the surface environment. Geochim Cosmochim Acta 72:5962–5983

    Google Scholar 

  • Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn-Pb massive sulphide deposits. Appl Geochem 15:695–723

    Google Scholar 

  • Liu X, Byrne RH (1998) Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-mass spectrometry. J Sol Chem 27:803–815

    Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Google Scholar 

  • Ludwig R, Al-Horani FA, deBeer D, Jonkers HM (2005) Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol Oceanogr 50:1836–1843

    Google Scholar 

  • Luo Y-R, Byrne RH (2000) The ionic strength dependence of rare earths and yttrium fluoride complexes at 25 °C. J Sol Chem 29:1089–1099

    Google Scholar 

  • Luo Y-R, Byrne RH (2001) Yttrium and rare earth element complexation by chloride ions at 25 °C. J Sol Chem 30:837–845

    Google Scholar 

  • Luo Y-R, Byrne RH (2004) Carbonate complexation of yttrium and the rare earth elements in natural waters. Geochim Cosmochim Acta 68:691–699

    Google Scholar 

  • Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB (1984) Calcification of cyanobacterial mats in solar lake, Sinai. Geology 12:623–626

    Google Scholar 

  • Marsac R, Davranche M, Gruau G, Dia A (2010) Metal loading effect on rare earth element binding to humic acid: experimental and modelling evidence. Geochim Cosmochim Acta 74:1749–1761

    Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • Meinrath G, Takeishi H (1993) Solid-liquid equilibria of Nd3+ in carbonate systems. J Alloys Compounds 194:93–99

    Google Scholar 

  • Michard A, Albarède F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Google Scholar 

  • Minckley WL (1969) Environments of the Bolsón of Cuatro Ciénegas, Coahuila, México, with special reference to the aquatic biota. University of Texas El Paso Science Series. Texas Western Press, El Paso

    Google Scholar 

  • Minckley WL, Cole GA (1968) Preliminary limnologic information on waters of the Cuatro Cienegas Basin, Coahuila, Mexico. Southwest. Naturalist 13:421–431

    Google Scholar 

  • Minckley WL (1984) Cuatro Ciénegas fishes: research review and a local test of diversity versus habitat size. J Arizona-Nevada Acad Sci 19:13–21

    Google Scholar 

  • Moffett JW (1990) Microbially mediated cerium oxidation in sea water. Nature 345:421–423

    Google Scholar 

  • Moffett JW (1994) The relationship between cerium and manganese oxidization in the marine environment. Limnol Oceanogr 39:1309–1318

    Google Scholar 

  • Monty CLV (1977) Evolving concepts on the nature and the ecological significance of stromatolites. In: Flügel E (ed) Fossil algae. Springer-Verlag, Berlin, pp 15–35

    Google Scholar 

  • Murray GE (1961) Geology of the Atlantic and Gulf Coastal Province of North America. Harper and Brothers, New York

    Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551

    Google Scholar 

  • Négrel Ph, Guerrot C, Cocherie A, Azaroual M, Brach M, Fouillac Ch (2000) Rare earth elements, neodymium and strontium isotopic systematics in mineral waters: evidence from the Massif Central, France. Appl Geochem 15:1345–1367

    Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148:329–340

    Google Scholar 

  • Nutman AP, Friend CRL, Bennett VC, Wright D, Norman MD (2010) ≥ 3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183:725–737

    Google Scholar 

  • Paerl HW, Yannarell AC (2010) Environmental dynamics, community structure and function in a hypersaline microbial mat. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems, cellular origin, life in extreme habitats and astrobiology, vol 14. Springer, Dordrecht, pp 423–442

    Google Scholar 

  • Papineau D, Walker J, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832

    Google Scholar 

  • Piepgras DJ, Wasserburg GJ (1987) Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochim Cosmochim Acta 51:1257–1271

    Google Scholar 

  • Planavsky N, Bekker A, Rouxel O, Kamber B, Hofmann A, Knudsen A, Lyons TW (2010) Rare earth element an yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: Ne perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Google Scholar 

  • Pokrovsky OS, Schott J (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem Geol 190:141–179

    Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2007) Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data. Geochim Cosmochim Acta 71:2718–2735

    Google Scholar 

  • Pourret O, Gruau G, Dia A, Davranche M, Molénat J (2010) Colloidal controls on the distribution of rare earth elements in shallow groundwaters. Aquatic Geochem 16:31–59

    Google Scholar 

  • Quinn KA, Byrne RH, Schijf J (2004) Comparative scavenging of yttrium and the rare earth elements in seawater: competitive influences of solution and surface complexataion. Aquatic Geochem 10:59–80

    Google Scholar 

  • Quinn KA, Byrne RH, Schijf J (2006) Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate. Geochim Cosmochim Acta 70:4151–4165

    Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, MacIntyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Google Scholar 

  • Riding R (2010) The nature of stromatolites: 3,500 million years of history and a century of research. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology. Lecture Notes Earth Sciences 131. Springer, Berlin, pp 29–74

    Google Scholar 

  • Roberts NL, Piotrowski AM, Elderfield H, Eglinton TI, Lomas MW (2012) Rare earth element association with foraminifera. Geochim Cosmochim Acta 94:57–71

    Google Scholar 

  • Rönnback P, Åström M, Gustafsson J-P (2008) Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden. Appl Geochem 23:1862–1880

    Google Scholar 

  • Schijf J, Byrne RH (1999) Determination of stability constants for the mono- and difluoro-complexes of Y and the REE, using a cation-exchange resin and ICP-MS. Polyhedron 18:2839–2844

    Google Scholar 

  • Schijf J, Byrne RH (2004) Determination of SO4β1 for yttrium and the rare earth elements at I = 0.66 m and t = 25 °C–Implications for YREE solution speciation in sulfate-rich waters. Geochim Cosmochim Acta 68:2825–2837

    Google Scholar 

  • Schijf J, Marshall KS (2011) YREE sorption on hydrous ferric oxide in 0.5 M NaCl solutions: a model. Mar Chem 123:32–43

    Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015

    Google Scholar 

  • Shannon WM, Wood SA (2005) The analysis of picogram quantities of rare earth elements in natural waters. In: Johannesson KH (ed) Rare earth elements in groundwater flow systems. Springer, Dordrecht, pp 1–37

    Google Scholar 

  • Shiller AM (2002) Seasonality of dissolved rare earth elements in the lower Mississippi River. Geochem Geophys Geosyst 3(11):1068. doi:10.1029/2002GC000372

    Google Scholar 

  • Shimizu H, Umemoto N, Masuda A, Appel PWU (1990) Sources of iron-formations in the Archean Isua and Malene supracrustals, West Greenland: evidence from La—Ce and Sm—Nd isotopic data and REE abundances. Geochim Cosmochim Acta 54:1147–1154

    Google Scholar 

  • Sholkovitz ER (1992) Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. Earth Planet Sci Lett 114:77–84

    Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquatic Geochem 1:1–34

    Google Scholar 

  • Sholkovitz ER, Schneider DL (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. Geochim Cosmochim Acta 55:2737–2743

    Google Scholar 

  • Sholkovitz ER, Shen GT (1995) The incorporation of rare earth elements in modern coral. Geochim Cosmochim Acta 59:2749–2756

    Google Scholar 

  • Sholkovitz ER, Szymczak R (2000) The estuarine chemistry of rare earth elements: comparison of the Amazon, Fly, Sepik and Gulf of Papua systems. Earth Planet Sci Lett 179:299–309

    Google Scholar 

  • Sholkovitz ER, Church TM, Arimoto R (1993) Rare earth element composition of precipitation, precipitation particles, and aerosols. J Geophys Res 98:20587–20599

    Google Scholar 

  • Sonke JE, Salters VJM (2006) Lanthanide—humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochim Cosmochim Acta 70:1495–1506

    Google Scholar 

  • Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodivsersity in the Chihuahuan desert. Proc Natl Acad Sci U S A 103:6565–6570

    Google Scholar 

  • Souza V, Eguiarte LE, Siefert J, Elser JJ (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nature Rev Microbiol 6:559–564

    Google Scholar 

  • Stern JC, Sonke JE, Salters VJM (2007) A capillary electrophoresis-ICP-MS study of rare earth element complexation by humic acids. Chem Geol 246:170–180

    Google Scholar 

  • Stetzenbach KJ, Amano M, Kreamer DK, Hodge VF (1994) Testing the limits of ICP-MS: determination of trace elements in ground water at the parts-per-trillion level. Ground Water 32:976–985

    Google Scholar 

  • Stolz JF, Reid RP, Visscher PT, Decho AW, Norman RS, Aspden RJ, Bowlin EM, Franks J, Foster JS, Paterson DM, Przekop KM, Underwood GJC, Prufert-Bebout L (2009) The microbial communities of the modern marine stromatolites at Highborn Cay, Bahamas. Atoll Res Bull 567:1–29

    Google Scholar 

  • Tang J, Johannesson KH (2003) Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochim Cosmochim Acta 67:2321–2339

    Google Scholar 

  • Tang J, Johannesson KH (2005) Rare earth element concentrations, speciation, and fractionation along groundwater flow paths: the Carrizo Sand (Texas) and Upper Floridan aquifers. In: Johannesson KH (ed) Rare earth elements in groundwater flow systems. Springer, Dordrecht, pp 223–251

    Google Scholar 

  • Tang J, Johannesson KH (2006) Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA. Chem Geol 225:156–171

    Google Scholar 

  • Tang J, Johannesson KH (2010) Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters. Geochim Cosmochim Acta 74:6690–6705

    Google Scholar 

  • Takahashi Y, Châtellier X, Hattori KH, Kato K, Fortin D (2005) Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol 219:53–67

    Google Scholar 

  • Takahashi Y, Hirata T, Shimizu H, Ozaki T, Fortin D (2007) A rare earth element signature for bacteria in natural waters. Chem Geol 244:569–583

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Tricca A, Stille P, Steinmann M, Kiefel B, Samuel J, Eikenberg J (1999) Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chem Geol 160:139–158

    Google Scholar 

  • Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archean ocean. Geobiol 1:91–108

    Google Scholar 

  • van Lith Y , Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiol 1:71–79

    Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes and products. Paleogeogr Paleoclimatol Paleoecol 219:87–100

    Google Scholar 

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922

    Google Scholar 

  • Wacey D (2009) Early life on earth: a practical guide. Springer, Dordrecht, p 274

    Google Scholar 

  • Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Phil Trans Royal Soc London A 344:27–36

    Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow water proxy. Geochim Cosmochim Acta 64:1557–1565

    Google Scholar 

  • Willis SS, Johannesson KH (2011) Controls on the geochemistry of rare earth elements in sediments and groundwaters of the Aquia aquifer, Maryland, USA. Chem Geol 285:32–49

    Google Scholar 

  • Wilson NSF, Cline JS, Amelin YV (2003) Origin, timing, and temperature of secondary calcite-silica mineral formation at Yucca Mountain, Nevada. Geochim Cosmochim Acta 67:1145–1176

    Google Scholar 

  • Winsborough BM (1990) Some ecological aspects of modern freshwater stromatolites in lakes and streams of the Cuatro Cienegas Basin, Coahuila, Mexico. Dissertation, University of Texas, Austin

    Google Scholar 

  • Winsborough BM, Golubić S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23:195–201

    Google Scholar 

  • Winsborough BM, Seeler J-S, Golubić S, Folk RL, Maquire B (1994) Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from Northeastern Mexico. In: Bertand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer Academic Publishers, Amsterdam, pp 71–100

    Google Scholar 

  • Wolaver BD, Sharp JM Jr, Rodriguez JM, Ibarra Flores JC (2008) Delineation of regional arid karstic aquifers: an integrative data approach. Ground Water 46:396–413

    Google Scholar 

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulfate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008

    Google Scholar 

  • Xu C, Zhang S, Chuang C-X, Miller EJ, Schwehr KA, Santschi PH (2011) Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar Chem 126:27–36

    Google Scholar 

  • Yamamoto K, Itoh N, Matsumoto T, Tanaka T, Adachi M (2004) Geochemistry of Precambian carbonate intercalated in pillows and its host basalt: implications for the REE composition of circa 3.4 Ga seawater. Precambrian Res 135:331–344

    Google Scholar 

  • Yamamoto Y, Takahashi Y, Shimizu H (2005) Systematics of stability constants of fulvate complexes with rare earth ions. Chem Lett 34:880–881

    Google Scholar 

  • Yamamoto Y, Takahashi Y, Shimizu H (2010) Systematic change in relative stabilities of REE-humic complexes at various metal loading levels. Geochem J 44:39–63

    Google Scholar 

  • Yan XP, Kerrich R, Hendry MJ (2001) Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada. Chem Geol 176:151–172

    Google Scholar 

  • Zhang YS, Amakawa H, Nozaki Y (1994) The comparative behaviours of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett 21:2677–2680

    Google Scholar 

  • Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 °C and 1 atm, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453

    Google Scholar 

  • Zhou X (2004) Trace element geochemistry of groundwater flow systems in Southern Nevada and Eastern California. Dissertation, University of Nevada, Las Vegas

    Google Scholar 

  • Zoll AM, Schijf J (2012) A surface complexation model of YREE sorption on Ulva lactuca in 0.5–5.0 M NaCl solutions. Geochim Cosmochim Acta 97:183–199

    Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Barbara Winsborough and Brad Wolaver who collected the stromatolite samples for this project. Funds provided to Johannesson by a number of NSF grants (INT-9912159, EAR-0303761, and EAR-0805331) were instrumental to this project, and the authors thank the National Science Foundation for this invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Johannesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johannesson, K., Telfeyan, K., Chevis, D., Rosenheim, B., Leybourne, M. (2014). Rare Earth Elements in Stromatolites—1. Evidence that Modern Terrestrial Stromatolites Fractionate Rare Earth Elements During Incorporation from Ambient Waters. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_14

Download citation

Publish with us

Policies and ethics