Skip to main content

The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers

  • Chapter
  • First Online:
Bone Metastases

Abstract

The study of the mechanisms underlying the spread of cancer to sites of bone metastasis have benefitted greatly from recent advances in the high-throughput analysis of biomolecules using modern “omic” techniques. Omic-based profiling can provide both qualitative and quantitative data about the expression of key biomolecules within body fluids, tissues and sub-cellular compartments within both healthy and disease states. Individual omic platforms which analyse DNA-sequences (genomics), mRNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) have provided key information relating to the biological alterations which occur as a result of cancer spread to bone. Application of omic-techniques to both patient derived samples and animal models of bone metastasis have identified molecules which could serve as diagnostic and prognostic biomarkers of disease development. Biomarkers identified by omic techniques also offer the potential to assist in making cancer treatment decisions. Biomarkers identified by omic techniques require extensive validation in large patient cohorts and across multiple institutions before their adoption within clinical practice. The large number of potential biomarkers which have already been identified within pre-clinical omic-based studies in the field of bone metastatic cancer provides considerable promise for the future of both cancer detection and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APRIL:

A proliferation inducing ligand

BAFF:

B-cell activating factor

BCa:

Breast cancer

cDNA:

Complementary DNA

miRNA:

Micro-RNA

MM:

Multiple myeloma

mRNA:

Messenger RNA

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PCa:

Prostate cancer

TF:

Transcription factor

References

  1. Mundy G (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    PubMed  CAS  Google Scholar 

  2. Weilbaecher K, Guise T, Mccauley L (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    PubMed  CAS  Google Scholar 

  3. Ablin RJ, Soanes WA, Gonder MJ (1969) Immunologic studies of the prostate. A review. Int Surg 52:8–21

    PubMed  CAS  Google Scholar 

  4. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466

    Google Scholar 

  5. Fullwood MJ, Wei CL, Liu ET et al (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    PubMed  CAS  Google Scholar 

  6. Baslan T, Kendall J, Rodgers L et al (2012) Genome-wide copy number analysis of single cells. Nat Protoc 7:1024–1041

    PubMed  CAS  Google Scholar 

  7. Ueno T, Emi M, Sato H et al (2012) Genome-wide copy number analysis in primary breast cancer. Expert Opin Ther Targets 16(Suppl 1):S31–S35

    PubMed  CAS  Google Scholar 

  8. Slodkowska EA, Ross JS (2009) MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn 9:417–422

    PubMed  Google Scholar 

  9. Malo TL, Lipkus I, Wilson T et al (2012) Treatment choices based on oncotype Dx in the breast oncology care setting. J Cancer Epidemiol 2012:941495

    PubMed  Google Scholar 

  10. Mardis ER (2012) Genome sequencing and cancer. Curr Opin Genet Dev 22:245–250

    PubMed  CAS  Google Scholar 

  11. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    PubMed  CAS  Google Scholar 

  12. Ding L, Ley TJ, Larson DE et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    PubMed  CAS  Google Scholar 

  13. Jones SJ, Laskin J, Li YY et al (2010) Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol 11:R82

    PubMed  Google Scholar 

  14. Cho WC (2010) MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 42:1273–1281

    PubMed  CAS  Google Scholar 

  15. Cowell JK, Hawthorn L (2007) The application of microarray technology to the analysis of the cancer genome. Curr Mol Med 7:103–120

    PubMed  CAS  Google Scholar 

  16. Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    PubMed  CAS  Google Scholar 

  17. Ajit SK (2012) Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel) 12:3359–3369

    CAS  Google Scholar 

  18. Hornberger J, Alvarado MD, Rebecca C et al (2012) Clinical validity/utility, change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-stage breast cancer: a systematic review. J Natl Cancer Inst 104:1068–1079

    PubMed  Google Scholar 

  19. Bacher U, Kohlmann A, Haferlach T (2010) Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies. Cancer Treat Rev 36:637–646

    PubMed  CAS  Google Scholar 

  20. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    PubMed  CAS  Google Scholar 

  21. Liang S, Xu Z, Xu X et al (2012) Quantitative proteomics for cancer biomarker discovery. Comb Chem High Throughput Screen 15:221–231

    PubMed  CAS  Google Scholar 

  22. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    PubMed  CAS  Google Scholar 

  23. Smith MP, Wood SL, Zougman A et al (2011) A systematic analysis of the effects of increasing degrees of serum immunodepletion in terms of depth of coverage and other key aspects in top-down and bottom-up proteomic analyses. Proteomics 11:2222–2235

    PubMed  CAS  Google Scholar 

  24. Becker S, Kortz L, Helmschrodt C et al (2012) LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:68–75

    PubMed  Google Scholar 

  25. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    PubMed  CAS  Google Scholar 

  26. Malet-Martino M, Holzgrabe U (2011) NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal 55:1–15

    PubMed  CAS  Google Scholar 

  27. Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23:352–361

    PubMed  CAS  Google Scholar 

  28. Martinez-Outschoorn UE, Pavlides S, Howell A et al (2011) Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045–1051

    PubMed  CAS  Google Scholar 

  29. Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5):565–577

    PubMed  CAS  Google Scholar 

  30. Garg U, Dasouki M (2006) Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem 39:315–332

    PubMed  CAS  Google Scholar 

  31. Van QN, Veenstra TD (2009) How close is the bench to the bedside? Metabolic profiling in cancer research. Genome Med 1:5

    PubMed  Google Scholar 

  32. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11:726–734

    PubMed  CAS  Google Scholar 

  33. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    PubMed  CAS  Google Scholar 

  34. Valouev A, Johnson SM, Boyd SD et al (2011) Determinants of nucleosome organization in primary human cells. Nature 474:516–520

    PubMed  CAS  Google Scholar 

  35. Rouhi A, Mager DL, Humphries RK et al (2008) MiRNAs, epigenetics, and cancer. Mamm Genome 19:517–525

    PubMed  CAS  Google Scholar 

  36. Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105:12885–12890

    PubMed  CAS  Google Scholar 

  37. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    PubMed  CAS  Google Scholar 

  38. Wang X, Li C, Ju S et al (2011) Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation. Leuk Lymphoma 52:1991–1998

    PubMed  CAS  Google Scholar 

  39. Xiong Q, Zhong Q, Zhang J et al (2012) Identification of novel miR-21 target proteins in multiple myeloma cells by quantitative proteomics. J Proteome Res 11:2078–2090

    PubMed  CAS  Google Scholar 

  40. Catlett-Falcone R, Landowski TH, Oshiro MM et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115

    PubMed  CAS  Google Scholar 

  41. Wang LH, Yang XY, Mihalic K et al (2001) Activation of estrogen receptor blocks interleukin-6-inducible cell growth of human multiple myeloma involving molecular cross-talk between estrogen receptor and STAT3 mediated by co-regulator PIAS3. J Biol Chem 276:31839–31844

    PubMed  CAS  Google Scholar 

  42. Ge F, Zhang L, Tao SC et al (2011) Quantitative proteomic analysis of tumor reversion in multiple myeloma cells. J Proteome Res 10:845–855

    PubMed  CAS  Google Scholar 

  43. Moreaux J, Legouffe E, Jourdan E et al (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103:3148–3157

    PubMed  CAS  Google Scholar 

  44. Novak AJ, Darce JR, Arendt BK et al (2004) Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103:689–694

    PubMed  CAS  Google Scholar 

  45. Moreaux J, Cremer FW, Reme T et al (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030

    PubMed  CAS  Google Scholar 

  46. Paterson JL, Li Z, Wen XY et al (2004) Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 124:595–603

    PubMed  CAS  Google Scholar 

  47. Katoh M, Nakagama H (2013) FGF receptors: cancer biology and therapeutics. Med Res Rev 1–21

    Google Scholar 

  48. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    PubMed  CAS  Google Scholar 

  49. Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1(2005):0008

    PubMed  Google Scholar 

  50. St-Germain JR, Taylor P, Tong J et al (2009) Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition. Proc Natl Acad Sci U S A 106:20127–20132

    PubMed  CAS  Google Scholar 

  51. Kurhanewicz J, Dahiya R, Macdonald JM et al (1993) Citrate alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med 29:149–157

    PubMed  CAS  Google Scholar 

  52. Cornel EB, Smits GA, Oosterhof GO et al (1993) Characterization of human prostate cancer, benign prostatic hyperplasia and normal prostate by in vitro 1H and 31P magnetic resonance spectroscopy. J Urol 150:2019–2024

    PubMed  CAS  Google Scholar 

  53. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    PubMed  CAS  Google Scholar 

  54. Thysell E, Surowiec I, Hornberg E et al (2010) Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One 5:e14175

    PubMed  CAS  Google Scholar 

  55. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    PubMed  CAS  Google Scholar 

  56. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    PubMed  CAS  Google Scholar 

  57. Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    PubMed  CAS  Google Scholar 

  58. Barnes GL, Javed A, Waller SM et al (2003) Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63:2631–2637

    PubMed  CAS  Google Scholar 

  59. Pratap J, Javed A, Languino LR et al (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25:8581–8591

    PubMed  CAS  Google Scholar 

  60. Lin DL, Tarnowski CP, Zhang J et al (2001) Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 47:212–221

    PubMed  CAS  Google Scholar 

  61. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8:61–70

    PubMed  CAS  Google Scholar 

  62. Lim M, Zhong C, Yang S et al (2010) Runx2 regulates survivin expression in prostate cancer cells. Lab Invest 90:222–233

    PubMed  CAS  Google Scholar 

  63. Morrissey C, Brown LG, Pitts TE et al (2010) Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Neoplasia 12:192–205

    PubMed  CAS  Google Scholar 

  64. Yang S, Lim M, Pham LK et al (2006) Bone morphogenetic protein 7 protects prostate cancer cells from stress-induced apoptosis via both Smad and c-Jun NH2-terminal kinase pathways. Cancer Res 66:4285–4290

    PubMed  CAS  Google Scholar 

  65. Akech J, Wixted JJ, Bedard K et al (2010) Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29:811–821

    PubMed  CAS  Google Scholar 

  66. Baniwal SK, Khalid O, Gabet Y et al (2010) Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 9:258

    PubMed  Google Scholar 

  67. Pratap J, Lian JB, Stein GS (2011) Metastatic bone disease: role of transcription factors and future targets. Bone 48:30–36

    PubMed  CAS  Google Scholar 

  68. Gupta A, Cao W, Chellaiah MA (2012) Integrin alphavbeta3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-kappaB ligand signaling axis. Mol Cancer 11:66

    PubMed  CAS  Google Scholar 

  69. Cao JJ, Singleton PA, Majumdar S et al (2005) Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. J Bone Miner Res 20:30–40

    PubMed  CAS  Google Scholar 

  70. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18

    PubMed  Google Scholar 

  71. Baniwal SK, Khalid O, Sir D et al (2009) Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol 23:1203–1214

    PubMed  CAS  Google Scholar 

  72. Khalid O, Baniwal SK, Purcell DJ et al (2008) Modulation of Runx2 activity by estrogen receptor-alpha: implications for osteoporosis and breast cancer. Endocrinology 149:5984–5995

    PubMed  CAS  Google Scholar 

  73. Dey P, Jonsson P, Hartman J et al (2012) Estrogen receptors beta1 and beta2 have opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3. Mol Endocrinol 26(12):1991–2003

    Google Scholar 

  74. Hricak H, Choyke PL, Eberhardt SC et al (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53

    PubMed  Google Scholar 

  75. Newling DW, Denis L, Vermeylen K (1993) Orchiectomy versus goserelin and flutamide in the treatment of newly diagnosed metastatic prostate cancer. Analysis of the criteria of evaluation used in the European Organization for Research and Treatment of Cancer–Genitourinary Group Study 3085. Cancer 72:3793–3798

    PubMed  CAS  Google Scholar 

  76. Rehman I, Evans CA, Glen A et al (2012) iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One 7:e30885

    PubMed  CAS  Google Scholar 

  77. Le L, Chi K, Tyldesley S et al (2005) Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem 51:695–707

    PubMed  CAS  Google Scholar 

  78. Morales M, Planet E, Arnal-Estape A et al (2011) Tumor-stroma interactions a trademark for metastasis. Breast 20(Suppl 3):S50–S55

    PubMed  Google Scholar 

  79. Tarragona M, Pavlovic M, Arnal-Estape A et al (2012) Identification of NOG as a specific breast cancer bone metastasis-supporting gene. J Biol Chem 287:21346–21355

    PubMed  CAS  Google Scholar 

  80. Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  81. Roberts AB, Anzano MA, Wakefield LM et al (1985) Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82:119–123

    PubMed  CAS  Google Scholar 

  82. Witz IP (2008) Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res 68:9–13

    PubMed  CAS  Google Scholar 

  83. Walsh DW, Godson C, Brazil DP et al (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 20:244–256

    PubMed  CAS  Google Scholar 

  84. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28

    PubMed  CAS  Google Scholar 

  85. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27:S2–S8, Phila Pa 1976

    PubMed  Google Scholar 

  86. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    PubMed  CAS  Google Scholar 

  87. Mcmahon JA, Takada S, Zimmerman LB et al (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452

    PubMed  CAS  Google Scholar 

  88. Brunet LJ, Mcmahon JA, Mcmahon AP et al (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457

    PubMed  CAS  Google Scholar 

  89. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    PubMed  CAS  Google Scholar 

  90. Klein A, Olendrowitz C, Schmutzler R et al (2009) Identification of brain- and bone-specific breast cancer metastasis genes. Cancer Lett 276:212–220

    PubMed  CAS  Google Scholar 

  91. Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905

    PubMed  CAS  Google Scholar 

  92. Bellahcene A, Bachelier R, Detry C et al (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148

    PubMed  CAS  Google Scholar 

  93. Lu X, Mu E, Wei Y et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714

    PubMed  CAS  Google Scholar 

  94. Kischel P, Guillonneau F, Dumont B et al (2008) Cell membrane proteomic analysis identifies proteins differentially expressed in osteotropic human breast cancer cells. Neoplasia 10:1014–1020

    PubMed  CAS  Google Scholar 

  95. Dumont B, Castronovo V, Peulen O et al (2012) Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis. J Proteome Res 11:2247–2260

    PubMed  CAS  Google Scholar 

  96. Navin N, Krasnitz A, Rodgers L et al (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20:68–80

    PubMed  CAS  Google Scholar 

  97. Stephens PJ, Mcbride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010

    PubMed  CAS  Google Scholar 

  98. Martin SA, Mccabe N, Mullarkey M et al (2010) DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell 17:235–248

    PubMed  CAS  Google Scholar 

  99. Lilja H (2008) Testing new PSA subforms to enhance the accuracy of predicting cancer risk and disease outcome in prostate cancer. Clin Chem 54:1248–1249

    PubMed  CAS  Google Scholar 

  100. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6:140–146

    PubMed  CAS  Google Scholar 

  101. Olmos D, Brewer D, Clark J et al (2012) Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol 13:1114–1124

    PubMed  CAS  Google Scholar 

  102. Ross RW, Galsky MD, Scher HI et al (2012) A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol 13:1105–1113

    PubMed  CAS  Google Scholar 

  103. Rajski M, Vogel B, Baty F et al (2012) Global gene expression analysis of the interaction between cancer cells and osteoblasts to predict bone metastasis in breast cancer. PLoS One 7:e29743

    PubMed  CAS  Google Scholar 

  104. Percy AJ, Chambers AG, Yang J et al (2012) Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Anal Bioanal Chem 404:1089–1101

    PubMed  CAS  Google Scholar 

  105. Fuhler GM, Diks SH, Peppelenbosch MP et al (2011) Widespread deregulation of phosphorylation-based signaling pathways in multiple myeloma cells: opportunities for therapeutic intervention. Mol Med 17:790–798

    PubMed  CAS  Google Scholar 

  106. Jin L, Zhang Y, Li H et al (2012) Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res 22:1356–1373

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Wood M.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wood, S.L., Brown, J.E. (2014). The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers. In: Vassiliou, V., Chow, E., Kardamakis, D. (eds) Bone Metastases. Cancer Metastasis - Biology and Treatment, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7569-5_7

Download citation

Publish with us

Policies and ethics