Skip to main content

In situ Morphologic, Elemental and Isotopic Analysis of Archean Life

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

A number of key questions in Archean palaeobiology require study at the micrometre (µm) to nanometre (nm) scale. These include: identifying the transition from a prebiotic world to one containing life; distinguishing true signs of life from abiotic artifacts; identifying the first appearance of important groups of microbes (e.g. cyanobacteria) and metabolic pathways (e.g. sulfur processing, iron processing, anoxygenic and oxygenic photosynthesis); and, determining the transition from a purely prokaryotic world to one including eukaryotes. Here I outline four complementary in situ microanalysis techniques that are now providing new evidence in our quest to solve these important scientific questions. The integrated use of these techniques is illustrated by way of a case study from the 3430 Ma Strelley Pool Formation of Western Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bontognali TRR, Sessions AL, Allwood AC, Fischer WW, Grotzinger JP, Summons RE, Eiler JM (2012) Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Nat Acad Sci USA 109:15146–15151

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Steele A, Stoakes C (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ~ 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precamb Res 140:55–102

    Article  Google Scholar 

  • Brasier MD, Matthewman R, McMahon S, Kilburn MR, Wacey D (2013) Pumice from the ~ 3460 Ma Apex Basalt, Western Australia: a natural laboratory for the early biosphere. Precamb Res 224:1–10

    Article  Google Scholar 

  • Buseck PR, Bo-Jun H (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochim et Cosmochim Acta 49:2003–2016

    Article  Google Scholar 

  • Buseck PR, Bo-Jun H, Miner B (1988) Structural order and disorder in Precambrian kerogens. Org Geochem 12:221–234

    Article  Google Scholar 

  • Calvert CC, Brown A, Brydson R (2005) Determination of the local chemistry of iron in inorganic and organic materials. J Elec Spect Rel Phenom 143:173–187

    Article  Google Scholar 

  • Daniels H, Brydson R, Rand B, Brown A (2007) Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Phil Mag 87:4073–4092

    Article  Google Scholar 

  • De Gregorio BT, Sharp TG (2006) The structure and distribution of carbon in 3.5 Ga Apex chert: implications for the biogenicity of Earth’s oldest putative microfossils. Am Mineral 91:784–789

    Article  Google Scholar 

  • Downs R (2006) The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and abstracts of the 19th general meeting of the International Mineralogical Association. Kobe, Japan, O03–13

    Google Scholar 

  • Fletcher IR, Rasmussen B, Kilburn MR (2008) Nano-SIMS µm-scale in situ measurement of 13C/12C in early Precambrian organic matter, with per mil precision. Int J Mass Spec 278:59–68

    Article  Google Scholar 

  • Fries M, Steele A (2011) Raman spectroscopy and confocal Raman imaging in mineralogy and petrography. Springer Opt Sci 158:111–135

    Article  Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, Stetter KO (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Article  Google Scholar 

  • Ireland TR (1995) Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. In: Hyman M, Rowe M (eds) Advances in analytical geochemistry. JAI Press, Greenwich, pp 1–118

    Google Scholar 

  • Ireland TR (2003) Considerations in zircon geochronology by SIMS ZIRCON. Rev Mineral Geochem 53:215–241

    Article  Google Scholar 

  • Jehlicka J, Urban O, Pokorny J (2003) Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta A 59:2341–2352

    Article  Google Scholar 

  • Kamber BS, Whitehouse MJ (2007) Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiol 5:5–17

    Article  Google Scholar 

  • Knoll AH, Barghoorn ES (1974) Ambient pyrite in Precambrian chert: new evidence and a theory. Proc Nat Acad Sci USA 71:2329–2331

    Article  Google Scholar 

  • Kudryavtsev AB, Schopf JW, Agresti DG, Wdowiak TJ (2001) In situ laser-Raman imagery of Precambrian microscopic fossils. Proc Nat Acad Sci USA 98:823–826

    Article  Google Scholar 

  • Londry KL, Des Marais DJ (2003) Stable carbon isotope fractionation by sulfate-reducing bacteria. Appl Env Microbiol 69:2942–2949

    Article  Google Scholar 

  • Marshall CP, Emry JR, Olcott Marshall A (2011) Haematite psuedomicrofossils present in the 3.5-billion-year-old Apex Chert. Nature Geosci 4:240–243

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Plan Sci Lett 243:64–84

    Article  Google Scholar 

  • McKeegan KD, Kudryavstev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology 35:591–594

    Article  Google Scholar 

  • McKibben MA, Shanks III WC, Ridley WI (1998) Applications of Microanalytical Techniques to Understanding Mineralizing Processes. SEG Rev Econ Geol 7:263

    Google Scholar 

  • McLoughlin N, Grosch EG, Kilburn MR, Wacey D (2012) Sulfur isotope evidence for a Paleoarchean sub-seafloor biosphere, Barberton, South Africa. Geology 40:1031–1034

    Article  Google Scholar 

  • Mojzsis SJ, Arrenhius G, McKeegan KD, Harrison TM, Nutmam AP, Friend CRL (1996) Evidence for life on Earth 3,800 million years ago. Nature 384:55–59

    Article  Google Scholar 

  • Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD, Harrison TM (2003) Mass-independent isotope effects in Archean (2.5–3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta 67:1635–1658

    Article  Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in ~ 1.9 Ga Gunflint microfossils. Astrobiol 4:196–210

    Article  Google Scholar 

  • Moreau JW, Webb RI, Banfield JF (2004) Ultrastructure, aggregation-state, and crystal growth of biogenic sphalerite and wurtzite. Am Mineral 89:950–960

    Google Scholar 

  • Oehler DZ (1976) Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation of Australia: techniques and survey of preserved ultrastructure. J Paleont 50:90–106

    Google Scholar 

  • Oehler DZ, Robert F, Walter MR, Sugitani K, Allwood A, Meibom A, Mostefaoui S, Selo M, Thomen A, Gibson EK (2009) NanoSIMS: insights to biogenicity and syngeneity of Archaean carbonaceous structures. Precamb Res 173:70–78

    Article  Google Scholar 

  • Oehler DZ, Robert F, Walter MR, Sugitani K, Meibom M, Mostefaoui S, Gibson EK (2010) Diversity in the Archean biosphere: new insights from NanoSIMS. Astrobiol 10:413–424

    Article  Google Scholar 

  • Olcott Marshall A, Emry JR, Marshall CP (2012) Multiple generations of carbon in the Apex Chert and implications for preservation of microfossils. Astrobiol 12:160–166

    Article  Google Scholar 

  • Orphan VJ, House CH (2009) Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiol 7:360–372

    Article  Google Scholar 

  • Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiol 3:727–738

    Article  Google Scholar 

  • Philippot P, van Zuilen M, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  Google Scholar 

  • Philippot P, van Zuilen M, Rollion-Bard C (2012) Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nature Geosci 5:668–674

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  Google Scholar 

  • Rasmussen B, Blake TS, Fletcher IR, Kilburn MR (2009) Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. Geology 37:423–426

    Article  Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, pp 149–186

    Google Scholar 

  • Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiol 3:1–12

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2009) Confocal laser scanning microscopy and Raman imaging of ancient microscopic fossils. Precamb Res 173:39–49

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 413:73–76

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiol 5:333–371

    Article  Google Scholar 

  • Tice MM, Bostick BC, Lowe DR (2004) Thermal history of the 3.5-3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32:37–40

    Article  Google Scholar 

  • Ueno Y, Isozaki Y, Yurimoto H, Maruyama S (2001) Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int Geol Rev 43:196–212

    Article  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  Google Scholar 

  • van Zuilen MA, Lepland A, Teranes J, Finarelli J, Wahlen M, Arrhenius G (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precamb Res 126:331–348

    Article  Google Scholar 

  • Wacey D (2009) Early life on Earth: a practical guide. Springer, p 285

    Google Scholar 

  • Wacey D (2010) Stromatolites in the ~ 3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiol 10:381–395

    Article  Google Scholar 

  • Wacey D, McLoughlin N, Green OR, Parnell J, Stoakes CA, Brasier MD (2006) The ~ 3.4 billion-year-old Strelley Pool sandstone: a new window into early life on Earth. Int J Astrobiol 5:333–342

    Article  Google Scholar 

  • Wacey D, Kilburn MR, McLoughlin N, Parnell J, Stoakes CA, Brasier MD (2008a) Using NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J Geol Soc Lon 165:43–53

    Article  Google Scholar 

  • Wacey D, Kilburn MR, Stoakes CA, Aggleton H, Brasier MD (2008b) Ambient inclusion trails: their recognition, age range and applicability to early life on earth. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Springer, pp 113–133

    Google Scholar 

  • Wacey D, Kilburn MR, Saunders M (2009) A combined SIMS and TEM study of potential biosignals from Precambrian rocks. Geochim Cosmochim Acta 73:A1397

    Google Scholar 

  • Wacey D, McLoughlin N, Whitehouse MJ, Kilburn MR (2010a) Two co-existing sulfur metabolisms in a ca. 3,400 Ma sandstone. Geology 38:1115–1118

    Article  Google Scholar 

  • Wacey D, McLoughlin N, Stoakes CA, Kilburn MR, Green OR, Brasier MD (2010b) The 3426-3350 Ma Strelley Pool Formation in the East Strelley greenstone belt—a field and petrographic guide. Geol Surv WA Record 2010/10:64

    Google Scholar 

  • Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011a) Microfossils of sulfur metabolizing cells in ~ 3.4 billion year old rocks of Western Australia. Nature Geosci 4:698–702

    Article  Google Scholar 

  • Wacey D, Saunders M, Brasier MD, Kilburn MR (2011b) Earliest microbially mediated pyrite oxidation in ~ 3.4 billion-year-old sediments. Earth Planet Sci Lett 301:393–402

    Article  Google Scholar 

  • Wacey D, Menon S, Green L, Gerstmann D, Kong C, McLoughlin N, Saunders M, Brasier MD (2012) Taphonomy of very ancient microfossils from the ~ 3400 Ma Strelley Pool Formation and ~ 1900 Ma Gunflint Formation: new insights using a focused ion beam. Precamb Res 220–221:234–250

    Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans R Soc B 361:1857–1875

    Article  Google Scholar 

  • Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science (2nd edn). Springer Science and Business Media, New York, p 832

    Book  Google Scholar 

  • Williford KH, Ushikubo T, Schopf JW, Lepot K, Kitajima K, Valley JW (2013) Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim Cosmochim Acta 104:165–182

    Article  Google Scholar 

  • Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterisation of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

Download references

Acknowledgments

I would like to thank the numerous people who helped to carry out the microanalyses for the case study, in particular, Matt Kilburn, John Cliff, Martin Saunders, Charlie Kong, Len Green, Sarath Menon, Derek Gerstmann, Nicola McLoughlin, Martin Whitehouse, Andrew Steele and Martin Brasier. I acknowledge funding from the Bergen Research Foundation, the University of Bergen, the University of Western Australia and the Australian Research Council. I also acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by The University, State and Commonwealth Governments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wacey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wacey, D. (2014). In situ Morphologic, Elemental and Isotopic Analysis of Archean Life. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_12

Download citation

Publish with us

Policies and ethics