Skip to main content

On the von Kries Model: Estimation, Dependence on Light and Device, and Applications

  • Chapter
  • First Online:
Advances in Low-Level Color Image Processing

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 11))

Abstract

The von Kries model is widely employed to describe the color variation between two pictures portraying the same scene but captured under two different lights. Simple but effective, this model has been proved to be a good approximation of such a color variation and it underpins several color constancy algorithms. Here we present three recent research results: an efficient histogram-based method to estimate the parameters of the von Kries model, and two theoretical advances, that clarify the dependency of these parameters on the physical cues of the varied lights and on the photometric properties of the camera used for the acquisition. We illustrate many applications of these results: color correction, illuminant invariant image retrieval, estimation of color temperature and intensity of a light, and photometric characterization of a device. We also include a wide set of experiments carried out on public datasets, in order to allow the reproducibility and the verification of the results, and to enable further comparisons with other approaches.

An erratum to this chapter is available at 10.1007/978-94-007-7584-8_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-7584-8_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal V, Abidi BR, Koschan A, Abidi MA (2006) An overview of color constancy algorithms. J Pattern Recogn Res 1:42–56

    Article  Google Scholar 

  2. Agarwal V, Gribok AV, Abidi MA (2007) Neural networks letter: machine learning approach to color constancy. Neural Netw. 20(5):559–563

    Article  MATH  Google Scholar 

  3. Athitsos V, Hadjieleftheriou M, Kollios G, Sclaroff S (2007) Query-sensitive embeddings. ACM Trans Database Syst 32(2):37

    Google Scholar 

  4. Barnard K (2000) Improvements to gamut mapping colour constancy algorithms. In: Proceedings of the 6th European conference on computer vision-Part I, ECCV ’00, London, UK. Springer, New York, pp 390–403

    Google Scholar 

  5. Barnard K, Cardei V, Funt B (2002) A comparison of computational color constancy algorithms. Part I: Methodology and experiments with synthesized data. IEEE Trans Image Process 11(9):972–984

    Google Scholar 

  6. Barnard K, Cardei V, Funt B (2002) A comparison of computational color constancy algorithms. Part II: experiments with image data. IEEE Trans Image Process 11(9):985–996

    Google Scholar 

  7. Barnard K, Ciurea F, Funt B (2001) Sensor sharpening for computational color constancy. J Opt Soc Am A 18:2728–2743

    Article  Google Scholar 

  8. Barnard K, Martin L, Funt B, Coath A (2002) A data set for color research. Color Res Appl 27(3):148–152

    Google Scholar 

  9. Berens J, Finlayson GD (2000) Log-opponent chromaticity coding of colour space. In: Proceedings of 15th international conference on pattern recognition, vol 1, pp 206–211

    Google Scholar 

  10. Brainard DH, Kraft JM, Longere P (2005) Color constancy: developing empirical tests of computational models. Oxford University Press, New York

    Google Scholar 

  11. Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310(1):1–26

    Article  MathSciNet  Google Scholar 

  12. Ebner M (2007) Estimating the spectral sensitivity of a digital sensor using calibration targets. In: GECCO ’07: Proceedings of the 9th annual conference on genetic and evolutionary computation, ACM, pp 642–649

    Google Scholar 

  13. Finlayson C, Hordley S, Schaefer G, Tian GY (2003) Illuminant and device invariance using histogram equalisation. In: IS&T and SID’s 11th color imaging conference, pp 205–211

    Google Scholar 

  14. Finlayson G, Hordley S (1998) A theory of selection for gamut mapping color constancy. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, CVPR ’98, IEEE Computer Society, Washington, DC

    Google Scholar 

  15. Finlayson G, Hordley S (2001) Color constancy at a pixel. J Opt Soc Am A 18(2):253–264

    Article  Google Scholar 

  16. Finlayson G, Schaefer G, Tian GY (2000) The UEA uncalibrated colour image database. Technical report SYS-C00-07, School of Information Systems, University of East Anglia, Norwich, United Kingdom

    Google Scholar 

  17. Finlayson GD, Drew MS, Funt BV (1993) Diagonal transforms suffice for color constancy. In: Proceedings of international conference of computer vision

    Google Scholar 

  18. Finlayson GD, Drew MS, Funt BV (1994) Color constancy: generalized diagonal transforms suffice. J Opt Soc Am A 11(11):3011–3019

    Article  Google Scholar 

  19. Finlayson GD, Drew MS, Funt BV (1994) Spectral sharpening: sensor transformations for improved color constancy. J Opt Soc Am A 11(5):1553–1563

    Article  Google Scholar 

  20. Finlayson GD, Hordley SD (2006) Gamut constrained illuminant estimation. Int J Comput Vis 67:2006

    Article  Google Scholar 

  21. Finlayson GD, Schiele B, Crowley JL (1998) Comprehensive colour image normalization. In: Proceedings of the 5th European conference on computer vision—volume I, ECCV ’98, Springer, London, pp 475–490

    Google Scholar 

  22. Finlayson GD, Hordley SD, HubeL PM (2001) Color by correlation: a simple, unifying framework for color constancy. IEEE Trans Pattern Anal Mach Intell 23(11):1209–1221

    Google Scholar 

  23. Forsyth DA (1990) A novel algorithm for color constancy. Int J Comput Visi 5(1):5–36

    Article  MathSciNet  Google Scholar 

  24. Funt B, Barnard K, Martin L (1998) Is machine colour constancy good enough? In: Proceedings of the 5th European conference on computer vision. Springer, New York, pp 445–459

    Google Scholar 

  25. Gatta C, Rizzi A, Marini D (2002) Ace: an automatic color equalization algorithm. In: Proceedings of CGIV2002 IS T, Poitiers, France

    Google Scholar 

  26. Gehler PV, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited. In: Proceedings of computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  27. Geusebroek JM, Burghouts GJ, Smeulders AWM (2005) The Amsterdam library of object images. Int J Comput Vis 61(1):103–112

    Article  Google Scholar 

  28. Gijsenij A, Gevers T, van de Weijer J (2011) Computational color constancy: survey and experiments. IEEE Trans Image Process 20(9):2475–2489

    Google Scholar 

  29. Gijsenij A, Gevers T, Weijer J (2010) Generalized gamut mapping using image derivative structures for color constancy. Int J Comput Vis 86(2–3):127–139

    Article  Google Scholar 

  30. Judd DB, MacAdam DL, Wyszecki G, Budde HW, Condit HR, Henderson ST, Simonds JL (1964) Spectral distribution of typical daylight as a function of correlated color temperature. J Opt Soc Am 54(8):1031–1036

    Google Scholar 

  31. Kelly KL (1963) Lines of constant correlated color temperature based on MacAdam’s (u,\(\upsilon \)) uniform chromaticity transformation of the CIE diagram. J Opt Soc Am 53(8):999–1002

    Article  Google Scholar 

  32. Lam KM (1985) Metamerism and Colour Constancy. University of Bradford, England

    Google Scholar 

  33. Land EH (1977) The Retinex theory of color vision. Sci Am 237(6):108–128

    Article  Google Scholar 

  34. Lecca M, Messelodi S (2009) Computing von Kries illuminant changes by piecewise inversion of cumulative color histograms. Electron Lett Comput Vis Image Anal 8(2):1–17

    Google Scholar 

  35. Lecca M, Messelodi S (2009) Illuminant change estimation via minimization of color histogram divergence. In: Computational color imaging workshop—CCIW. LNCS, vol 5646/2009. S. Etienne, France, pp 41–50

    Google Scholar 

  36. Lecca M, Messelodi S (2011) Linking the von Kries model to Wien’s law for the estimation of an illuminant invariant image. Pattern Recogn Lett 32(15):2086–2096

    Article  Google Scholar 

  37. Lecca M, Messelodi S (2011) Von Kries model under Planckian illuminants. In: 16th International conference on image analysis and processing—ICIAP. Lecture notes in computer science, vol 6978. Ravenna, Italy, pp 296–305

    Google Scholar 

  38. Lecca M, Messelodi S, Andreatta C (2007) An object recognition system for automatic image annotation and browsing of object catalogs. In: Proceedings of the 15th international conference on multimedia, MULTIMEDIA ’07. ACM, pp 154–155

    Google Scholar 

  39. Leichter I, Lindenbaum M, Rivlin E (2010) Mean shift tracking with multiple reference color histograms. Comput Vis Image Underst 114(3):400–408

    Article  Google Scholar 

  40. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  41. Lu R, Gijsenij A, Gevers T, Nedovic V, Xu D, Geusebroek JM (2009) Color constancy using 3D scene geometry. In: Proceedings of ICCV, pp 1749–1756

    Google Scholar 

  42. Marimont DH, Wandell BA (1992) Linear models of surface and illuminant spectra. J Opt Soc Am A 9:1905–1913

    Article  Google Scholar 

  43. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17(2):142–144

    Article  Google Scholar 

  44. Nayar SK, Ikeuchi K, Kanade T (1991) Surface reflection: physical and geometrical perspectives. IEEE Trans Pattern Anal Mach Intell 13:611–634

    Article  Google Scholar 

  45. Ojala T, Topi M, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex: new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of ICPR’02, vol 1, IEEE Computer Society

    Google Scholar 

  46. Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41

    Google Scholar 

  47. Rosenberg C, Minka T, Ladsariya A (2004) Bayesian color constancy with non-gaussian models. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems, vol 16. MIT Press, Cambridge

    Google Scholar 

  48. Schaefer G (2011) Colour for image retrieval and image browsing. In: Proceedings of ELMAR, 2011, pp 1–3

    Google Scholar 

  49. Siang Tan K, Mat I, Nor A (2011) Color image segmentation using histogram thresholding: fuzzy c-means hybrid approach. Pattern Recogn 44(1):1–15

    Article  MATH  Google Scholar 

  50. Skaff S, Arbel T, Clark JJ (2002) Active Bayesian color constancy with non-uniform sensors. In: Proceedings of 16th international conference on pattern recognition, vol 2, pp 681–684

    Google Scholar 

  51. Tominaga S, Ishida A, Wandell BA (2007) Color temperature estimation of scene illumination by the sensor correlation method. Syst Comput Jpn 38(8):95–108

    Article  Google Scholar 

  52. Unnikrishnan R, Hebert M(2006) Extracting scale and illuminant invariant regions through color. In: Proceedings of BMVC, pp 52.1-52.10. doi: 10.5244/C.20.52

  53. van de Sande K, Gevers T, Snoek C (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596

    Article  Google Scholar 

  54. van de Weijer J, Gevers T, Geusebroek J-M (2005) Edge and corner detection by photometric quasi-invariants. IEEE Trans Pattern Anal Mach Intell 27(4):625–630

    Article  Google Scholar 

  55. van de Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–2214

    Google Scholar 

  56. Vergés-Llahí J, Sanfeliu A (2005) A new color constancy algorithm based on the histogram of feasible mappings. In: Proceedings of the 2nd international conference on image analysis and recognition, ICIAR’05. Springer, Berlin, pp 720–728

    Google Scholar 

  57. Takahama K, Nayatani Y, Sobagaki H (1981) Formulation of a nonlinear model of chromatic adaptation. Color Res Appl 6(3):161–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Lecca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lecca, M. (2014). On the von Kries Model: Estimation, Dependence on Light and Device, and Applications. In: Celebi, M., Smolka, B. (eds) Advances in Low-Level Color Image Processing. Lecture Notes in Computational Vision and Biomechanics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7584-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7584-8_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7583-1

  • Online ISBN: 978-94-007-7584-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics