Skip to main content

Iridium

  • Chapter
  • First Online:
Book cover Ultra-High Temperature Materials I

Abstract

Iridium is the element No. 77 of the periodic table (period—6, group—9 (or VIIIb), relates to transition metals) with the ground state level 4F9/2 and electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 7 6 s 2. The general oxidation states (numbers) of iridium in various chemical compounds are (–3), (–2), (–1), 0, (+1), (+2), (+3), (+4), (+5) and (+6); the oxidation states (+6), (+4), (+3) and (+2) are the most common; the radii of iridium are:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steurer W (1996) Crystal structure of the metallic elements. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 1, pp. 1–46. Elsevier Science BV, Amsterdam

    Google Scholar 

  2. Cotton FA, Wilkinson G (1965) Advanced inorganic chemistry. Wiley, New York, London

    Google Scholar 

  3. Akhmetov NS (2001) Obschaya i neorganicheskaya khimiya (General and inorganic chemistry), 4th ed. Vysshaya Shkola, Moscow (in Russian)

    Google Scholar 

  4. Kotelnikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI (1968) Osobo tugoplavkie elementy i soedineniya (Extra refractory elements and compounds). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  5. Zefirov AP (ed), Veryatin UD, Mashirev VP, Ryabtsev NG, Tarasov VI, Rogozkin BD, Korobov IV (1965) Termodinamicheskie svoistva neorganicheskikh veschestv (Thermodynamic properties of inorganic substances). Atomizdat, Moscow (in Russian)

    Google Scholar 

  6. Speight JG, ed (2005) Lange’s handbook of chemistry, 16th ed. McGraw-Hill, New York

    Google Scholar 

  7. Lide DR, ed (2010) CRC handbook of chemistry and physics, 90th ed. CRC Press, Boca Raton, New York

    Google Scholar 

  8. Martienssen W (2005) The elements. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 45–158. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 1. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  10. Cardarelli F (2008) Materials handbook, 2nd ed. Springer, London

    Google Scholar 

  11. Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 2. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  12. Lyakishev NP, ed (1997) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 2. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  13. Lyakishev NP, ed (2001) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 1. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  14. Lyakishev NP, ed (1996) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 1. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  15. Massalski TB, Subramanian PR, Okamoto H, Kacprzak L, eds (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Metals Park, Ohio

    Google Scholar 

  16. Savitskii EM, Polyakova VP, Gorina NB, Roshan NR (1975) Metallovedenie platinovykh metallov (Metallography of platinum metals). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  17. Savitskii EM, Gribulya VB (1977) Prognozirovanie neorganicheskikh soedinenii s pomoschyu EVM (The prediction of inorganic compounds by means of computing). Nauka, Moscow (in Russian)

    Google Scholar 

  18. Papirov II (1981) Struktura i svoistva splavov berilliya (Structure and properties of beryllium alloys). Energoizdat, Moscow (in Russian)

    Google Scholar 

  19. Gladyshevskii EI, Bodak OI (1982) Kristallokhimiya intermetallicheskikh soedinenii redkozemelnykh metallov (The crystal chemistry of intermetallic compounds of rare earth metals). Vyshcha Shkola, Lviv (in Russian)

    Google Scholar 

  20. Griffin RB, Gschneidner KA, Jr (1971) Effect of the sixth period elements on the melting and transformation temperatures of praseodymium: Part I. Experimental. Metal Trans 2(9):2517–2524

    Google Scholar 

  21. Savitskii EM, ed (1984) Blagorodnye metally (Noble metals). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  22. Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128

    Google Scholar 

  23. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical report). Pure Appl Chem 75(6):683–800

    Google Scholar 

  24. Wieser ME (2006) Atomic weights of the elements 2005. (IUPAC Technical report). Pure Appl Chem 78(11):2051–2066

    Google Scholar 

  25. Gladyshevskii EI (1971) Kristallokhimiya silitsidov i germanidov (The crystal chemistry of silicides and germanides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  26. Samsonov GV, Bondarev VN (1968) Germanidy (Germanides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  27. Samsonov GV, Drozdova SV (1972) Sulfidy (Sulfides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  28. Degussa AG (1995) Edelmetal – Taschenbuch (Precious metal – paperback), 2nd ed. Hüthig, Heidelberg (in German)

    Google Scholar 

  29. Benner LS, Suzuki T, Meguro K, Tanaka S, eds (1991) Precious metals, science, technology. International Precious Metals Institute, Allentown

    Google Scholar 

  30. Antonov VE, Belash IT, Malyshev VYu, Ponyatovsky EG (1984) Solubility of hydrogen in the platinum metals under high pressure. Platinum Met Rev 28(4):158–163

    Google Scholar 

  31. Obrowski W (1963) Alloys of ruthenium with boron, beryllium and aluminium. Metall 17(2):108–112

    Google Scholar 

  32. Verkhorobin LF, Kovtun GP, Kruglykh AA, Matyushenko NN, Pugachev AS, Tikhinskii GF (1971) Berillidy ruteniya, osmiya, rodiya i iridiya sostava M2Be17 (Ruthenium, osmium, rhodium and iridium beryllides with M2Be17 composition). Izv AN SSSR Metally (6):168–171 (in Russian)

    Google Scholar 

  33. Eremenko VN, Semenova EA, Shtepa TD (1978) Vliyanie rodiya, iridiya i osmiya na polimorfnoe (α↔β)-prevrashchenie tsirkoniya (The effects of rhodium, iridium and osmium on the (α↔β)-transformation of zirconium). Izv AN SSSR Metally (2):200–203 (in Russian)

    Google Scholar 

  34. Kubaschewski O (1982) Iron binary phase diagrams. Springer, Berlin

    Google Scholar 

  35. Bannykh OA, Budberg SP, Alisova SP (1986) Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh system na osnove zheleza (The constitution diagrams of binary and multi-component systems based on iron). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  36. Esslinger P, Schubert K (1957) Zur Systematik der Strukturfamilie des NiAs. I. Verbeitung der Strukturen der NiAs-Familie (The systematics of the family structure of NiAs. I. Distribution of the structures of NiAs family). Z Metallkd 48(3):126–134 (in German)

    Google Scholar 

  37. Berezhnoy AS (1958) Kremnii i ego binarnye sistemy (Silicon and its binary systems). UkrSSR Academy of Sciences, Kyiv (in Russian)

    Google Scholar 

  38. Finnie LN (1962) Structures and compositions of the silicides of ruthenium, osmium, rhodium and iridium. J Less-Common Met 4(1):24–34

    Google Scholar 

  39. Samsonov GV, Dvorina LA, Rud BM (1979) Silitsidy (Silicides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  40. Fromm E, Gebhardt, E (1976) Gase und Kohlenstoff in Metallen (Gases and carbon in metals). Springer, Berlin (in German)

    Google Scholar 

  41. Obolonchik VA (1972) Selenidy (Selenides). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  42. Chizhikov DM, Schastlivyi VP (1966) Tellur i telluridy (Tellurium and tellurides). Nauka, Moscow (in Russian)

    Google Scholar 

  43. Nekrasov BV (1973) Osnovy obschei khimii (Foundations of general chemistry), 3rd ed., Vol. 2. Khimiya, Moscow (in Russian)

    Google Scholar 

  44. Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfried G, Schlamp G, Stickler R, Warlimont H (2005) Metals. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 161–430. Springer, Berlin, Heidelberg

    Google Scholar 

  45. Savitskii EM, Polyakova VP, Tylkina MA (1967) Splavy palladiya (Palladium alloys). Nauka, Moscow (in Russian)

    Google Scholar 

  46. Crespo AJ, Tergenius L-E, Lundström T (1981) The solid solution of 4d, 5d and some p elements in β rhombohedral boron. J Less-Common Met 77(1):147–150

    Google Scholar 

  47. Khoruzhaya VG (1996) Interaction of transition metals of group IV with high-melting platinum metals in binary and ternary systems. Powder Metall Met Ceram 35(7–8):433–440

    Google Scholar 

  48. Savitskii EM, Devingtal YuV, Gribulya VB (1968) Prognoz metallicheskikh soedinenii tipa A3B s pomoshchyu elektronno-vychislitelnoi mashiny (Prognosis of A3B type metallic compounds by means of computing). Doklady AN SSSR 183(5):1110–1112 (in Russian)

    Google Scholar 

  49. Savitskii EM, Devingtal YuV, Gribulya VB (1969) Raspoznavanie tipa reaktsii obrazovaniya i otsenka intervala gomogennosti metallicheskikh faz pri pomoshchi EVM (Identification of formation reaction type and evaluation of homogeneity range of metallic phases by means of computing). Doklady AN SSSR 185(3):561–563 (in Russian)

    Google Scholar 

  50. Savitskii EM, Gribulya VB (1970) Opyt prognozirovaniya sostava i svoistv soedinenii s pomoshchyu EVM (Prognosis experience in compound compositions and properties by means of computing). Doklady AN SSSR 190(5):1147–1150 (in Russian)

    Google Scholar 

  51. Savitskii EM, Gribulya VB (1972) Prognoz faz Lavesa pri pomoshchi EVM (Prognosis of Laves phases by means of computing). Doklady AN SSSR 206(4):848–851 (in Russian)

    Google Scholar 

  52. Raub E (1959) Metals and alloys of the platinum group. J Less-Common Met 1(1):3–18

    Google Scholar 

  53. Argon AS (1996) Mechanical properties of single-phase crystalline media: deformation at low temperatures. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 3, pp. 1877–1955. Elsevier Science BV, Amsterdam

    Google Scholar 

  54. Singh HP (1968) Determination of thermal expansion of germanium, rhodium and iridium by x-rays. Acta Crystallogr A 24(4):469–471

    Google Scholar 

  55. Bozza L, Toth L (1990) Iridium. In: Metals handbook, Vol. 2 – Properties and selection: nonferrous alloys and special-purpose materials, pp. 3015–3016. ASM International, Metals Park, Ohio

    Google Scholar 

  56. Winter M (2012) WebElements: the periodic table on the WWW. Iridium: enthalpies and thermodynamic properties. http://www.webelements.com/iridium/thermochemistry.html Accessed 18 April 2012.

    Google Scholar 

  57. Panish MB, Reif L (1961) Vaporization of iridium and rhodium. J Chem Phys 34(6):1915–1918

    Google Scholar 

  58. Halvorson JJ, Wimber RT (1972) Thermal expansion of iridium at high temperatures. J Appl Phys 43(6):2519–2522

    Google Scholar 

  59. Merker J, Lupton D, Töpfer M, Knake H (2001) High temperature mechanical properties of the platinum group metals: elastic properties of platinum, rhodium and iridium and their alloys at high temperatures. Platinum Met Rev 45(2):74–82

    Google Scholar 

  60. McLellan RB, Oates WA (1973) The solubility of hydrogen in rhodium, ruthenium, iridium and nickel. Acta Metall 21(3):181–185

    Google Scholar 

  61. Donkersloot HC, Van Vucht JHN (1976) The crystal structure of IrLi, Ir3Li and LiRh3. J Less-Common Met 50(2):279–282

    Google Scholar 

  62. Matyushenko NN (1969) Kristallicheskie struktury dvoinykh soedinenii (The crystal structure of binary compounds). Metallurgiya, Moscow (in Russian)

    Google Scholar 

  63. Johnson O, Smith GS, Krikorian OH, Sands DE (1970) The crystal structure of RhBe6.6. Acta Crystallogr B 26:109–113

    Google Scholar 

  64. Ferro R, Rambaldini G, Capelli R (1962) Research on the alloys of noble metals with the more electropositive elements. V. Micrographic and x-ray examination of some magnesium-iridium alloys. J Less-Common Met 4(1):16–23

    Google Scholar 

  65. Wood EA, Compton VB (1958) Laves-phase compounds of alkaline earths and noble metals. Acta Crystallogr 11:429–433

    Google Scholar 

  66. Bruzzone G, Merlo F (1982) Crystal chemical remarks on the alloying behaviour of calcium, strontium and barium. J Less-Common Met 85:285–306

    Google Scholar 

  67. Compton VB, Matthias BT (1959) Laves phase compounds of rare earths and hafnium with noble metals. Acta Crystallogr 12:651–654

    Google Scholar 

  68. Chabot B, Cenzual K, Parthe E (1980) Sc11Ir4, Sc11Os4, Sc11Ru4, Zr11Os4 with a new cubic structure type described by means of a cluster concept. Acta Crystallogr B 36:7–11

    Google Scholar 

  69. Le Roy J, Paccard D, Moreau J-M (1980) R5Ir2 compounds (R ≡ Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Y) with the monoclinic Mn5C2 structure. J Less-Common Met 72(1):P11-P15

    Google Scholar 

  70. Vorobev VD, Melnikova VA (1974) Rentgenograficheskie issledovaniya sistem iridii-lantan i iridii-tserii (X-ray studies of the iridium-lanthanum and iridium-cerium systems). Kristallografiya 19(3):642–643 (in Russian)

    Google Scholar 

  71. Olcese GL (1973) Crystal structure and magnetic properties of some 7:3 binary phases between lanthanides and metals of the 8th group. J Less-Common Met 33(1):71–81

    Google Scholar 

  72. Teslyuk YuM (1969) Metallicheskie soedineniya so strukturami faz Lavesa (Metallic compounds with Laves phase structures). Nauka, Moscow (in Russian)

    Google Scholar 

  73. Lewy RM (1970) Indirect exchange in the rare-earth intermetallics. J Appl Phys 41(3):902–904

    Google Scholar 

  74. Le Roy J, Moreau J-M, Paccard D, Parthe E (1979) Rare earth (and yttrium) – iridium and – platinum compounds with the Fe3C structure type. Acta Crystallogr B 35:1437–1439

    Google Scholar 

  75. Le Roy J, Moreau J-M, Paccard D, Parthe E (1980) Rare earth – iridium compounds with Pu5Rh3 and Y3Rh2 structure types: members of a new structural series with formula R5n+6T3n+5. J Less-Common Met 76(1–2):131–135

    Google Scholar 

  76. Paccard D, Le Roy J, Moreau J-M (1979) Nd5Ir3: a new tetragonal phase with Ir-centred square antiprisms of Nd atoms. Acta Crystallogr B 35:1315–1318

    Google Scholar 

  77. Thompson JR (1964) Alloys of thorium with certain transition metals. II. The systems thorium-osmium, thorium-iridium and thorium-platinum. J Less-Common Met 6(1):3–10

    Google Scholar 

  78. Kutaitsev VI, Chebotarev NT, Andrianov MA, Konev VN, Lebedev IG, Bagrova VI, Beznosikova AV, Kruglov AA, Petrov PN, Smotritskaya ES (1967) Phase diagrams of plutonium with metals of groups IIA, IVA, VIII and IB. Sov Atom Energy 23(6):1279–1287

    Google Scholar 

  79. Cromer DT (1974) Plutonium-iridium Pu5Ir3. Acta Crystallogr B 33:1996–1997

    Google Scholar 

  80. Eremenko VN, Shtepa TD (1970) Diagramma sostoyaniya sistemy Ti-Ir (The constitution diagram of the Ti-Ir system). Izv AN SSSR Metally (6):198–203 (in Russian)

    Google Scholar 

  81. Eremenko VN, Semenova EA, Shtepa TD (1980) Diagramma sostoyaniya sistemy Zr-Ir (The constitution diagram of the Zr-Ir system). Izv AN SSSR Metally (5):237–241 (in Russian)

    Google Scholar 

  82. Kubaschewski O, Von Goldbeck O (1976) Phase diagrams. In: Hafnium. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 8, pp. 57–118. International Atomic Energy Agency, Vienna

    Google Scholar 

  83. Giessen BC, Dangel PN, Grant NJ (1967) New phases in the vanadium-iridium system and tentative constitution diagram. J Less-Common Met 13(1):62–70

    Google Scholar 

  84. Waterstrat RM, Manuszewski RC (1973) The chromium-iridium constitution diagram. J Less-Common Met 32(1):79–89

    Google Scholar 

  85. Venkatraman M, Neumann JP (1990) The Cr-Ir (chromium-iridium) system. Bull Alloy Phase Diagrams 11(1):5–8

    Google Scholar 

  86. Darby JB, Norton LJ, Downey JW (1963) A survey of the binary systems of technetium with group VIII transition elements. J Less-Common Met 5(5):397–402

    Google Scholar 

  87. Swartzendruber LJ (1984) The Fe-Ir (iron-iridium) system. Bull Alloy Phase Diagrams 5(1):48–52

    Google Scholar 

  88. Swartzendruber LJ (1984) The Fe-Ir (iron-iridium) system. Bull Alloy Phase Diagrams 5(2):134

    Google Scholar 

  89. Eremenko VN, Khoruzhaya VG, Shtepa TD (1988) Temperatury nonvariantnykh ravnovesii v sistemakh Zr-Ru i Ru-Ir (The temperatures of non-variant equilibria in the Zr-Ru and Ru-Ir systems). Izv AN SSSR Metally (1):197–202 (in Russian)

    Google Scholar 

  90. FactSage (2010) Data from SGnobl metal alloy database. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Ir-Ru.jpg&dir=SGnobl Accessed 7 May 2012

    Google Scholar 

  91. Bucher E, Brinkman WF, Maita JP, Cooper AS (1970) Properties of the Ni-Ir alloy system. Phys Rev B 1:274–277

    Google Scholar 

  92. Raub E, Röschel E (1970) Alloys of nickel with iridium and rhodium. Z Metallkd 61(2):113–115

    Google Scholar 

  93. FactSage (2010) Data from FSnobl noble metal databases. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Ir-Pd.jpg&dir=FSnobl Accessed 7 May 2012

    Google Scholar 

  94. Tylkina MA, Polyakova VP, Savitskii EM (1962) Diagramma sostoyaniya sistemy palladii-iridii (The phase diagram of the palladiumiridium system). Zh Neorg Khim 7(6):1471–1473 (in Russian)

    Google Scholar 

  95. FactSage (2010) Data from SGnobl-SGTE noble metal alloy database. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Ir-Pt.jpg&dir=SGnobl Accessed 7 May 2012

    Google Scholar 

  96. Tripathi SN, Chandrasekharaiah MS (1983) Thermodynamic properties of binary alloys of platinum metals II: Ir-Pt system. J Less-Common Met 91(2):251–260

    Google Scholar 

  97. FactSage (2010) Data from SGnobl-SGTE noble metal alloy database. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Cu-Ir.jpg&dir=SGnobl Accessed 7 May 2012

    Google Scholar 

  98. Raub E, Röschel E (1969) Copper iridium alloys. Z Metallkd 60(2):142–144

    Google Scholar 

  99. Chakrabarti DJ, Laughlin DE (1987) The Cu-Ir (copper-iridium) system. J Phase Equilibria 8(2):132–136

    Google Scholar 

  100. Karakaya I, Thompson WT (1986) The Ag-Ir (silver-iridium) system. Bull Alloy Phase Diagrams 7(4):359–360

    Google Scholar 

  101. FactSage (2010) Data from SGnobl-SGTE noble metal alloy database. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Ag-Ir.jpg&dir=SGnobl Accessed 7 May 2012

    Google Scholar 

  102. Okamoto H, Massalski TB (1984) The Au-Ir (gold-iridium) system. Bull Alloy Phase Diagrams 5(4):381

    Google Scholar 

  103. FactSage (2010) Data from SGnobl-SGTE noble metal alloy database. Collection of phase diagrams. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Au-Ir.jpg&dir=SGnobl Accessed 7 May 2012

    Google Scholar 

  104. Jangg G, Dörtbudak T (1973) Untersuchungen an den Systemen der Platinmetalle und des Rheniums mit Quecksilber (Investigations of the platinum metal mercury and rhenium mercury systems). Z Metallkd 64(10):715–719 (in German)

    Google Scholar 

  105. Aronsson B (1963) The crystal structure of RuB2, OsB2 and IrB1.35 and some general comments on the crystal chemistry of borides in the composition range MeB-MeB3. Acta Chem Scand 17(7):2036–2050

    Google Scholar 

  106. Rogl P, Nowotny H, Benesovsky F (1971) Ein Beitrag zur Strukturchemie der Iridiumboride (A contribution to the structural chemistry of iridium boride). Monatsh Chem 102(3):678–686 (in German)

    Google Scholar 

  107. Lundström T, Tergenius L-E (1973) Refinement of the crystal structure of the non-stoichiometric boride IrB~1.35. Acta Chem Scand 27(12):3705–3711

    Google Scholar 

  108. Holleck H, Nowotny H, Benesovsky F (1963) Die Verbindungen Ta3Ga2 and IrGa (The connections of Ta3Ga2 and IrGa). Monatsh Chem 94(5):841–843 (in German)

    Google Scholar 

  109. Völlenkle H, Wittmann A, Nowotny H (1966) Abkömmlinge der TiSi2-Struktur – ein neues Bauprinzip (Descendants of the TiSi2-structure – a new design principle). Monatsh Chem 97(2):506–516 (in German)

    Google Scholar 

  110. Edshammar L-E (1970) The crystal structure of Rh5Ga9 and Ir2Ga9. Acta Chem Scand 24(4):1457–1458

    Google Scholar 

  111. Schulz KJ, Musbah OA, Chang YA (1990) An investigation of the Ir-Ga-As system. Bull Alloy Phase Diagrams 11(3):211–215

    Google Scholar 

  112. Anres P, Gaune-Escard M, Bros JP (1997) First thermodynamic approach of the (Ir+Ga) system. J Alloys Compd 259(1–2):225–233

    Google Scholar 

  113. Korst WL, Finnie LN, Searcy AW (1957) The crystal structure of the monosilicides of osmium, iridium and ruthenium. J Phys Chem 61(11):1541–1543

    Google Scholar 

  114. Reinacher G (1965) Hot-stage microscope determination of the solidus temperatures of iridium alloys with about 1 wt.% boron, phosphoros or silicon. Metall 19(7):707–711

    Google Scholar 

  115. Bhan S, Schubert K (1960) Constitution of the systems cobalt-germanium, rhodium-germanium and some related alloys. Z Metallkd 51:327–339

    Google Scholar 

  116. Hamilton DC, Raub ChJ, Matthias BT, Corenzwit E, Hull GW, Jr (1965) Some new superconducting compounds. J Phys Chem Solids 26(3):665–667

    Google Scholar 

  117. Okamoto H (1990) The Ir-P (iridium-phosphorus) system. Bull Alloy Phase Diagrams 11(4):413–415

    Google Scholar 

  118. Kjekshus A (1971) On the properties of binary compounds with the CoSb2 type crystal structure. Acta Chem Scand 25(2):411–422

    Google Scholar 

  119. Quesnel JC, Heyding RD (1962) Transition metal arsenides: a note on the rhodium/arsenic system and the monoclinic diarsenides of the cobalt family. Canad J Chem 40(4):814–818

    Google Scholar 

  120. Hulliger F (1963) Semiconductivity in CoSb2-type compounds. Phys Lett 4(5):282–283

    Google Scholar 

  121. Zhuravlev NN, Zhdanov GS, Kuzmin RN (1960) Atomnoe stroenie nekotorykh soedinenii vismuta i surmy (The atomic structure of certain compounds of bismuth and antimony). Kristallografiya 5(4):553–562 (in Russian)

    Google Scholar 

  122. Caillat T, Borshchevsky A, Fleurial J-P (1993) Phase diagram of the Ir-Sb system on the antimony-rich part. J Alloys Compd 199(1–2):207–210

    Google Scholar 

  123. Kjekshus A (1961) High temperature x-ray study of the thermal expansion of IrAs3 and IrSb3. Acta Chem Scand 15:678–681

    Google Scholar 

  124. Kjekshus A, Pedersen G (1961) The crystal structures of IrAs3 and IrSb3. Acta Crystallogr 14:1065–1070

    Google Scholar 

  125. Zhuravlev NN, Smirnova EM (1965) Ustanovlenie dvukh novykh soedinenii IrBi3 i IrBi2 v sisteme vismut-iridii (The ascertainment of two new compounds IrBi3 and IrBi2 in the bismuth-iridium system). Kristallografiya 10(6):828–832 (in Russian)

    Google Scholar 

  126. Schäfer H, Heitland H-J (1960) Gleichgewichtsmessungen im System Iridium – Sauerstoff Gasförmiges – Iridiumtrioxyd (Equilibrium measurements in the system iridium – gaseous oxygen – iridium trioxide). Z Anorg Allgem Chem 304(5–6):249–265 (in German)

    Google Scholar 

  127. Hockings EF, White JG (1960) The system iridium-tellurium. J Phys Chem 64(8):1042–1045

    Google Scholar 

  128. Weiland R, Lupton DF, Fischer B, Merker J, Scheckenbach C, Witte J (2006) High-temperature mechanical properties of the platinum group metals. Properties of pure iridium at high temperature. Platinum Met Rev 50(4):158–170

    Google Scholar 

  129. Sha JB, Yamabe-Mitarai Y, Harada H (2006) Microstructural evaluation and mechanical properties of Ir-Hf-Zr ternary alloys at room and high temperatures. Intermetallics 14(10–11):1364–1369

    Google Scholar 

  130. Kimura Y, Iida K, Wei F-G, Mishima Y (2006) Phase equilibria in the T-Al-C (T: Co, Ni, Rh, Ir) and T-Al-B (T: Rh, Ir) systems for the design of E21-Co3AlC based heat resistant alloys. Intermetallics14(5):508–514

    Google Scholar 

  131. McDaniel CL, Schneider SJ (1972) Phase relations in the CaO-IrO2-Ir system in air. J Solid State Chem 4(2):275–280

    Google Scholar 

  132. Sarkozy RF, Moeller CW, Chamberland BL (1974) The characterization of calcium iridium oxides. J Solid State Chem 9(3):242–246

    Google Scholar 

  133. Jacob KT, Okabe TH, Uda T, Waseda Y (1999) Solid-state cells with buffer electrodes for the measurement of thermodynamic properties of IrO2, CaIrO3, Ca2IrO4 and Ca4IrO6. J Electrochem Soc 146(5):1854–1861

    Google Scholar 

  134. Keawprak N, Tu R, Goto T (2009) Thermoelectric properties of Ca-Ir-O compounds prepared by spark plasma sintering. Mater Trans 50(4):853–858

    Google Scholar 

  135. Liang CH, Chan YH, Tiong KK, Huang YS, Dumcenco DO, Liao (2009) Synthesis and characterization of needle-like IrSe2 microrods. J Alloys Compd 480(1):70–72

    Google Scholar 

  136. Rogl P, Nowotny H (1979) Studies of the (Sc, Zr, Hf) – (Rh, Ir) – B systems. J Less-Common Met 67(1):41–50

    Google Scholar 

  137. Brukl CE, Rudy E (1967) The hafnium-iridium-boron system. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contracts USAF 33(615)-1249, Part 2, Vol. 14, pp. 1–54. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  138. Holleck H (1977) Carbon- and boron-stabilized ordered phases of scandium. J Less-Common Met 52(1):167–172

    Google Scholar 

  139. Winter M (2012) WebElements: the periodic table on the WWW. Iridium: physical properties. http://www.webelements.com/iridium/physics.html Accessed 18 April 2012.

    Google Scholar 

  140. Sangster J, Pelton AD (1992) The Ir-Li (iridium-lithium) system. J Phase Equilib 13(1):59–62

    Google Scholar 

  141. Varma SK, Chang FC, Magee CB (1978) Compounds and phase relationships in the lithium-iridium-hydrogen system. J Less-Common Met 60(2):P47-P63

    Google Scholar 

  142. Loebich O Jr, Raub ChJ (1981) Reactions beween some alkali metals and platinum group metals. Platinum Met Rev 25(3):113–120

    Google Scholar 

  143. Moffatt WG (1986) Binary phase diagrams handbook. General Electric Co., Schenectady, New York

    Google Scholar 

  144. Hlukhyy V, Pöttgen R (2004) The hexagonal Laves phase MgIr2. Z Naturforsch B 59:943–946

    Google Scholar 

  145. Hlukhyy V, Rodewald UC, Hoffmann RD, Pöttgen R (2004) Synthesis and structure of RhMg3 and Ir3Mg13. Z Naturforsch B 59:251–255

    Google Scholar 

  146. Bonhomme F, Yvon K (1995) Cubic Mg29Ir4 crystallizing with an ordered variant of the Mg6Pd-type structure. J Alloys Compd 227:L1–L3

    Google Scholar 

  147. Range KJ, Hafner P (1993) Structure refinement of AuMg3, IrMg3 and IrMg2.8. J Alloys Compd 191:L5-L7

    Google Scholar 

  148. Hlukhyy V, Pöttgen R (2004) Mg2+x Ir3−x (x = 0.30) − a binary variant of the monoclinic V2(Co0.57Si0.43)3 type. Solid State Sci 6:1175–1180

    Google Scholar 

  149. Schlüter M, Häussermann U, Heying B, Pöttgen R (2003) Tin-magnesium substitution in Ir3Sn7-structure and chemical bonding in Mg x Ir3Sn7−x (x = 0–1.67). J Solid State Chem 173:418–424

    Google Scholar 

  150. Cerny R, Renaudin G, Tokaychuk YO, Favre-Nicolin V (2006) Complex intermetallic compounds in the Mg-Ir system solved by powder diffraction. Z Kristallogr S23:411–416

    Google Scholar 

  151. Pani M, Palenzona A (2007) Ca5Rh and Ca5Ir: isotypic compounds with a new structure type. J Alloys Compd 436:91–94

    Google Scholar 

  152. Okamoto H (1995) The Ir-Sc (iridium-scandium) system. J Phase Equilib 16(3):285–286

    Google Scholar 

  153. Tripathi SN, Bharadwaj SR (1996) The Ir-Sc (iridium-scandium) system. J Phase Equilib 17(5):445–450

    Google Scholar 

  154. Okamoto H (1997) The Ir-Sc (iridium-scandium) system. J Phase Equilib 18:224–225

    Google Scholar 

  155. Eremenko VN, Khorujaya VG, Martsenyuk PS (1994) The scandium-iridium phase diagram. J Alloys Compd 204:83–87

    Google Scholar 

  156. Le Roy J, Moreau JM, Parthé E (1978) The crystal structures of R64Ir37 (R = Gd, Tb, Dy, Ho, Er, Y) and R64Rh37. Acta Crystallogr A 34 S180c

    Google Scholar 

  157. Okamoto H (1992) The Ir-Y (iridium-yttrium) system. J Phase Equilib 13:651–653

    Google Scholar 

  158. Palenzona A (1989) The crystal structure of Eu4Ir. J Less-Common Met 154(1):227–228

    Google Scholar 

  159. Ning Y-T, Zhou X-M, Zhen Y, Chen N-Y, Xu H, Zhu J-Z (1989) The prediction and synthesis of some new intermetallic compounds between transition metals and rare earth metals. J Less-Common Met 147(2):167–173

    Google Scholar 

  160. Iandelli A, Palenzona A (1976) Das Verhalten des Ytterbiums mit den Metallen der achten Gruppe des periodischen Systems (The reaction of the ytterbium to the metals of the eighth group of the periodic table). Rev Chim Miner 13(1):55–61 (in German)

    Google Scholar 

  161. Iandelli A, Palenzona A (1982) On the crystal structures of Yb5Ir3. J Less-Common Met 83(1):L1-L5

    Google Scholar 

  162. Blazina Z, Mohanty RC, Raman A (1989) Intermediate phases in some rare earth metal – iridium systems. Z Metallkd 80(3):192–196

    Google Scholar 

  163. Le Roy J, Moreau JM, Paccard D (1982) R5T3 compounds (R ≡ rare earth; T ≡ Rh, Ir) with an Mn5Si3-type structure. J Less-Common Met 86:63–67

    Google Scholar 

  164. Krikorian NH (1971) The reaction of selected lanthanide carbides with platinum and iridium. J Less-Common Met 23(3):271–279

    Google Scholar 

  165. Raman A (1976) Crystal structure of Ce5Rh4 and analogous phases. J Less-Common Met 48(1):111–117

    Google Scholar 

  166. Lam DJ, Mitchell AW (1972) Laves phases of actinide elements. J Nucl Mater 44(3):279–284

    Google Scholar 

  167. Erdmann B, Keller C (1973) Actinide (lanthanide) – noble metal alloy phases, preparation and properties. J Solid State Chem 7(1):40–48

    Google Scholar 

  168. Radchenko VM, Seleznev AG, Shushakov VD, Droznik RR, Ryabinin MA, Lebedeva LS, Vasilyev VY (1990) Intermetallics and alloys of transplutonium elements with metals of the platinum group. J Radioanal Nucl Chem 143(1):261–267

    Google Scholar 

  169. Raub E, Mahler W (1955) Die Legierungen des Mangans mit Platins, Iridium, Rhodium und Ruthenium (Alloys of manganese with platinum, iridium, rhodium and ruthenium). Z Metallkd 46(4):282–290 (in German)

    Google Scholar 

  170. Arnberg L, Westman S (1972) Note on the structure of the gamma brass like phase Ir4Zn22. Acta Chem Scand 26:513–517

    Google Scholar 

  171. Chakrabarti DJ, Laughlin DE (1987) The Cu-Ir (copper-iridium) system. Bull Alloy Phase Diagrams 8(2):132–136

    Google Scholar 

  172. Guminski C (2003) The Hg-Ir (mercury-iridium) system. J Phase Equilib 24(4):373–374

    Google Scholar 

  173. Boström M, Prots Y, Grin Y (2004) Synthesis, crystal structure and chemical bonding of the novel compound IrGa2. Solid State Sci 6(5):499–503

    Google Scholar 

  174. Anres P, Fossati P, Richter K, Gambino M, Gaune-Escard M, Bros J-P (2000) Thermodynamics of the Ir-In system. J Alloys Compd 296(1–2):119–127

    Google Scholar 

  175. Flandorfer H, Richter KW, Hayer E, Ipser H, Borzone G, Bros J-P (2002) The binary system In-Ir: a new investigation of phase relationships, crystal structures and enthalpies of mixing. J Alloys Compd 345(1–2):130–139

    Google Scholar 

  176. Flandorfer H (2004) The crystal structure of a new low temperature modification of In3Ir. J Alloys Compd 368(1–2):256–259

    Google Scholar 

  177. Allevato CE, Vining CB (1993) Phase diagram and electrical behavior of silicon-rich iridium silicide compounds. J Alloys Compd 200(1–2):99–105

    Google Scholar 

  178. Okamoto H (1995) Comment on Ir-Si (iridium-silicon) system. J Phase Equilib 16(5):473a-474

    Google Scholar 

  179. Sha JB, Yamabe-Mitarai Y (2006) Phase and microstructural evolution of Ir-Si binary alloys with fcc/silicide structure. Intermetallics 14:672–684

    Google Scholar 

  180. Nordmark E-L, Wallner O, Häussermann U (2002) Polymorphism of IrSn4. J Solid State Chem 168(1):34–40

    Google Scholar 

  181. Künnen B, Niepmann D, Jeitschko W (2000) Structure refinements and some properties of the transition metal stannides Os3Sn7, Ir5Sn7, Ni0.402(4)Pd0.598Sn4, α-PdSn2 and PtSn4. J Alloys Compd 309(1–2):1–9

    Google Scholar 

  182. Yu R, Zhan Q, De Jonghe LC (2007) Crystal structures of and displacive transitions in OsN2, IrN2, RuN2 and RhN2. Angew Chem Int Ed 46(7):1136–1140

    Google Scholar 

  183. Wu Z-J, Zhao E-J, Xiang H-P, Hao X-F, Liu X-J, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76(5):054115

    Google Scholar 

  184. Okamoto H (1994) Comment on Ir-Sb (iridium-antimony) system. J Phase Equilib 15(5):567–568

    Google Scholar 

  185. Munson RA (1968) The synthesis of iridium disulfide and nickel diarsenide having the pyrite structure. Inorg Chem 7:389–390

    Google Scholar 

  186. Okamoto H (2000) The In-Ir (indium-iridium) system. J Phase Equilib 21(4):412

    Google Scholar 

  187. Okamoto H (2004) The In-Ir (indium-iridium) system. J Phase Equilib 25(1):103

    Google Scholar 

  188. Servant C, Idbenali M (2011) Thermodynamic assessment of the In-Ir system in the In rich part. Thermochim Acta 517:1–8

    Google Scholar 

  189. Okamoto H (2012) The In-Ir (indium-iridium) system. J Phase Equilib Diffus 33(2):158

    Google Scholar 

  190. Okamoto H (2009) The Al-Ir (aluminum-iridium) system. J Phase Equilib Diffus 30(2):206–207

    Google Scholar 

  191. Okamoto H (2007) The Ir-Si (iridium-silicon) system. J Phase Equilib Diffus 28(5):495

    Google Scholar 

  192. Okamoto H (2007) The Ir-Zr (iridium-zirconium) system. J Phase Equilib Diffus 28(5):496

    Google Scholar 

  193. Okamoto H (2000) The Al-Ir (aluminum-iridium) system. J Phase Equilib Diffus 21(4):409

    Google Scholar 

  194. Anres P, Gaune-Escard M, Bros J-P (1997) Comment on gallium-iridium (Ga-Ir) system. J Phase Equilib 18(5):415–416

    Google Scholar 

  195. Okamoto H (1996) The Ir-Mn (iridium-manganese) system. J Phase Equilib 17(1):60–62

    Google Scholar 

  196. Bharadwaj SR, Tripathi SN, Chandrasekharaiah MS (1995) The Ir-Pt (iridium-platinum) system. J Phase Equilib 16(5):460–464

    Google Scholar 

  197. Okamoto H (1994) The Ir-Sb (iridium-antimony) system. J Phase Equilib 15(6):640–642

    Google Scholar 

  198. Okamoto H (1994) Comment on Hf-Ir (hafnium-iridium) system. J Phase Equilib 15(3):365

    Google Scholar 

  199. Okamoto H (1992) The Ir-Zr (iridium-zirconium) system. J Phase Equilib 13(6):653–656

    Google Scholar 

  200. Okamoto H (1992) The Ir-Ru (iridium-ruthenium) system. J Phase Equilib 13(5):565–567

    Google Scholar 

  201. Okamoto H (1992) The Ir-U (iridium-uranium) system. J Phase Equilib 13(5):567–570

    Google Scholar 

  202. Okamoto H (1992) The Ir-Ti (iridium-titanium) system. J Phase Equilib 13(3):329–331

    Google Scholar 

  203. Okamoto H (1992) The Ir-Yb (iridium-ytterbium) system. J Phase Equilib 13(2):193–194

    Google Scholar 

  204. Okamoto H (1992) The Er-Ir (erbium-iridium) system. J Phase Equilib 13(2):179–181

    Google Scholar 

  205. Okamoto H (1992) The Dy-Ir (dysprosium-iridium) system. J Phase Equilib 13(2):177–179

    Google Scholar 

  206. Tripathi SN, Bharadwaj SR, Chandrasekharaiah MS (1991) The Ir-Pd (iridium-palladium) system. J Phase Equilib 12(5):603–605

    Google Scholar 

  207. Okamoto H (1991) The Ir-Th (iridium-thorium) system. J Phase Equilib 12(5):568–570

    Google Scholar 

  208. Okamoto H (1991) The Ir-La (iridium-lanthanum) system. J Phase Equilib 12(5):565–567

    Google Scholar 

  209. Tripathi SN, Bharadwaj SR, Chandrasekharaiah MS (1991) The Ir-Rh (iridium-rhodium) system. J Phase Equilib 12(5):606–608

    Google Scholar 

  210. Okamoto H (1991) The Ce-Ir (cerium-iridium) system. J Phase Equilib 12(5):563–565

    Google Scholar 

  211. Sha JB, Yamabe-Mitarai Y (2013) Ir-Hf-Zr ternary refractory superalloys for ultra-high temperatures – phase and microstructural constitution. Intermetallics 41:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Shabalin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shabalin, I.L. (2014). Iridium. In: Ultra-High Temperature Materials I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7587-9_9

Download citation

Publish with us

Policies and ethics