Skip to main content

Mining Natural Variation for Maize Improvement: Selection on Phenotypes and Genes

  • Chapter
  • First Online:
Book cover Genomics of Plant Genetic Resources

Abstract

Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte from their population genomic context, where they are linked with many undesired alleles that confer adaptation to tropical environments, ancient farming methods, or wild growth habit (in the case of teosinte). Long-term traditional breeding efforts have demonstrated the value of diverse germplasm to improve maize productivity, while also enhancing the genetic base of cultivated varieties. Genomics provides new opportunities to identify the genes affecting important agronomic traits and to estimate the wide range of allelic effects at such genes. New approaches to complex trait analysis, including joint multiple population analysis, genome-wide association analysis, and genomic selection, can leverage high throughput sequencing and genotyping technologies to improve our understanding of the genome-wide distribution of allele effects across the wide genetic variation in the primary gene pool of maize. Implementing this information for practical maize improvement remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abecasis G, Cardon L, Cookson W (2000) A general test of association for quantitative traits in nuclear families. Am J Human Genet 66:279–292

    CAS  Google Scholar 

  • Albrecht T, Wimmer V, Auinger H-J et al (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    PubMed  Google Scholar 

  • Andersen JR, Schrag T, Melchinger AE et al (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217

    CAS  PubMed  Google Scholar 

  • Anderson E (1944) The sources of effective germplasm in hybrid maize. Ann MO Bot Gard 31:355–361

    Google Scholar 

  • Anderson E, Cutler H (1942) Races of Zea mays: I. Their recognition and classification. Ann MO Bot Gard 29:69–88

    Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balint-Kurti PJ, Blanco M, Millard M et al (2006) Registration of 20 GEM maize breeding germplasm lines adapted to the southern USA. Crop Sci 46:996–998

    Google Scholar 

  • Balint-Kurti PJ, Zwonitzer JC, Wisser RJ et al (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176:645–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beavis WD (1998) QTL analyses: Power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci 48:1649–1664

    Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Google Scholar 

  • Blanc G, Charcosset A, Mangin B et al (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    CAS  PubMed  Google Scholar 

  • Brachi B, Faure N, Horton M et al (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940

    PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Google Scholar 

  • Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Google Scholar 

  • Bretting PK, Goodman MM, Stuber CW (1987) Karyological and isozyme variation in West Indian and allied American mainland races of maize. Am J Bot 74:1601–1613

    CAS  Google Scholar 

  • Bretting PK, Goodman MM, Stuber CW (1990) Isozymatic variation in Guatemalan races of maize. Am J Bot 77:211–225

    Google Scholar 

  • Brown W (1953) Sources of germ plasm for hybrid corn. 8th Hybrid Corn Industry—Research Conference, pp 11–16

    Google Scholar 

  • Brown WL (1975) A broader germplasm base in corn and Sorghum. 30th Annual Corn and Sorghum Research Conference, pp 81–89

    Google Scholar 

  • Buckler ES, Holland JB, McMullen MM et al (2009) The genetic architecture of maize flowering time. Science 325:714

    CAS  PubMed  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    CAS  PubMed  Google Scholar 

  • Cahill DJ, Schmidt DH (2004) Use of marker assisted selection in a product development breeding program. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd D (eds) New directions for a diverse planet: Proc 4th Int Crop Sci Congress, Brisbane, Australia

    Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D et al (2006) Maize adaptation to temperate climate: Relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo-Gonzalez F, Goodman MM (1989) Agronomic evaluation of Latin American maize accessions. Crop Sci 29:853–861

    Google Scholar 

  • Chardon F, Virlon B, Moreau L et al (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chia JM, Song C, Bradbury PJ et al (2012) Maize hapmap 2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    CAS  PubMed  Google Scholar 

  • Ching A, Caldwell KS, Jung M et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3

    Google Scholar 

  • Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    CAS  PubMed  Google Scholar 

  • Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597

    CAS  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ et al (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  PubMed  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ et al (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coles ND, Zila CT, Holland JB (2011) Allelic effect variation at key photoperiod response QTL in maize. Crop Sci 51:1036–1049

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T Roy Soc B 363:557–572

    CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) QTL approaches for improving crop performance under abiotic stress conditions: where do we stand? Plant Physiol 147:469–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein-E type-2 allele for late-onset Alzheimer disease. Nat Genet 7:180–184

    CAS  PubMed  Google Scholar 

  • Crawford GW, Saunders D, Smith DG (2006) Pre-contact maize from Ontario, Canada: Context, chronology, variation, and plant association. In: Staller J, Tykot R, Benz B (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Academic Press, Burlington, pp 549–559

    Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR et al (2006) Plant breeding: past, present, and future. In: Lamkey KR, Lee M (eds) Plant breeding: The Arnel R Hallauer International Symposium. Blackwell, Ames, pp 3–50

    Google Scholar 

  • Crosby A (1972) The Columbian exchange: biological and cultural consequences of 1492. Greenwood, Westport, CT

    Google Scholar 

  • Crossa J, de los Campos G, Perez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM et al (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308

    Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 5:997–1004

    Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Ann Rev Genet 38:37–59

    CAS  PubMed  Google Scholar 

  • Doebley J, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) tesosinte branched and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    CAS  PubMed  Google Scholar 

  • Doebley J, Wendel JD, Smith JSC et al (1988) The origin of Cornbelt maize: the isozyme evidence. Econ Bot 42:120–131

    Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isoenzymatic variation in Zea (gramineae). Syst Bot 9:204–218

    Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1985) Isozyme variation in the races of maize from Mexico. Am J Bot 72:629–639

    CAS  Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte-Glume-Architecture-1– a genetic locus controlling a key step in maize evolution. Science 262:233–235

    CAS  PubMed  Google Scholar 

  • Dubcovsky J (2004) Marker-assisted selection in public breeding programs: The wheat experience. Crop Sci 44:1895–1898

    Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M et al (2006) More on the introduction of temperate maize into Europe: Large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930–2000. In: Smith CW, Betran FJ, Runge ECA (eds) Corn: origin, history, technology, and production. Wiley, New York, pp 65–97

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S-154–163

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution, and types of gene action. Genetics 116:113–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L et al (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eichten SR, Foerster JM, de Leon N et al (2011) B73-Mo17 near-isogenic lines demonstrate dispersed structural variation in maize. Plant Physiol 156:1679–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellstrand NC, Garner LC, Hegde S et al (2007) Spontaneous hybridization between maize and teosinte. J Hered 98:183–187

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emerson RA (1924) Control of flowering in teosinte. Short-day treatment brings early flowers. J. Hered. 15: 41–48

    Google Scholar 

  • Falke KC, Melchinger AE, Flachenecker C et al (2006) Comparison of linkage maps from F2 and three times intermated generations in two populations of European flint maize (Zea mays L.). Theor Appl Genet 113:857–866

    CAS  PubMed  Google Scholar 

  • Falque M, Decousset L, Dervins D et al (2005) Linkage mapping of 1454 new maize candidate gene loci. Genetics 170:1957–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrum in plants. Annu Rev Plant Biol 54:357–374

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J et al (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Bodnar AL, Scott MP (2009a) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor Appl Genet 119:1129–1142

    Google Scholar 

  • Flint-Garcia SA, Guill KE, Sanchez-Villeda H et al (2009b) Maize amino acid pathways maintain high levels of genetic diversity. Maydica 54:375–386

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A et al (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–87

    CAS  PubMed  Google Scholar 

  • Frey TJ (2006) Fine mapping, cloning, verification, and fitness evaluation of a QTL, Rcg1, which confers resistance to Colletotrichum graminicola in maize. Ph.D. Thesis. Dep Plant and Soil Sciences. Univ. Delaware, Newark, DE

    Google Scholar 

  • Frey TJ, Weldekidan T, Colbert T et al (2011) Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. using near-isogenic maize hybrids. Crop Sci 51:1551–1563

    Google Scholar 

  • Fridman E, Carrari F, Liu Y-S et al (2004) Zooming in on a quantitative trait for the tomato yield using interspecific introgressions. Science 305:1786–1789

    CAS  PubMed  Google Scholar 

  • Fu Y, Wen TJ, Ronin YI et al (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174:1671–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geadelmann JL (1984) Using exotic germplasm to improve northern corn. 39th Annual Corn & Sorghum Research Conference, pp 98–110

    Google Scholar 

  • Gerrish EE (1983) Indications from a diallel study for interracial maize hybridization in the Corn Belt [Central USA]. Crop Sci 23:1082–1084

    Google Scholar 

  • Goodman MM (1983) Racial diversity in maize. In: Williams LE, Gordon DT, Nault LR (eds) International Maize Virus Disease Colloquium and Workshop. Ohio Agricultural Research and Development Center, Wooster, pp 29–40

    Google Scholar 

  • Goodman MM (1985) Exotic maize germplasm: Status, prospects, and remedies. Iowa State J Res 59:497–527

    Google Scholar 

  • Goodman MM (1992) Choosing and using tropical corn germplasm. 47th Annual Corn & Sorghum Research Conference. Am. Seed Trade Assoc., Washington, DC, pp 47–64

    Google Scholar 

  • Goodman MM (2004) Developing temperate inbreds using tropical maize germplasm: Rationale, results, conclusions. Maydica 49:209–219

    Google Scholar 

  • Goodman MM, Brown WL (1988) Races of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. Am Soc Agron, Madison, pp 33–79

    Google Scholar 

  • Goodman MM, Moreno J, Castillo F et al (2000) Using tropical maize germplasm for temperate breeding. Maydica 45:221–234

    Google Scholar 

  • Goodman MM, Stuber CW (1983) Races of maize. VI. Isozyme variation among races of maize in Bolivia [Zea mays, corn]. Maydica 28:169–187

    Google Scholar 

  • Gore MA, Chia JM, Elshire RJ et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    CAS  PubMed  Google Scholar 

  • Haley C (2011) A cornucopia of maize genes. Nat Genet 43:87–88

    CAS  PubMed  Google Scholar 

  • Hallauer AR (1978) Potential of exotic germplasm for maize improvement. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 229–247

    Google Scholar 

  • Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    CAS  PubMed  Google Scholar 

  • Hansey CN, Johnson JM, Sekhon RS et al (2011) Genetic diversity of a maize association population with restricted phenology. Crop Sci 51:704–715

    Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser MT, Harr B, Schlotterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: Molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18:1754–1763

    CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Hernández E (1985) Maize and man in the Greater Southwest. Econ Bot 39:416–430

    Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd D (eds) New directions for a diverse planet: Proc 4th Int Crop Sci Congress, Brisbane, Australia

    Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    CAS  PubMed  Google Scholar 

  • Holland JB, Goodman MM (1995) Combining ability of tropical maize accessions with U.S. germplasm. Crop Sci 35:767–773

    Google Scholar 

  • Holland JB, Nelson PT (2010) Dedication: Major M. Goodman: Maize Geneticist and Breeder. Plant Breed Rev. Wiley, pp 1–29

    Google Scholar 

  • Holley RN, Goodman MM (1988) Yield potential of tropical hybrid maize derivatives. Crop Sci 28:213–218

    Google Scholar 

  • Huang X, Wei X, Sang T et al (2010a) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  Google Scholar 

  • Huang Y-F, Madur D, Combes V et al (2010b) The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations. Genetics 186:395–404

    CAS  Google Scholar 

  • Hung HY, Shannon LM, Tian F et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the post-domestication spread of maize. Proc Natl Acad U S A 109:E1913–1921

    Google Scholar 

  • Hyten DL, Choi IY, Song QJ et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Nat Acad U S A 101:10667–10672

    CAS  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    CAS  PubMed  Google Scholar 

  • Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276

    Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    PubMed Central  PubMed  Google Scholar 

  • Kerem BS, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    CAS  PubMed  Google Scholar 

  • Kermicle JL, Allen JO (1990) Cross-incompatibility between maize and teosinte. Maydica 35:399–408

    Google Scholar 

  • Krakowsky MD, Holley R, Deutsch JA et al (2008) Maize allelic diversity project. 50th Maize Genetics Conference, Washington, DC

    Google Scholar 

  • Kuleshov NN (1933) World diversity of phenotypes of maize. J Amer Soc Agron 25:688–700

    Google Scholar 

  • Kump KL, Bradbury PJ, Buckler ES et al (2011) Genome-wide association study of quantitative resistance to Southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    CAS  PubMed  Google Scholar 

  • Kump KL, Holland JB, Jung MT et al (2010) Joint analysis of near-isogenic and recombinant inbred line populations yields precise positional estimates for quantitative trait loci. Plant Genome 3:142–153

    Google Scholar 

  • Lai JS, Li RQ, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1158

    CAS  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurie CC, Chasalow SD, Ledeaux JR et al (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    PubMed Central  PubMed  Google Scholar 

  • Lauter N, Moscou MJ, Habiger J, Moose SP (2008) Quantitative genetic dissection of shoot architecture traits in maize: towards a functional genomics approach. Plant Genome 1:99–110

    CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD et al (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48:453–461

    CAS  PubMed  Google Scholar 

  • Lippert C, Listgarten J, Liu Y et al (2011) FaST linear mixed models for genome-wide association studies. Nat Meth 8:833–835

    CAS  Google Scholar 

  • Lorenz AJ, Chao SM, Asoro FG et al (2011) Genomic selection in plant breeding: Knowledge and prospects. Adv Agron 110:77–123

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–309

    CAS  PubMed  Google Scholar 

  • Mangelsdorf PC (1974) Corn: its origin, evolution, and improvement. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Nat Acad U S A 99:6080–6084

    CAS  Google Scholar 

  • McMullen MD, Kresovich S, Sanchez VH (2009) Genetic properties of the maize Nested Association Mapping population. Science 325:737–740

    CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveal low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM et al (2004) Sequence composition and genome organization of maize. Proc Nat Acad U S A 101:14349–14354

    CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristis and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    CAS  Google Scholar 

  • Nelson OE (1994) The gametophyte factors of maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York, pp 496–503

    Google Scholar 

  • Nelson PT, Coles ND, Holland JB et al (2008) Molecular characterization of maize inbreds with expired U.S. plant variety protection. Crop Sci 48:1673–1685

    Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    CAS  PubMed  Google Scholar 

  • Pennisi E (2008) Plant sciences—Corn genomics pops wide open. Science 319:1333–1333

    CAS  PubMed  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I et al (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, México. Proc Natl Acad Sci U S A 106:5019–5024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go. An effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Nat Acad U S A 108:6893–6898

    CAS  Google Scholar 

  • Pollak LM (2003) The history and success of the public-private project on germplasm enhancement of maize (GEM). Adv Agron 78:45–87

    Google Scholar 

  • Pressoir G, Berthaud J (2004a) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94

    CAS  Google Scholar 

  • Pressoir G, Berthaud J (2004b) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101

    CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11:213–216

    CAS  PubMed  Google Scholar 

  • Pritchard JK (2001) Deconstructing maize population structure. Nat Genet 28:203–204

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    CAS  PubMed  Google Scholar 

  • Ramsay L, Comadran J, Druka A et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    CAS  PubMed  Google Scholar 

  • Rebai A, Blanchard P, Perret D, Vincourt P (1997) Mapping quantitative trait loci controlling silking date in a diallel cross among four lines of maize. Theor Appl Genet 95:451–459

    CAS  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    CAS  PubMed  Google Scholar 

  • Reif J, Warburton M, Xia X et al (2006) Grouping of accessions of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113:177–185

    CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y et al (2001) Structure of linkage disequilibrium and phenotypic assosiations in the maize genome. Proc Nat Acad U S A 98:11479–11484

    CAS  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    CAS  PubMed  Google Scholar 

  • Rincón SF, Castillo GF, Ruiz TNA (2010) Diversidad y distibución de los maíces nativos en Coahuila, México. SOMEFI, Chapingo, México

    Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    CAS  PubMed  Google Scholar 

  • Rodriguez VM, Butron A, Malvar RA et al (2008) Quantitative trait loci for cold tolerance in the maize IBM population. Int J Plant Sci 169:551–556

    Google Scholar 

  • Rogers JS (1950) The inheritance of photoperiodic response and tillering in maize-teosinte hybrids. Genetics 35:513–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ron Parra J, Sánchez-González JJ, Jiménez-Cordero AA et al (2006) Maíces nativos del Occidente de México I. Colectas 2004. Scientia-CUCBA 8:1–139

    Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Nat Acad U S A 103:18656–18661

    CAS  Google Scholar 

  • Ruiz CJA, Puga ND, Sánchez G JJ et al (2008) Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Sci 48:1502–1512

    Google Scholar 

  • Salhuana W, Pollak LM, Ferrer M et al (1998) Breeding potential of maize accessions from Argentina, Chile, USA, and Uruguay. Crop Sci 38:866–872

    Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Nat Acad U S A 104:11376–11381

    CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    CAS  PubMed  Google Scholar 

  • Sanchez G JJ, Goodman MM (1992a) Relationships among Mexican and some North American and South American races of maize. Maydica 37:41–51

    Google Scholar 

  • Sanchez G JJ, Goodman MM (1992b) Relationships among the Mexican races of maize. Econ Bot 46:72–85

    Google Scholar 

  • Sanchez G JJ, Goodman MM, Stuber CW (2000a) Isozymatic and morphological diversity in the races of maize of Mexico. Econ Bot 54:43–59

    Google Scholar 

  • Sanchez G JJ, Stuber CW, Goodman MM (2000b) Isozymatic diversity in the races of maize of the Americas. Maydica 45:185–203

    Google Scholar 

  • Sanchez G JJ, Goodman MM, Bird RMK, Stuber CW (2006) Isozyme and morphological variation in maize of five Andean countries. Maydica 51:25–42

    Google Scholar 

  • Sanchez G JJ, Goodman MM, Stuber CW (2007) Racial diversity of maize in Brazil and adjacent areas. Maydica 52:13–30

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: Complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Schön CC, Utz HF, Groh S et al (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    PubMed Central  PubMed  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L et al (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    CAS  PubMed  Google Scholar 

  • Smith BD (1989) Origins of agriculture in eastern North America. Science 246:1566–1571

    CAS  PubMed  Google Scholar 

  • Smith JSC, Smith OS, Wright S et al (1992) Diversity of U.S. hybrid maize germplasm as revealed by restriction fragment length polymorphisms. Crop Sci 32:598–604

    CAS  Google Scholar 

  • Stuber CW, Edwards MD (1986) Genotypic selection for improvement of quantitative traits in corn using molecular marker loci. Proc 41st Ann Corn & Sorghum Res Conf. American Seed Trade Association, Chicago, IL, pp 70–83

    Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:673–681

    PubMed Central  PubMed  Google Scholar 

  • Sturtevant E (1899) Varieties of corn. US Dep Agr Off Exp Sta Bul 57

    Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szalma S, Buckler E, Snook M, McMullen M (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    CAS  PubMed  Google Scholar 

  • Tallury SP, Goodman MM (1999) Experimental evaluation of the potential of tropical germplasm for temperate maize improvement. Theor Appl Genet 98:54–61

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    CAS  PubMed  Google Scholar 

  • Tarter JA, Goodman MM, Holland JB (2003) Testcross performance of semiexotic inbred lines derived from Latin American maize accessions. Crop Sci 43:2272–2278

    Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Nat Acad U S A 98:9161–9166

    CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Anderson LK et al (2002) Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics 162:1401–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225

    CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Troyer AF (1999) Background of U.S. hybrid corn. Crop Sci 39:601–626

    Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Frontiers in. Plant Physiol 3(347):1–25

    Google Scholar 

  • Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize production. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 501–541

    Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    CAS  Google Scholar 

  • Uhr DV, Goodman MM (1995a) Temperate maize inbreds derived from tropical germplasm: I. Testcross yield trials. Crop Sci 35:779–784

    Google Scholar 

  • Uhr DV, Goodman MM (1995b) Temperate maize inbreds derived from tropical germplasm: II. Inbred yield trials. Crop Sci 35:785–790

    Google Scholar 

  • Van Heerwaarden J, Doebley J, Briggs WH et al (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venuprasad R, Bool M, Quiatchon L, Atlin G (2011) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 1–10

    Google Scholar 

  • Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149

    CAS  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y et al (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang LZ, Xu CZ, Qu ML, Zhang JR (2008a) Kernel amino acid composition and protein content of introgression lines from Zea mays ssp mexicana into cultivated maize. J Cereal Sci 48:387–393

    CAS  Google Scholar 

  • Wang LZ, Yang AF, He CM et al (2008b) Creation of new maize germplasm using alien introgression from Zea mays ssp mexicana. Euphytica 164:789–801

    Google Scholar 

  • Wang R-L, Stec A, Hey J et al (1999) The limits of selection during maize domestication. Nature 398:236–239

    CAS  PubMed  Google Scholar 

  • Weatherwax P (1954) Indian corn in old America. McMillan, New York

    Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI et al (2002) Genetic diversity and selection in the maize starch pathway. Proc Nat Acad U S A 99:12959–12962

    CAS  Google Scholar 

  • Wilson LM, Whitt SR, Ibañez AM et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM et al (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436

    Google Scholar 

  • Winkler CR, Jensen NM, Cooper M et al (2003) On the determination of recombination rates in intermated recombinant inbred populations. Genetics 164:741–745

    PubMed Central  PubMed  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG et al (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    CAS  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML et al (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451

    PubMed Central  PubMed  Google Scholar 

  • Yan JB, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    CAS  PubMed  Google Scholar 

  • Yang XH, Yan JB, Shah T et al (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    PubMed  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Molec Breed 5:505–510

    Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen M, Buckler ES (2008) Genetic design and statistical power of Nested Association Mapping in maize. Genetics 178:539–551

    PubMed Central  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    CAS  PubMed  Google Scholar 

  • Zhang M, Montooth KL, Wells MT et al (2005) Mapping multiple quantitative trait loci by Bayesian classification. Genetics 169:2305–2318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang NY, Gibon Y, Gur A et al (2010a) Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population. Plant Physiol 154:1753–1765

    CAS  Google Scholar 

  • Zhang ZW, Ersoz E, Lai CQ et al (2010b) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–362

    CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research by SS, SF-G, and JBH is supported by US National Science Foundation (DBI-0321467 and IOS-0820619). We thank Drs. Jesús Sánchez-Gonzalez (University of Guadalajara) and Major M. Goodman (North Carolina State University) for the ears and photographs used in Fig. 25.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sood, S., Flint-Garcia, S., Willcox, M., Holland, J. (2014). Mining Natural Variation for Maize Improvement: Selection on Phenotypes and Genes. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_25

Download citation

Publish with us

Policies and ethics