Skip to main content

Contribution of Skin Color Cue in Face Detection Applications

  • Chapter
  • First Online:
Advances in Low-Level Color Image Processing

Abstract

Face detection has been considered as one of the most active areas of research due to its wide range of applications in computer vision and digital image processing technology. In order to build a robust face detection system, several cues, such as motion, shape, color, and texture have been considered. Among available cues, color is one of the most effective ones due to its computational efficiency, high discriminative power, as well as robustness against geometrical transform. This chapter investigates the role of skin color cue in automatic face detection systems. General overview of existing face detection techniques and skin pixel classification solutions are provided. Further, illumination adaptation strategies for skin color detection are discussed to overcome the sensitivity of skin color analysis against illumination variation. Finally, two case studies are presented to provide more realistic view of contribution of skin color cue in face detection frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term real-time implies the capability to process image frames with a rate close to the examined sequence frame rate. In [67], real-time requirement is defined to be approximately 15 frames per second for 384x288 image.

  2. 2.

    Under the white illumination condition with Lambertian reflection assumption, normalized RGB is invariant to illumination direction and illumination intensity [21]

  3. 3.

    Linear RGB implies that it is linear to the physical intensity, whereas nonlinear RGB is non-linear to intensity. Such nonlinearity is introduced to RGB signal by gamma correction process in order to compensate a nonlinear response of CRT display devices.

  4. 4.

    It is noteworthy to mention that the original literature [57] does not clearly indicate whether linear or nonlinear RGB is used in conversion. Although there is such an ambiguity, we use nonlinear RGB in this paper, which is implicit in image processing applications [52].

  5. 5.

    For image reproduction applications, the canonical illuminant is often defined as an illuminant for which the camera sensor is balanced [2].

  6. 6.

    Lambertian reflection model explains the relationship between the surface reflectance and color image formation for flat, matte surfaces. Although this model does not hold true for all materials, it provides a good approximation in general, and thus widely used in design of tractable color constancy solutions

  7. 7.

    A surface with perfect reflectance property reflects the incoming light in the entire visible spectral range (between wavelengths of about 400 and 700 nm of the electromagnetic spectrum)

  8. 8.

    Assigning more mixture components for non-skin class than skin class is beneficial due to less compact shape of non-skin sample distribution. However, we found that performance gain from having more components for non-skin class is marginal and thus we maintain the same number of components for both classes in this experiment.

  9. 9.

    Viola and Jones [67] indicate that around \(1\times 10^{-6}\) of FPR is a common value for practical uses. However, it is extremely difficult to achieve the precise value and generally it is acceptable if FPR is within the same magnitude. For instance, Jun and Kim [37] achieves \(96\,\%\) TPR at \(2.56\times 10^{-6}\) FPR, and Louis and Plataniotis [47] achieves \(92.27\,\%\) TPR at \(6.2\times 10^{-6}\) FPR

  10. 10.

    Instead of measuring average number of scanned window and execution time per frame, we measured the sum of them, since test images in Bao database vary in spatial resolutions

References

  1. Albiol A, Torres L, Delp E (2001) Optimum color spaces for skin detection. In: Proceedings of international conference on image processing, Thessaloniki, vol 1, pp 122–124

    Google Scholar 

  2. Barnard K, Cardei V, Funt B (2002) A comparison of computational color constancy algorithms. I: methodology and experiments with synthesized data. IEEE Trans Image Process 11(9):972–984

    Article  Google Scholar 

  3. Bilal S, Akmeliawati R, Salami M, Shafie A (2012) Dynamic approach for real-time skin detection. J Real-Time Image Process pp 1–15

    Google Scholar 

  4. Brown D, Craw I, Lewthwaite J (2001) A SOM based approach to skin detection with application in real time systems. In: Proceedings of the British machine vision conference, University of Manchester, UK, pp 491-500

    Google Scholar 

  5. Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310(1):1–26

    Article  MathSciNet  Google Scholar 

  6. Caetano T, Olabarriaga S, Barone D (2002) Performance evaluation of single and multiple-Gaussian models for skin color modeling. In: Proceedings XV Brazilian symposium on computer graphics and image processing, Brazil, 275–282

    Google Scholar 

  7. Chai D, Ngan KN (1998) Locating facial region of a head-and-shoulders color image. In: Proceedings of the international Conference on face and gesture recognition, pp 124–129

    Google Scholar 

  8. Chaves-Gonz+-lez JM, Vega-Rodr+-guez MA, G+-mez-Pulido JA, S+-nchez-P+-rez JM, (2010) Detecting skin in face recognition systems: a colour spaces study. Digital Sig Proc 20(3):806–823

    Google Scholar 

  9. Chen HY, Huang CL, Fu CM (2008) Hybrid-boost learning for multi-pose face detection and facial expression recognition. Pattern Recogn 41(3):1173–1185

    Article  MATH  Google Scholar 

  10. Conci A, Nunes E, Pantrigo JJ, Sánchez A (2008) Comparing color and texture-based algorithms for human skin detection. In: Computer interaction 5:166–173

    Google Scholar 

  11. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc, Series B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  12. Erdem C, Ulukaya S, Karaali A, Erdem A (2011) Combining Haar feature and skin color based classifiers for face detection. In: IEEE international conference on acoustics, speech and signal processing, pp 1497–1500

    Google Scholar 

  13. Fasel I, Fortenberry B, Movellan J (2005) A generative framework for real time object detection and classification. Comput Vis Image Underst 98(1):182–210

    Article  Google Scholar 

  14. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  15. Finlayson GD, Trezzi E (2004) Shades of Gray and Colour Constancy. In: Twelfth color imaging conference: color science and engineering systems, technologies, and applications, pp 37–41

    Google Scholar 

  16. Frischholz R (2008) Bao face database at the face detection homepage. http://www.facedetection.com. Accessed 07 Dec 2012

  17. Fritsch J, Lang S, Kleinehagenbrock M, Fink G, Sagerer G (2002) Improving adaptive skin color segmentation by incorporating results from face detection. In: Proceedings of the IEEE international workshop on robot and human interactive communication, pp 337–343

    Google Scholar 

  18. Fu Z, Yang J, Hu W, Tan T (2004) Mixture clustering using multidimensional histograms for skin detection. In: Proceedings international conference on pattern recognition, vol 4. Brighton, 549–552

    Google Scholar 

  19. Gehler P, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited. http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/colour/. In: IEEE conference on computer vision and pattern recognition, pp 1–8

  20. Gevers T, Smeulders AW (1999) Color-based object recognition. Pattern Recognit 32(3):453–464

    Article  Google Scholar 

  21. Gevers T, Gijsenij A, van de Weijer J, Geusebroek JM (2012) Pixel-based photometric invariance, Wiley Inc., pp 47–68

    Google Scholar 

  22. Gijsenij A, Gevers T, van de Weijer J (2011) Computational color constancy: survey and experiments. IEEE Trans Image Process 20(9):2475–2489

    Article  MathSciNet  Google Scholar 

  23. Gomez G, Morales EF (2002) Automatic feature construction and a simple rule induction algorithm for skin detection. In: Proceedings of the ICML workshop on machine learning in computer vision, pp 31–38

    Google Scholar 

  24. Greenspan H, Goldberger J, Eshet I (2001) Mixture model for face-color modeling and segmentation. Pattern Recogn Lett 22(14):1525–1536

    Article  MATH  Google Scholar 

  25. Hadid A, Pietikäinen M (2006) A hybrid approach to face detection under unconstrained environments. In: International conference on pattern recognition, vol 1:227–230

    Google Scholar 

  26. Hadid A, Pietikäinen M, Ahonen T (2004) A discriminative feature space for detecting and recognizing faces. In: Proceedings IEEE Conference on computer vision and pattern recognition, vol 2, pp II-797–II-804

    Google Scholar 

  27. Hanbury A (2003) Circular statistics applied to colour images. In: Proceedings of the computer vision winter workshop, Valtice, pp 55–60

    Google Scholar 

  28. Haralick R, Shapiro L (1992) Computer and robot vision, addison-wesley longman publishing Co Inc, 1st edn. vol 1, Boston

    Google Scholar 

  29. Hassanpour R, Shahbahrami A, Wong S (2008) Adaptive Gaussian mixture model for skin color segmentation. Eng Technol 31(July):1–6

    Google Scholar 

  30. Herodotou N, Plataniotis KN, Venetsanopoulos AN (2000) Image Processing Techniques for Multimedia Processing. In: Guan L, Kung SY, Larsen J (eds) Multimedia image and video processing. CRC Press, chap 5:97–130

    Google Scholar 

  31. Hjelmås E, Low BK (2001) Face detection: a survey. Comput Vis Image Underst 83(3):236–274

    Article  MATH  Google Scholar 

  32. Hossain MF, Shamsi M, Alsharif MR, Zoroofi RA, Yamashita K (2012) Automatic facial skin detection using gaussian mixture model under varying illumination. Int J Innov Comput I 8(2):1135–1144

    Google Scholar 

  33. Hsu RL, Abdel-Mottaleb M, Jain A (2002) Face detection in color images. IEEE Trans Pattern Anal Mach Intell 24(5):696–706

    Article  Google Scholar 

  34. Jensen OH (2008) Implementing the viola-jones face detection algorithm. Technical university of Denmark, department of informatics and mathematical modeling, master’s thesis, Denmark

    Google Scholar 

  35. Jin H, Liu Q, Lu H, Tong X (2004) Face detection using improved LBP under bayesian framework. In: Proceeding of the international conference on image and graphics, pp 306–309

    Google Scholar 

  36. Jones MJ, Rehg JM (2002) Statistical color models with application to skin detection. Int J Comput Vision 46(1):81–96

    Article  MATH  Google Scholar 

  37. Jun B, Kim D (2012) Robust face detection using local gradient patterns and evidence accumulation. Pattern Recognit 45(9):3304–3316

    Article  Google Scholar 

  38. Kakumanu P, Makrogiannis S, Bourbakis N (2007) A survey of skin-color modeling and detection methods. Pattern Recognit 40(3):1106–1122

    Article  MATH  Google Scholar 

  39. Kawulok M (2008) Dynamic skin detection in color images for sign language recognition. In: Elmoataz A, Lezoray O, Nouboud F, Mammass D (eds) ICISP Lecture notes in computer science, vol 5099. Springer, France, 112–119

    Google Scholar 

  40. Khan R, Hanbury A, Sablatnig R, Stöttinger J, Khan F, Khan F (2012 a) Systematic skin segmentation: merging spatial and non-spatial data. Multimed tools appl pp 1–25

    Google Scholar 

  41. Khan R, Hanbury A, Stöttinger J, Bais A (2012 b) Color based skin classification. Pattern Recognit Lett 33(2):157–163

    Google Scholar 

  42. Kovac J, Peer P, Solina F (2003) Human skin color clustering for face detection. In: The IEEE region 8 EUROCON 2003 computer tool, vol 2:144–148

    Google Scholar 

  43. von Kries J (1970) Influence of adaptation on the effects produced by luminous stimuli. In: MacAdam D (ed) Sources of color science, MIT Press, pp 109–119

    Google Scholar 

  44. Land EH (1977) The retinex theory of color vision. Sci Am 237(6):108–128

    Article  Google Scholar 

  45. Lee JY, Yoo SI (2002) An elliptical boundary model for skin color detection. In: Proceedings international conference on imaging science, systems, and technology. pp 81–96

    Google Scholar 

  46. Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection. In: Proceedings international confrence on image processing, vol 1, pp 900–903

    Google Scholar 

  47. Louis W, Plataniotis KN (2011) Co-occurrence of local binary patterns features for frontal face detection in surveillance applications. EURASIP J Image Video Proces 2011

    Google Scholar 

  48. Moon H, Chellappa R, Rosenfeld A (2002) Optimal edge-based shape detection. IEEE Trans Image Process 11(11):1209–1227

    Article  MathSciNet  Google Scholar 

  49. Naji SA, Zainuddin R, Jalab HA (2012) Skin segmentation based on multi pixel color clustering models. Digital Sig Process 22(6):933–940

    Article  Google Scholar 

  50. Ojala T, Pietik+inen M, Harwood D, (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59

    Google Scholar 

  51. Phung S, Bouzerdoum SA, Chai SD (2005) Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans Pattern Anal Mach Intell 27(1):148–154

    Article  Google Scholar 

  52. Plataniotis KN, Venetsanopoulos AN (2000) Color image processing and applications. Springer-Verlag, New York

    Google Scholar 

  53. Schmugge SJ, Jayaram S, Shin MC, Tsap LV (2007) Objective evaluation of approaches of skin detection using ROC analysis. Comput Vis Image Underst 108:41–51

    Article  Google Scholar 

  54. Schwartz WR, Gopalan R, Chellappa R, Davis LS (2009) Robust human detection under occlusion by integrating face and person detectors. In: Proceedings international conference on advances in biometrics, pp 970–979

    Google Scholar 

  55. Sigal L, Sclaroff S, Athitsos V (2004) Skin color-based video segmentation under time-varying illumination. IEEE Trans Pattern Anal Mach Intell 26(7):862–877

    Article  Google Scholar 

  56. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

  57. Smith AR (1978) Color gamut transform pairs. SIGGRAPH Comput Graph 12(3):12–19

    Article  Google Scholar 

  58. Sobottka K, Pitas I (1996) Extraction of facial regions and features using color and shape information. In: Proceedings international conference of pattern recognition, pp 421–425

    Google Scholar 

  59. Soriano M, Martinkauppi B, Huovinen S, Laaksonen M (2000) Skin detection in video under changing illumination conditions. In: Procedings international conference on pattern recognition, vol 1:839–842

    Google Scholar 

  60. Störring M (2004) Computer vision and human skin colour: a Ph.D. Computer vision and media technology laboratory. Dissertation, Aalborg University

    Google Scholar 

  61. Sun HM (2010) Skin detection for single images using dynamic skin color modeling. Pattern Recognit 43(4):1413–1420

    Article  Google Scholar 

  62. Terrillon JC, David M, Akamatsu S (1998) Automatic detection of human faces in natural scene images by use of a skin color model and of invariant moments. In: Proceedings IEEE international conference on automatic face and gesture recognition, pp 112–117

    Google Scholar 

  63. Terrillon JC, Shirazi M, Fukamachi H, Akamatsu S (2000) Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. In: Proceedings of the IEEE international conference on automatic face and gesture recognition, pp 54–61

    Google Scholar 

  64. Terrillon JC, Pilpre A, Niwa Y, Yamamoto K (2003) Analysis of a large set of color spaces for skin pixel detection in color images. In: Internationa Conference on quality control by artificial vision, vol 5132, pp 433–446

    Google Scholar 

  65. Vezhnevets V, Sazonov V, Andreeva A (2003) A survey on pixel-based skin color detection techniques. In: Proceedings of the GRAPHICON-2003, pp 85–92

    Google Scholar 

  66. Viola M, Jones MJ, Viola P (2003) Fast multi-view face detection. In: Proceedings of the computer vision and pattern recognition

    Google Scholar 

  67. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57(2):137–154

    Article  Google Scholar 

  68. Wang X, Xu H, Wang H, Li H (2008) Robust real-time face detection with skin color detection and the modified census transform. In: International confrence on information and automation, pp 590–595

    Google Scholar 

  69. Wang X, Zhang X, Yao J (2011) Skin color detection under complex background. In: International conference on mechatronic science, electric engineering and computer (MEC), pp 1985–1988

    Google Scholar 

  70. Wei Z, Dong Y, Zhao F, Bai H (2012) Face detection based on multi-scale enhanced local texture feature sets. In: IEEE International conference on acoustics, speech and signal processing, pp 953–956

    Google Scholar 

  71. van de Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–2214

    Article  MathSciNet  Google Scholar 

  72. Yang G, Huang TS (1994) Human face detection in a complex background. Pattern Recognit 27(1):53–63

    Article  Google Scholar 

  73. Yang J, Lu W, Waibel A (1997) Skin-color modeling and adaptation. In: Proceedings of the Asian conference on computer vision-volume II, Springer-Verlag, pp 687–694

    Google Scholar 

  74. Yang MH, Ahuja N (1999) Gaussian mixture model for human skin color and its applications in image and video databases. In: Proceedings of the SPIE, pp 458–466

    Google Scholar 

  75. Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1):34–58

    Article  Google Scholar 

  76. Yendrikhovskij SN, Blommaert FJJ, de Ridder H (1999) Color reproduction and the naturalness constraint. Color Res Appl 24(1):52–67

    Article  Google Scholar 

  77. Zarit BD, Super BJ, Quek FKH (1999) Comparison of five color models in skin pixel classification. In: Proceedings of the International workshop on recognition, analysis, and tracking of faces and gestures in real-time systems, pp 58–63

    Google Scholar 

  78. Zeng H, Luo R (2012) A new method for skin color enhancement. In: Proceedings of the SPIE, vol 8292. pp 82,920K.1–9

    Google Scholar 

  79. Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech Rep MSR-TR-2010-66, Microsoft Research

    Google Scholar 

  80. Zhang L, Chu R, Xiang S, Liao S, Li S (2007) Face detection based on Multi-Block LBP Representation. In: Advances in biometrics, lecture notes in computer science, vol 4642. Springer-Verlag, pp 11–18

    Google Scholar 

  81. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyoung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, D., Wang, J., Plataniotis, K.N. (2014). Contribution of Skin Color Cue in Face Detection Applications. In: Celebi, M., Smolka, B. (eds) Advances in Low-Level Color Image Processing. Lecture Notes in Computational Vision and Biomechanics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7584-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7584-8_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7583-1

  • Online ISBN: 978-94-007-7584-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics