Skip to main content

Precambrian Greenstone Belts Host Different Ophiolite Types

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 7))

Abstract

We use in this study the new description and classification of ophiolites in order to identify potential ophiolite complexes in four Precambrian greenstone belts, ranging in age from 3.8 Ga to 2.0 Ga, and their tectonic origin. The mafic-ultramafic rock assemblages in the 3.8 Ga Isua (Greenland) and 3.5 Ga Barberton (South Africa) greenstone belts show geochemical signatures that are comparable to those of Phanerozoic suprasubductionzone ophiolites. The 2.7 Ga greenstone belts of the Wawa greenstone belts of the Superior Province (Canada) and the 1.95 Ga Jormua Complex (Finland) display subduction-unrelated geochemical patterns, and represent plume- and continental margin-type ophiolites, respectively. This geochemical and tectonic diversity of the Precambrian greenstone belts is reminiscent of the Phanerozoic ophiolites, and suggests that the modern plate tectonics operated as far back as the early Archean, albeit perhaps in a different mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25

    Google Scholar 

  • Armstrong RA, Compston W, de Wit MJ, Williams IS (1990) The stratigraphy of the 3.5–3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth Planet Sci Lett 101:90–106

    Google Scholar 

  • Bedard JH (2006) A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 71:1188–1214

    Google Scholar 

  • Bickle MJ, Nesbit EG, Martin A (1994) Archean greenstone belts are not oceanic crust. J Geol 102:121–128

    Google Scholar 

  • Byerly GR (1999) Komatiites of the Mendon Formation: late-stage ultramafic volcanism in the Barberton Greenstone Belt. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, vol 329 (Geological Society of America Special Paper). Geological Society of America, pp 189–211

    Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA (2007) The oldest terrestrial mineral record: a review of 4400–4000 Ma detrital zircons from Jack Hills, Western Australia. In: Van Kranendonk MJ, Smithies RH, Bennet VC (eds) Earth’s oldest rocks. Development in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 91–111

    Google Scholar 

  • Cawood PA, Kröner A, Pisarevsky A (2006) Precambrian plate tectonics: criteria and evidence. GSA Today 16(7):4–11

    Google Scholar 

  • Chavagnac V (2004) A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer-Verlag, New York, pp 229

    Google Scholar 

  • Condie KC (1994) Archean crustal evolution. Developments in Precambrian geology (advisory editor, Windley BF). Elsevier, Amsterdam, pp 528

    Google Scholar 

  • Condie KC, Pease V (2008) When did plate tectonics begin on planet Earth? Geol Soc Am Spec Pap 440:294

    Google Scholar 

  • Dann JC (1991) Early Proterozoic ophiolite, central Arizona. Geology 19:590–593

    Google Scholar 

  • Dann JC (2000) The 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa, Part I: new maps and magmatic architecture. S Afr J Geol 103:147–168

    Google Scholar 

  • Dann JC, Bowring SA (1997) The Payson ophiolite and Yavapai-Mazatzal orogenic belt, central Arizona. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 781–790

    Google Scholar 

  • Dann JC, Grove TL (2007) Volcanology of the Barberton Greenstone Belt, South Africa: inflation and evolution of flow fields. In: Van kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 527–570

    Google Scholar 

  • de Vries ST, Nijman W, Armstrong RA (2006) Growth-fault structure and stratigraphic architecture of the Buck Ridge volcano-sedimentary complex, upper Hooggenoeg Formation, Barberton Greenstone Belt, South Africa. Precamb Res 149:77–98

    Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precamb Res 91:181–226

    Google Scholar 

  • de Wit MJ (2004) Archean greenstone belts do contain fragments of ophiolites. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Development in Precambrian geology, vol 13. Elsevier, Amsterdam, Archean green pp 599–614

    Google Scholar 

  • de Wit MJ, Ashwal LD (1995) Greenstone belts: what are they? S Afr J Geol 98:504–519

    Google Scholar 

  • de Wit MJ, Ashwal LD (1997a) Convergence towards divergent models of greenstone belts. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp ix–xvii

    Google Scholar 

  • de Wit MJ, Ashwal LD (eds) (1997b) Greenstone belts. Clarendon Press, Oxford, pp 809

    Google Scholar 

  • de Wit MJ, Hart RA, Hart RJ (1987) The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust. J Afr Earth Sci 6:681–730

    Google Scholar 

  • de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archean continent. Nature 357:553–562

    Google Scholar 

  • de Wit MJ, Furnes H, Robins B (2011) Geology and tectonostratigraphy of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precamb Res 186:1–27

    Google Scholar 

  • Dilek Y (1989) Tectonic significance of post-accretion rifting of a Mesozoic island-arc terrane in northern Sierra Nevada, California. J Geol 97:503–518

    Google Scholar 

  • Dilek Y, Eddy CA (1992) The Troodos (Cyprus) and Kizildag (S. Turkey) ophiolites as structural models for slow-spreading ridge segments. J Geol 100:305–322

    Google Scholar 

  • Dilek Y, Thy P, Moores EM (1991) Episodic dike intrusion in the northwestern Sierra Nevada, California: implications for multistage evolution of a Jurassic arc terrane. Geology 19:180–184

    Google Scholar 

  • Dilek Y, Moores EM, Furnes H (1998) Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers. In: Buck R, Karson JA, Delaney P, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. Geophysical Monograph, vol 106. American Geophysical Union, Washington, DC, pp 219–266

    Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2005) Rift-drift, seafloor spreading, and subduction tectonics of Albanian ophiolites. Int Geol Rev 47:147–176

    Google Scholar 

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20

    Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Google Scholar 

  • Dilek Y, Polat A (2008) Suprasubduction zone ophiolites and Archean tectonics. Geology 36:430–432. doi:10.1130/Focus052008.1

    Google Scholar 

  • Eriksson PG, Alterman W, Nelson DR, Mueller WU, Catuneanu O (eds) (2004) The Precambrian earth: tempos and events. Developments in Precambrian geology, vol 12 (series editor, Condie KC). Elsevier, Amsterdam, pp 941

    Google Scholar 

  • Friend CRL, Nutman AP (2010) Eoarchean ophiolites? New evidence for the debate on the Isua supracrustal belt, southern West Greenland. Am J Sci 310:826–861

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Kontinen A (2005) Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precamb Res 136:125–137

    Google Scholar 

  • Furnes H, de Wit MJ, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Google Scholar 

  • Furnes H, Rosing M, Dilek Y, de Wit MJ (2009) Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology. Lithos 113:115–132

    Google Scholar 

  • Furnes H, de Wit MJ, Robins B, Sandstå NR (2011) Volcanic evolution of the upper Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precamb Res 186:28–50

    Google Scholar 

  • Furnes H, Robins B, de Wit MJ (2012) Geochemistry and petrology of lavas in the upper Onverwacht Suite, Barberton Mountain Land, South Africa. S Afr J Geol 115:171–210

    Google Scholar 

  • Furnes H, de Wit MJ, Robins B (2013) A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Gondwana Res 23:403–428

    Google Scholar 

  • Gerya T (2011) Future directions in subduction modelling. J Geodynamics 52:344–378

    Google Scholar 

  • Gerya TV, Meilick FI (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Met Geol 29:7–31

    Google Scholar 

  • Gill RCO, Bridgwater D (1979) Early Archaean basic magmatism in West Greenland—geochemistry of the Ameralik Dykes. J Petrol 20:695–726

    Google Scholar 

  • Goodwin AM (1996) Principles of Precambrian geology. Academic Press, London, pp 327

    Google Scholar 

  • Grosch EG, Vidal O, Abu-Alam T, McLoughlin N (2012) P-T constraints on the metamorphic evolution of the Paleoarchean Kromberg type-section, Barberton Greenstone Belt, South Africa. J Petrol 53:513–545

    Google Scholar 

  • Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountain land, South Africa. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation, vol 6 (special publication). Geochemical Society, pp 155–167

    Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not the products of plate tectonics. Precamb Res 91:109–142

    Google Scholar 

  • Hamilton WB (2007) Earth’s first two billion years—the era of internally mobile crust. Geol Soc Am Memoir 200:233–296

    Google Scholar 

  • Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20

    Google Scholar 

  • Heinrichs T (1984) The Umsoli chert, turbidite testament for a major phreatoplinian event in the Onverwacht/Fig Tree transition (Swaziland Supergroup, Archean, South Africa). Precamb Res 24:237–283

    Google Scholar 

  • Hunter DR, Stowe CW (1997) A historical review of the origin, composition, and setting of Archean greenstone belts. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 5–30

    Google Scholar 

  • Jahn BM, Gruau G, Glikson AY (1982) Komatiities of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Ng age, and mantle evolution. Contrib Min Petrol 80:25–40

    Google Scholar 

  • Keller CB, Schoene B (2012) Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Ga. Nature 485:490–493

    Google Scholar 

  • Komiya T, Maruyama S (1995) Geochemistry of the oldest MORB and OIB of the World, Isua (3.8 Ga), Greenland. EOS Trans 76:700

    Google Scholar 

  • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. J Geol 107:515–554

    Google Scholar 

  • Komiya T, Hayashi M, Maruyama S, Yurimoto H (2002) Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. Am J Sci 302:806–826

    Google Scholar 

  • Komiya T, Maruyama S, Hirata T, Yurimoto H, Nohda S (2004) Geochemistry of the oldest MORB and OIB in the Isua supracrustal belt, southern West Greenland: implications for the composition and temperature of early Archean upper mantle. Island Arc 13:47–72

    Google Scholar 

  • Kontinen A (1987) An early Proterozoic ophiolite—the Jormua mafic-ultramafic complex, northeastern Finland. Precamb Res 353:13–334

    Google Scholar 

  • Kröner A (ed) (1981) Precambrian plate tectonics. Developments in Precambrian geology, vol 4. Elsevier, Amsterdam, pp 781

    Google Scholar 

  • Kröner A, Hegner E, Wendt JL, Byerly GR (1996) The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precamb Res 78:105–124

    Google Scholar 

  • Kusky TM (ed) (2004) Precambrian ophiolites and related rocks. Developments in Precambrian geology, vol 13. Elsevier, Amsterdam, pp 772

    Google Scholar 

  • Kusky TM, Li JH, Tucker RD (2001) The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle. Science 292:1141–1142

    Google Scholar 

  • Lahaye Y, Arndt N, Byerly G, Chauvel C, Fourcade S, Gruau G (1995) The influence of alteration on the trace-element and Nd isotopic compositions of komatiites. Chem Geol 126:43–64

    Google Scholar 

  • Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, vol 329 (Geological Society of America Special Paper). Geological Society of America, pp 1–36

    Google Scholar 

  • Lowe DR, Byerly GR (2007) An overview of the geology of the Barberton Greenstone Belt: implications for early crustal development. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 481–526

    Google Scholar 

  • MacLennan S (2012) Structural, geophysical and geochemical characterisation of an Archean paleosubduction zone, Barberton Greenstone Belt, South Africa. M.Sc. thesis, University of Cape Town, South Africa

    Google Scholar 

  • Marshak S (2005) Earth: portrait of a planet. W.W. Norton & Company, New York, pp 747

    Google Scholar 

  • Maurice C, David J, Bedard JH, Francis D (2009) Evidence for a mafic cover sequence and its implications for continental growth in the northeastern Superior Province. Precamb Res 168:45–65

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Moores EM, Vine FJ (1971) The Troodos massif, Cyprus, and other ophiolites as oceanic crust: evaluation and implications. Phil Trans Roy Soc London 268A:443–466

    Google Scholar 

  • Myers JS (2001) Protoliths of the 3.8–3.7 Ga Isua greenstone belt, West Greenland. Precamb Res 105:129–141

    Google Scholar 

  • Nutman AP, Allaart JH, Bridgwater D, Dimroth E, Rosing M (1984) Stratigraphic and geochemical evidence for the depositional environment of the early Archean Isua supracrustal belt, southern West Greenland. Precamb Res 25:365–396

    Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss Complex of southern West Greenland; The world’s most extensive record of early crustal evolution (3900–3600 Ma). Precamb Res 78:1–39

    Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Rosing MT (1997) ~3710 and ≥3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem Geol 141:271–287

    Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, McGregor VR (2000) The early Archaean Itsaq Gneiss Complex of southern West Greenland: the importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution. Geochim Cosmochim Acta 64:3035–3060

    Google Scholar 

  • Nutman AP, Friend CRL, Horie K, Hidaka H (2007) The Itsaq Gneiss Complex of southern west Greenland and the construction of Eoarchaean crust at convergent plate boundaries. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 187–218

    Google Scholar 

  • Næraa T, Scherstén A, Rosing MT, Kemp AIS, Hoffmann E, Kokfelt TF, Whitehouse MJ (2012) Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485:627–630

    Google Scholar 

  • Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiitic magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323

    Google Scholar 

  • Parman SW, Shimizu N, Grove TL, Dann JC (2003) Constraints on the pre-metamorphic trace element composition of Barberton komatiites from ion probe analyses of preserved clinopyroxene. Contrib Mineral Petrol 144:383–396

    Google Scholar 

  • Parman SW, Grove TL, Dann J, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. S Afr J Geol 107:107–118

    Google Scholar 

  • Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics, vol 76 (Geological Society of London Special Publication). Geological Society, pp 373–403

    Google Scholar 

  • Peltonen P, Kontinen A, Huhma H (1996) Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, northeastern Finland. J Petrol 37:1359–1383

    Google Scholar 

  • Peltonen P, Kontinen A, Huhma H (1998) Petrogenesis of the mantle sequence of the Jormua ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up. J Petrol 39:297–329

    Google Scholar 

  • Peltonen P, Mänttäri I, Huhma H, Kontinen A (2003) Archean zircons from the mantle: the Jormua ophiolite revisited. Geology 31:645–648

    Google Scholar 

  • Polat A (2009) The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalt, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: implications for petrogenetic and geodynamic processes. Precamb Res 168:83–105

    Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precamb Res 126:197–218

    Google Scholar 

  • Polat A, Kerrich R (2000) Archean greenstone magmatism and the continental growth-mantle connection: constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth Planet Sci Lett 175:41–54

    Google Scholar 

  • Polat A, Kerrich R, Wyman DA (1998) The late Archean Schreiber-Hemlo and White River-Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction-accretion complexes. Tectonophysics 289:295–326

    Google Scholar 

  • Polat A, Kerrich R, Wyman DA (1999) Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precamb Res 94:139–173

    Google Scholar 

  • Polat A, Hofmann AW, Rosing M (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the Earth. Chem Geol 184:231–254

    Google Scholar 

  • Rampone E, Piccardo GB (2000) The ophiolite-oceanic lithosphere analogue: new insights from the Northern Apennines (Italy). In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, vol 349 (Geological Society of America Special Paper). Geological Society of America, pp 21–34

    Google Scholar 

  • Robin CMI, Bailey RC (2009) Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37:523–526

    Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Google Scholar 

  • Rosing MT, Rose NM, Bridgwater D, Thomsen S (1996) Earliest part of Earth’s stratigraphic record: a reappraisal of the > 3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24:43–46

    Google Scholar 

  • Scott CR, Mueller WU, Pilote P (2002) Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: evolution from plume-related volcanism to arc rifting of SE Abitibi Greenstone Belt, Val d’Or, Canada. Precamb Res 115:223–260

    Google Scholar 

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolite lavas. Earth Planet Sci Lett 59:101–118

    Google Scholar 

  • Shirey SB, Richardson S (2011) Start of the Wilson cycle at 3.0 Ga shown by diamonds from subcontinental mantle. Science 333:434–436

    Google Scholar 

  • Smith HS, Erlank AJ (1982) Geochemistry and petrogeneis of komatiites from the Barberton greenstone belt, South Africa. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen & Unwin, London, p 347–397

    Google Scholar 

  • Stanistreet IG, de Wit MJ, Fripp REP (1981) Do graded units of accretionary spheroids in the Barberton Greenstone Belt indicate an Archean deep water environment? Nature 293:280–284

    Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–560

    Google Scholar 

  • Stern RJ (2008) Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history. In: Condie KC, Pease V (eds), When did plate tectonics begin on planet Earth? vol 440. Geological Society of America Special Paper, pp. 265–280

    Google Scholar 

  • St-Onge MR, Lucas SB, Scott DJ (1997) The Ungava orogen and the Cape Smith thrust belt. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 772–780

    Google Scholar 

  • Sylvester PJ, Harper GD, Byerly GR, Thurston PC (1997) Volcanic aspects of greenstone belts. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 55–90

    Google Scholar 

  • Thompson-Stiegler M, Lowe DR, Byerly GR (2008) Abundant pyroclastic komatiitic volcanism in the 3.5–3.2 Ga Barberton Greenstone Belt, South Africa. Geology 36:779–782

    Google Scholar 

  • Tsuru A, Walker RJ, Kontinen A, Peltonen P, Hanski E (2000) Re-Os isotopic systematics of the 1.95 Ga Jormua Ophiolite Complex, northeastern Finland. Chem Geol 164:123–141

    Google Scholar 

  • van Hunen J, Moyen J-F (2012) Archean subduction: fact or fiction. Ann Rev Earth Planet Sci 40:195–219

    Google Scholar 

  • Van Kranendonk MJ (2011) Cool greenstone drips and the role of partial convective overturn in Barberton greenstone belt evolution. J Afr Earth Sci 60:346–352

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Bennett VC (eds) (2007) Earth’s oldest rocks. Developments in Precambrian geology, vol 15 (series editor, Condie KC). Elsevier, Amsterdam, pp 1307

    Google Scholar 

  • Vennemann TW, Smith HS (1999) Geochemistry of mafic and ultramafic rocks in the Kromberg Formation in its type section, Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, vol 329 (Geological Society of America Special Paper). Geological Society of America, pp 133–149

    Google Scholar 

  • Viljoen MJ, Viljoen RP (1969) An introduction to the geology of the Barberton granite-greenstone terrain. Geol Soc S Afr Spec Publ 2:9–28

    Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Google Scholar 

  • White DJ (2005) High-temperature, low-pressure metamorphism in the Kisseynew domain, Trans-Hudson orogen: crustal anatexis due to tectonic thickening? Can J Earth Sci 42:707–721

    Google Scholar 

  • Williams RH, Stott GM, Heather K, Muir TL, Sage RP (1991) Wawa subprovince. In: Thurston PC, Williams HR, Sutclife HR, Stott GM (eds) Geology of Ontario, Ontario. Geol Surv Spec Volume 4, Part 1:485–539

    Google Scholar 

  • Windley BF (1977) The Evolving Continents. Wiley, Chichester, pp 385

    Google Scholar 

  • Wyman DA, O’Neill C, Ayer JA (2008) Evidence for moderen-style subduction to 3.1 Ga: a plateau-adakite-gold (diamond) association. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth? vol 440 (Geological Society of America Special Paper). Geological Society of America, pp 129–148

    Google Scholar 

Download references

Acknowledgements

Financial support over many years of field work in Phanerozoic ophiolites and Precambrian greenstone belts, have been supported by the Norwegian Research Council and the Meltzer Foundation at the University of Bergen (HF), the National Research Foundation of South Africa (MdeW), and Miami University, USA (YD). Jane Ellingsen helped with some of the illustrations. This is AEON publication No. 107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Furnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Furnes, H., de Wit, M., Dilek, Y. (2014). Precambrian Greenstone Belts Host Different Ophiolite Types. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_1

Download citation

Publish with us

Policies and ethics