Skip to main content
  • 908 Accesses

Abstract

The sensational aspects of quantum theory, from the wave-particle nature of electrons to Schrödinger’s cat, are the artefacts that result from describing nonlinear systems by linear differential equations. As linear waves are dispersive, a wave model of the electron is still being rejected, whereas a nonlinear wave model is shown to account for electronic behaviour in all conceivable situations. This chapter introduces the distinction between linear and nonlinear systems with examples from hydrodynamics and mechanics and applied to the wave mechanics of wave packets, solitons, electrons and lattice phonons. Special topics for discussion include the motion of free electrons, the fine-structure parameter, electron diffraction, photoelectric and Compton effects, X-ray diffraction, metallic conduction, superconductivity and elementary covalent interaction. A new innovation, introduced here, is recognition of the quantum potential as a nonlinearity parameter that enables a seamless transition between classical and non-classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Zitterbewegung.

  2. 2.

    At an even earlier date Schrödinger was the first to recognize the phase invariance of electronic motion [40] that subsequently developed into modern gauge theory, the basis of elementary-particle physics, but rarely attributed to the seminal source.

  3. 3.

    It is customary to use the notation u t ∂u/∂t, u xx 2 u/∂x 2, etc. in writing nonlinear wave equations.

  4. 4.

    This procedure is analyzed in detail by Toda [43].

  5. 5.

    As pointed out by Goldstein [3, p. 283], the most general transformation in Minkowski space that preserves the velocity of light has the form x′=Lx+a, where a is an arbitrary translation vector of the origin and L is the orthogonal matrix of the homogeneous Lorentz transformation x′=Lx (4.4). The modified inhomogeneous (Poincaré) transformation has ten independent elements compared to the six of (4.4). This condition generates the intrinsic nonlinearity of curved space-time.

  6. 6.

    For details see [31, p. 134].

References

  1. Campbell, D.K.: Nonlinear Science, Los Alamos Sciences, Special Issue (1987)

    Google Scholar 

  2. Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. Kon. Acad. Wet. Amst. 6, 809–831 (1904)

    Google Scholar 

  3. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

    Google Scholar 

  4. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1982)

    Google Scholar 

  5. Coulson, C.A.: Waves, 7th edn. Oliver & Boyd, London (1955)

    Google Scholar 

  6. Bohm, D.: Quantum Theory, Dover, New York (1989)

    Google Scholar 

  7. Rainville, E.D.: Elementary Differential Equations, 3rd edn. Macmillan, New York (1964)

    Google Scholar 

  8. Zettili, N.: Quantum Mechanics: Concepts and Applications. Wiley, Chichester (2001)

    Google Scholar 

  9. Deutsch, D.: The Beginning of Infinity. Viking, New York (2011)

    Google Scholar 

  10. Bergmann, P.G.: Introduction to the Theory of Relativity, Dover, New York (1976)

    Google Scholar 

  11. Schrödinger, E.: The continuous transition from micro- to macro-mechanics. Naturwissenschaften 28, 664–666 (1926)

    Article  Google Scholar 

  12. de Broglie, L.: Non-linear wave mechanics. Elsevier, Amsterdam (1960)

    Google Scholar 

  13. Dirac, P.A.M.: On the Theory of Quantum Mechanics. Proc. R. Soc. A 112, 661–677 (1926)

    Article  CAS  Google Scholar 

  14. Schrödinger, E.: Über die kraftefreie Bewegung in der relativistischer Quantenmechanik. Sitz.ber. Preuss. Akad. Wiss. Phys.-Math. Kl. 25, 418–428 (1930)

    Google Scholar 

  15. Schrödinger, E.: Zur Quantendynamik des Elektrons. Sitz. Ber. 26, 63–72 (1931)

    Google Scholar 

  16. Schrödinger, E.: Spezielle Relativitätstheorie und Quantenmechanik. Sitz. Ber. 26, 283–284 (1931)

    Google Scholar 

  17. Schrödinger, E.: Über die Unanwendbarkeit der Geometrie im Kleinen. Naturwissenschaften 22, 518–520 (1934)

    Article  Google Scholar 

  18. Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479–484 (1952)

    Article  Google Scholar 

  19. Lock, J.A.: The Zitterbewegung of a free localized Dirac particle. Am. J. Phys. 47, 797–802 (1979)

    Article  Google Scholar 

  20. Barut, A.O., Bracken, J.A.: Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23, 2454 (1981)

    Article  CAS  Google Scholar 

  21. Hestenes, D.: The Zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 1213–1232 (1990)

    Article  Google Scholar 

  22. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1985)

    Google Scholar 

  23. Elbaz, C.: On de Broglie waves and Compton waves of massive particles. Phys. Lett. A 109, 7–8 (1985)

    Article  Google Scholar 

  24. Elbaz, C.: On self-field electromagnetic properties for extended material particles. Phys. Lett. A 127, 308–314 (1988)

    Article  Google Scholar 

  25. Elbaz, C.: Some inner physical properties of material particles. Phys. Lett. A 123, 205–207 (1987)

    Article  Google Scholar 

  26. Corben, H.C.: Relativistic selftrapping of hadrons. Lett. Nuovo Cimento 20, 645–648 (1977)

    Article  CAS  Google Scholar 

  27. Wolff, M.: Exploring the Universe. Temple Univ. Frontier Persp. 6, 44–56 (1997)

    Google Scholar 

  28. Horodecki, H.: Is a massive particle a compound bradyon-pseudotachyon system? Phys. Lett. A 133, 179–181 (1988)

    Article  CAS  Google Scholar 

  29. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952).

    Article  CAS  Google Scholar 

  30. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952).

    Article  CAS  Google Scholar 

  31. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  32. Boeyens, J.C.A.: New Theories for Chemistry. Elsevier, Amsterdam (2005)

    Google Scholar 

  33. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    Google Scholar 

  34. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143–182 (1952)

    Article  Google Scholar 

  35. Schrödinger, E.: The exchange of energy according to wave mechanics, English translation of: Ann. der Phys. 83 (1927). In: Collected Papers on Wave Mechanics, pp. 137–146. Chelsea, New York (1987)

    Google Scholar 

  36. Boeyens, J.C.A.: Chemical Cosmology. www.springer.com (2010)

    Book  Google Scholar 

  37. Faddeev, L.D., Korepin, V.E.: Quantum theory of solitons. Phys. Rep. 42, 1–87 (1978)

    Article  Google Scholar 

  38. Nettel, S.: Wave Physics. Springer, Berlin (1992)

    Book  Google Scholar 

  39. Post, E.J.: Can microphysical structure be probed by period integrals? Phys. Rev. D 25, 3223–3229 (1982)

    Article  Google Scholar 

  40. Schrödinger, E.: Über eine bemerkenswerte Eigenschaft eines einzelnen Elektrons. Z. Phys. 12, 13–23 (1922)

    Google Scholar 

  41. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave. Philos. Mag. 39, 422–443 (1895)

    Google Scholar 

  42. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  Google Scholar 

  43. Toda, M.: Nonlinear Waves and Solitons. Kluwer, Dordrecht (1989)

    Google Scholar 

  44. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  CAS  Google Scholar 

  45. Zabusky, N.J.: Solitons and bound states of the time-dependent Schrödinger equation. Phys. Rev. 168, 124–128 (1968)

    Article  Google Scholar 

  46. Kaup, D.J.: Exact quantization of the nonlinear Schrödinger equation. J. Math. Phys. 16, 2036–2041 (1975)

    Article  Google Scholar 

  47. Lamb, G.L. Jr.: Elements of Soliton Theory. Wiley-Interscience, New York (1980)

    Google Scholar 

  48. Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008)

    Book  Google Scholar 

  49. Finkelstein, D., Misner, C.W.: Some new conservation laws. Ann. Phys. 6, 230–242 (1959)

    Article  Google Scholar 

  50. Enz, U.: Discrete mass, elementary length, and a topological invariant as a consequence of a relativistically invariant variational principle. Phys. Rev. 131, 1392–1394 (1963)

    Article  Google Scholar 

  51. Kittel, C.: Introduction to Solid-State Physics, 5th edn. Wiley, New York (1976)

    Google Scholar 

  52. Boeyens, J.C.A.: The geometry of quantum events. Specul. Sci. Technol. 15, 192–210 (1992)

    CAS  Google Scholar 

  53. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73–77 (1935)

    Article  CAS  Google Scholar 

  54. Derrick, G.H.: Comments on nonlinear wave equations as models of elementary particles. J. Math. Phys. 5, 1252–1254 (1964)

    Article  CAS  Google Scholar 

  55. Boeyens, J.C.A.: Chemistry in four dimensions. Struct. Bond. 148, 25–47 (2013)

    Article  CAS  Google Scholar 

  56. Eddington, A.S.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1921)

    Google Scholar 

  57. Bass, L., Schrödinger, E.: Must the photon mass be zero? Proc. R. Soc. A 232, 1–6 (1955)

    Article  CAS  Google Scholar 

  58. Schrödinger, E.: The Compton effect. In: Collected Papers on Wave Mechanics, pp. 124–129. Chelsea, New York (1987). English translation of: Ann. Phys. 83 (1927)

    Google Scholar 

  59. Zabusky, N.: Nonlinear Partial Differential Equations. Academic Press, London (1967)

    Google Scholar 

  60. Boeyens, J.C.A., Levendis, D.C.: Number Theory and the Periodicity of Matter. www.springer.com (2008)

    Book  Google Scholar 

  61. Rosen, N.: Quantum particles and classical particles. Found. Phys. 16, 687–700 (1986)

    Article  Google Scholar 

  62. Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Longman, London (1983)

    Google Scholar 

  63. Boeyens, J.C.A.: The periodic electronegativity table. Z. Naturforsch. 63b, 199–209 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boeyens, J.C.A. (2013). Nonlinear Chemistry. In: The Chemistry of Matter Waves. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7578-7_7

Download citation

Publish with us

Policies and ethics