Skip to main content

Air Quality, Health Effects and Management of Ammonia Emissions from Fertilizers

  • Chapter
  • First Online:
Air Quality Management

Abstract

Emissions of ammonia have been demonstrated to play a role in the formation of airborne fine particulate matter, by reacting with gaseous emissions of sulphur dioxide and oxides of nitrogen. Agriculture emits ammonia to the atmosphere, and atmospheric processes can transport the particulate form of ammonium long distances. Fertilizer use-related emissions have been estimated to comprise 10–35 % of all agricultural emissions. The potential contributions of ammonia emissions from agriculture to the formation of particulate matter, and to its harmfulness, are questions being addressed by current research. Recent expert reviews have concluded that exposure to airborne particulate matter air pollution contributes to human mortality. Epidemiological evidence suggests that exposures as short as a few hours to a few weeks are associated with small but significant increases in cardiovascular disease-related mortality, and that the size of the effect increases with longer-term exposures. Plausible biological mechanisms for inhaled particulate matter triggering physiological responses in the cardiovascular system have been described, though much remains uncertain. The specific constituents of particulate matter causing the responses have not been identified with certainty, and thus a direct link between emissions from fertilizer use and human health risks has not been demonstrated. Ammonia emissions from fertilizer can be controlled through the choice of source, rate, timing and placement. Key practices already in use to minimize emissions include placement in soil of any fertilizer with potential to release ammonia, and, for urea specifically, use of urease inhibitors, coatings or formulations to slow release. Even though the reduction in risk to human health is not currently well-known enough to be predictable, the evidence is sufficient to warrant recommendations for continued increase in the use of practices designed to reduce ammonia emissions, and for increased research efforts to develop such practices further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anon (2010) The 2008 Canadian atmospheric assessment of agricultural ammonia. Environment Canada, Gatineau. ISBN 978-1-100-12420-9

    Google Scholar 

  • Asman WAH (1990) A detailed ammonia emission inventory for Denmark. DMU A133. National Environmental Research Institute, Roskilde

    Google Scholar 

  • Asman WAH, Janssen AJ (1987) A long-range transport model for ammonia and ammonium for Europe. Atmos Environ 21(10):2099–2119

    Article  CAS  Google Scholar 

  • Asman WAH, van Jaarsveld HA (1992) A variable-resolution transport model applied for NH3 in Europe. Atmos Environ, Part A. General topics 26(3):445–464

    Google Scholar 

  • Asman WAH, Sutton MA, Schjoerring JK (1998) Ammonia: emission, atmospheric transport and deposition. New Phytol 139:27–48

    Article  CAS  Google Scholar 

  • Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Health Perspect 115:989–995

    Article  CAS  Google Scholar 

  • Bouwman AF, van Der Hoek KW (1997) Scenarios of animal waste production and fertilizer use and associates ammonia emissions for the developing countries. Atmos Environ 31:4095–4102

    Article  CAS  Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van der Hoek KW, Olivier JGJ (1997) A global high resolution emission inventory for ammonia. Global Biogeochem Cycles 11:561–587

    Article  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochemical Cycles 16:1024–1037

    Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  • Burnett RT, Dales RE, Krewski D, Vincent R, Dann T, Brook JR (1995) Associations between ambient particulate sulphate and admissions to Ontario hospitals for cardiac and respiratory diseases. Am J Epidemiology 142:15–22

    CAS  Google Scholar 

  • Chameides WL (1987) Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces. J Geophysical Research-Atmospheres 92(D10):11895–11908

    Article  CAS  Google Scholar 

  • Chinkin LR, Ryan PA, Coe DL (2003) Recommended improvements to the CMU ammonia emission inventory model for use by LADCO. Prepared Lake Michigan Air Directors Consortium. Revised final report 902350-2249-FR2 http://www.vistas-sesarm.org/tech/NH3_Final_Report4.pdf. Accessed 3 March 2011

  • Dabek-Zlotorzynska E, Dann TF, Martinelango PK, Celo V, Mathieu D, Ding L, Austin C, Brook JR (2011) Canadian National Air Pollution Surveillance (NAPS) PM2.5 Speciation program: methodology and PM2.5 chemical composition for the years 2003 to 2008. Atmos Environ 45:673–686

    Article  CAS  Google Scholar 

  • Dämmgen U, Erisman JW (2005) Emission, transmission, deposition and environmental effect of ammonia from agricultural sources. In Kuczynski T, Dämmgen U, Webb J, Myczko A. Emissions from European Agriculture. Wageningen Academic Publishers, The Netherlands, pp 97–112

    Google Scholar 

  • Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Dominici F, McDermott A, Daniels M, Zeger SL, Samet JM (2003) Mortality among residents of 90 cities, in revised analyses of time-series studies of air pollution and health. Special report. Health effects institute, Boston, pp 9–24. http://www.healtheffects.org/Pubs/TimeSeries.pdf. Accessed 12 May 2004

  • Eilers W, Mackay R, Palmer L, Lefebvre A (eds) (2009) Environmental sustainability of Canadian agriculture: agri-environmental indicator report series—report #3. Agriculture and Agri-Food Canada, Ottawa (Ont)

    Google Scholar 

  • Erisman JW, Vermetten AWM, Asman WAH, Waijers-Ijpelaan A, Slanina J (1988) Vertical distribution of gases and aerosols: the behaviour of ammonia and related components in the lower atmosphere. Atmos Environ (1967) 22(6):1153–1160

    Google Scholar 

  • Erisman JW, Bleeker A, Hensen A, Vermeulen A (2008) Agricultural air quality in Europe and future perspectives. Atmos Environ 42:3209–3217

    Article  CAS  Google Scholar 

  • European Environmental Agency (2007) Air pollution in Europe 1990–2004. EEA Report No 2/2007. Copenhagen, DK. http://www.eea.europa.eu/publications/eea_report_2007_2. Accessed 10 Feb 2011

  • Fagerli H, Aas W (2008) Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980–2003. Environ Pollut 154(3):448–461

    Article  CAS  Google Scholar 

  • Francis DD, Schepers JS, Vigil MF (1993) Post anthesis nitrogen loss from corn. Agronomy J 85:659–663

    Article  CAS  Google Scholar 

  • Franklin M, Schwartz J (2008) The impact of secondary particles on the association between ambient ozone and mortality. Environ Health Perspect 116:453–458

    CAS  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19:680–689

    Article  Google Scholar 

  • Galloway JN et al (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Goebes MD, Strader R, Davidson C (2003) An emission inventory for fertilizer application in the United States. Atmos Environ 37:2539–2550

    Article  CAS  Google Scholar 

  • Grahame TJ, Schlesinger RB (2005) Evaluating the health risk from secondary sulphates in Eastern North American regional ambient air particulate matter. Inhal Toxicol 17:5–27

    Article  Google Scholar 

  • Grahame T, Hidy GM (2007) Pinnacles and pitfalls for source apportionment of potential health effects from airborne particle exposure. Inhal Toxicol 19:727–744

    Article  CAS  Google Scholar 

  • Green L, Armstrong S (2003) Particulate matter in ambient air and mortality: toxicologic perspectives. Regul Toxicol Pharmacol 38:326–335

    Article  CAS  Google Scholar 

  • Hao X, Chang C, Janzen HH, Clayton G, Hill BR (2006) Sorption of atmospheric ammonia by soil and perennial grass downwind from two large cattle feedlots. J Environ Qual 35:1960–1965

    Article  CAS  Google Scholar 

  • Harrison R, Webb J (2001) A review of the effect of N fertilizer type on gaseous emissions. Adv Agron 73:65–108

    Article  CAS  Google Scholar 

  • HEI (2004) Health effects of outdoor air pollution in developing countries of Asia: a literature review. Special Report 15. Health Effects Institute, Boston

    Google Scholar 

  • Hertel O et al (2006) Modelling nitrogen deposition on a local scale: a review of the current state of the art. Environ Chem 3(5):317–337

    Article  CAS  Google Scholar 

  • Heuss JM, Wolff GT (2006) Comments on health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:1369–1371

    Google Scholar 

  • Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, Blaisdell CJ (2008) Elevated ambient air zinc increases pediatric asthma morbidity. Health Perspect 116:826–831

    Article  CAS  Google Scholar 

  • Hutchings NJ, Sommer SG, Andersen JM, Asman WAH (2001) A detailed ammonia emission inventory for Denmark. Atmos Environ 35:1959–1968

    Article  CAS  Google Scholar 

  • IFA (1999) Nitrogen-Phosphate-Potash, IFADATA statistics from 1973/74– 1973 to 1997/98– 1997 including separately world fertilizer consumption statistics, International Fertilizer Industry Association, Paris, 1999

    Google Scholar 

  • IFA (2011) IFADATA Statistics. International Fertilizer Industry Association, Paris. http://www.fertilizer.org/ifa/ifadata/search. Accessed 31 Jan 2011

  • Janzen HH, McGinn SM (1991) Volatile loss of nitrogen during decomposition of legume green manure. Soil Biol Biochem 23:291–297

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB, Thurston G, Shi Y, Finkelstein N, Calle EE, Thun MJ (2006) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 17:727–736

    Google Scholar 

  • Jones C, Engel R (2010) Ammonia volatilization from surface-applied urea and NBPT coated urea under cold temperatures. ASA, CSSA, SSSA Annual Meeting, Oct 31-Nov 3. Long Beach. Abstract 271–9

    Google Scholar 

  • Junge CE, Ryan TG (1958) Study of the SO2 oxidation in solution and its role in atmospheric chemistry. Q J R Meteorol Soc 84:46–55

    Article  CAS  Google Scholar 

  • Katsouyanni K et al (2003) Sensitivity analysis of various models of short-term effects of ambient particles on total mortality in 29 cities in APHEA2, in revised analyses of time-series studies of air pollution and health. Special report. Health Effects Institute, Boston, pp 157–164. http://www.healtheffects.org/news.htm. Accessed 16 May 2003

  • Klimont Z (2005) Projections of agricultural emissions of ammonia in the European Union. In: Kuczynski T, Dammgen U, Webb J, Myczko A (eds) Emissions from European Agriculture. Wageningen Academic Publishers Wageningen, The Netherlands, pp 231–250

    Google Scholar 

  • Koop G, McKitrick R, Tole L (2010) Air pollution, economic activity and respiratory illness: evidence from Canadian cities, 1974–1994. Environmental Modelling & Software 25:873–885

    Article  Google Scholar 

  • Kreileman E, Van Woerden J, Bakkes, J(1998) RIVM Environmental Research, CIM Rep. M025/98. National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  • Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Jerrett M, Abrahamowicz M, White WH (2000) Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of particulate air pollution and mortality. Special report. Health Effects Institute, Cambridge

    Google Scholar 

  • Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Abrahamowicz M, White WH (2004) Validation of the Harvard Six Cities Study of particulate air pollution and mortality. N Engl J Med 350(2):198–199

    Article  CAS  Google Scholar 

  • Kulmala M (2003) How particles nucleate and grow. Science 302(5647):1000–1001

    Article  CAS  Google Scholar 

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities Study. Am J Respir Crit Care Med 73:667–672

    Article  Google Scholar 

  • Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC (2006) Cardiovascular effects of nickel in ambient air. Environ Health Persp 114(11):1662

    Google Scholar 

  • Lunden MM et al (2003) The transformation of outdoor ammonium nitrate aerosols in the indoor environment. Atmos Environ 37:5633–5644

    Article  CAS  Google Scholar 

  • Mauderly J (2006) Comments on health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:1375–1378

    Google Scholar 

  • Mauderly JM, Samet JL (2009) Is there evidence for synergy among air pollutants in causing health effects? Environ Health Perspect 117:1–6

    Article  CAS  Google Scholar 

  • McConnell JC (1973) Atmospheric Ammonia. J Geophys Res 78(33):7812–7821

    Article  CAS  Google Scholar 

  • McKay HAC (1971) The atmospheric oxidation of sulphur dioxide in water droplets in presence of ammonia. Atmos Environ 5:7–14

    Article  CAS  Google Scholar 

  • Meng QY et al (2007) How does infiltration behavior modify the composition of ambient PM2.5 in indoor spaces? Analysis of RIOPA data. Envir Sci Technol 41:7315–7321

    Article  CAS  Google Scholar 

  • Meng ZY, Lin WL, Jiang XM, Yan P, Wang Y, Zhang YM, Jia XF, Yu XL (2011). Characteristics of atmospheric ammonia over Beijing, China. Atmos Chem Phys 11:6139–6151. doi:10.5194/acp-11-6139-2011

    Google Scholar 

  • Misselbrook TH, Sutton MA, Scholefield D (2004) A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20:365–372

    Article  Google Scholar 

  • Nel A (2005) Air pollution-related illness: effects of particles. Science 308:804–806

    Article  CAS  Google Scholar 

  • OECD (2008) Environmental performance of agriculture in OECD countries since 1990. ISBN 978-92-64-04092-2. Organization for economic cooperation and development, Paris

    Google Scholar 

  • OME (2011) Air quality in Ontario 2009 report. http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/stdprod_081228.pdf. Accessed 29 Aug 2011

  • Ostro B et al (2010) Long-term exposure to constituents of fine particulate air pollution and mortality: results from the California teachers study. Environ Health Perspect 118:363–369

    Article  CAS  Google Scholar 

  • Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 117:957–963

    Article  CAS  Google Scholar 

  • Pio CA, Harrison RM (1987) The equilibrium of ammonium chloride aerosol with gaseous hydrochloric acid and ammonia under tropospheric conditions. Atmos Environ 21:1243–1246

    Article  CAS  Google Scholar 

  • Pope CA 3rd, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742

    Article  CAS  Google Scholar 

  • Pope CA 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW Jr (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 151(3 Pt 1):669–674

    Article  Google Scholar 

  • Pope CA, Burnett RT, Thun MJ et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, MacDonald JD, Bissonnette N, Bertrand N (2009) Ammonia volatilization following surface application of urea to tilled land and no-till soils: a laboratory comparison. Soil Till Res 103:310–315

    Article  Google Scholar 

  • Samet JM, Dominici F, Curriero FC et al (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749

    Article  CAS  Google Scholar 

  • Schlesinger RB, Cassee F (2003) Atmospheric secondary inorganic aerosols: the toxicological perspective as a basis for health effects risk assessment. Inhal Toxicol 15:197–235

    Article  CAS  Google Scholar 

  • Schlesinger RB, Kunzli N, Hidy GM, Gotschi T, Jerrett M (2006) The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhal Toxicol 18:95–125

    Article  CAS  Google Scholar 

  • Schwartz J (2007) Secondary sulphate effects; Schwartz responds. Environ Health Perspect 115:A532–A533

    Google Scholar 

  • Sheppard SC, Bittman S, Tait J (2009) Monthly NH3 emissions from poultry in 12 Ecoregions of Canada. Can J Animal Sci 89:21–35

    Article  CAS  Google Scholar 

  • Sheppard SC, Bittman S, Bruulsema TW (2010a) Monthly ammonia emissions from fertilizers in 12 Canadian Ecoregions. Can J Soil Sci 90:113–127

    Article  CAS  Google Scholar 

  • Sheppard SC, Bittman S, Swift ML, Tait J (2010b) Farm practices survey and modeling to estimate monthly NH3 emissions from swine production in 12 Ecoregions of Canada. Can J Animal Sci 90:145–158

    Article  CAS  Google Scholar 

  • Shutske JM (2005) Using anhydrous ammonia safely on the farm. University of Minnesota extension FO-022326. [Online] Available: http://www.extension.umn.edu/distribution/cropsystems/DC2326.html

  • Sommer SG, Friis E, Bach A, Schjørring JK (1997) Ammonia volatilization from pig slurry applied with trail hoses or broadspread to winter wheat: effects of crop developmental stage, microclimate and leaf ammonia absorption. J Environ Qual 26:1153–1160

    Article  CAS  Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission for mineral fertilizers and fertilized crops. Adv in Agronomy 82:557–622

    Article  CAS  Google Scholar 

  • Souther L, Small-Johnson J, Messing RB (2000) A description of agricultural releases of anhydrous ammonia in Minnesota. Chem Health and Saf 7(6):16–22 doi:10.1016/S1074-9098(00)00142-8

    Google Scholar 

  • Sutton MA, Fowler D, Moncrieff JB (1993a) The exchange of atmospheric ammonia with vegetated surfaces. I. Unfertilized vegetation. Q J Royal Meteorol Soc 119:1023–1045

    Article  Google Scholar 

  • Sutton MA, Fowler D, Moncrieff JB (1993b) The exchange of atmospheric ammonia with vegetated surfaces. II. Fertilized vegetation. Q J Royal Meteorol Soc 119:1047–1070

    Article  Google Scholar 

  • Sutton MA, Reis S, Baker SMH (2009) Atmospheric ammonia. Springer Science and Business Media B.V. pp 464

    Google Scholar 

  • Taubes G (1995) Epidemiology faces its limits. Science 269:164–169

    Article  CAS  Google Scholar 

  • Thurston GD et al (2005) Workgroup report: workshop on source apportionment of particulate matter health effects—intercomparison of results and implications. Environ Health Perspect 113:1768–1774

    Article  Google Scholar 

  • USEPA (2006) Provisional assessment of recent studies on health effects of particulate matter exposure. National center for environmental assessment. Office of research and development. Research triangle park, NC. EPA/600/R-06/063. http://epa.gov/pm/pdfs/ord_report_20060720.pdf

  • USEPA (2011a) The national emissions inventory. Version 1.5. http://www.epa.gov/ttn/chief/net/2008inventory.html. Accessed 29 Aug 2011

  • USEPA (2011b) National summary of particulate matter emissions. http://www.epa.gov/air/emissions/pm.htm#pmnat. Accessed 18 Feb 2011

  • USEPA (2011c) National trends in particulate matter levels. http://www.epa.gov/airtrends/pm.html#pmnat. Accessed 18 Feb 2011

  • Whitehead DC, Lockyer DR (1987) The influence of the concentration of gaseous ammonia on its uptake by the leaves of Italian ryegrass, with and without an adequate supply of nitrogen to the roots. J Exp Bot 38:818–827

    Article  CAS  Google Scholar 

  • Whitehead DC, Raistrick N (1990) Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils. J Soil Sci 41:387–394

    Article  CAS  Google Scholar 

  • Whitehead DC, Lockyer DR, Raistrick N (1988) The volatilization of ammonia from perennial ryegrass during decomposition, drying and induced senescence. Ann Bot 61:567–571

    CAS  Google Scholar 

  • WHO-Europe (2009) Exposure of children to air pollution (particulate matter) in outdoor air. World Health Organization—Europe. http://www.euro.who.int/__data/assets/pdf_file/0018/97002/enhis_factsheet09_3_3.pdf. Accessed 18 Feb 2011

  • Ye X, Ma Z, Zhang J, Du H, Chen J, Chen H, Yang X, Gao W, Geng F (2011) Important role of ammonia on haze formation in Shanghai. Environ Res Lett 6 024019 (5 pp) doi:10.1088/1748-9326/6/2/024019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bittman, S., Brook, J., Bleeker, A., Bruulsema, T. (2014). Air Quality, Health Effects and Management of Ammonia Emissions from Fertilizers. In: Taylor, E., McMillan, A. (eds) Air Quality Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7557-2_12

Download citation

Publish with us

Policies and ethics