Paul Hertz’s Systems of Propositions As a Proof-Theoretical Conception of Logic

  • Javier LegrisEmail author
Part of the Trends in Logic book series (TREN, volume 39)


Paul Hertz was an outstanding German physicist, who also devoted himself to mathematical logic and wrote a series of papers that remained rather unnoticed, even if they influenced the development of proof theory and particularly Gentzen’s work. This chapter aims to examine Hertz’s logical theory placing it in its historical context and remarking its influence on Gentzen’s sequent calculus. The analysis of the formal structure of proofs was one of Hertz’s most important achievements and it can be regarded as an anticipation of a “theory of proofs” in the current sense. But also, it can be asserted that Hertz’s systems played the role of a bridge between traditional formal logic and Gentzen’s logical work. Hertz’s philosophical ideas concerning the nature of logic and its place in scientific knowledge will be also analysed in this chapter.


Ideal Element Deductive System Axiomatic System Proof Theory Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abrusci, V. M. (1983). Paul Hertz’s Logical Works Contents and Relevance. Atti del Convegno Internazionale di Storia della Logica, San Gimignano, 4–8 dicembre 1982. In: V. M. Abrusci, E. Casari & M. Mugnai (eds.), (pp. 369–374) Bologna: Clueb.Google Scholar
  2. 2.
    Bernays, P. (1927). Probleme der theoretischen Logik. Unterrichtsblätter für Mathematik und Naturwisschenschaften, 33, 369–377.Google Scholar
  3. 3.
    Bernays, P. (1930). Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. Blätter für Deutsche Philosophie, 4(1930–1931), 326–367.Google Scholar
  4. 4.
    Bernays, P. (1965). Betrachtungen zum sequenzen-Kalkül. In: J. M. Bochenski (ed.), Contributions to Logic and Methodology in Honor (pp. 1–4). Amsterdam: Anna-Teresa Tymieniecka.Google Scholar
  5. 5.
    Bernays, P. (1969). Paul Hertz. Neue deutsche Biographie. Herausgegeben von der historischen Kommission bei der bayerischen Akademie der Wissenschaften (Vol. 8, p. 711 f). Berlin: Ducker and HumblotGoogle Scholar
  6. 6.
    Church, A. (1936). A bibliography of symbolic logic. The Journal of Symbolic Logic, 1, 121–218.CrossRefGoogle Scholar
  7. 7.
    Curry, H. B. (1977). Foundations of mathematical logic. New York: Dover.Google Scholar
  8. 8.
    Gentzen, G. (1933). Über die Existenz unabhängiger Axiomensystem zu unendlichen Satzsystemen. Mathematische Annalen, 107, 329–350.CrossRefGoogle Scholar
  9. 9.
    Gentzen, G. (1935). Untersuchungen über das logische Schlie\(\beta \)en. Mathematische Zeitschrift, 39, 176–210 (and 405–431).Google Scholar
  10. 10.
    Hertz, P. (1923a). Über Axiomensysteme für beliebige Satzsysteme. I. Teil. Sätze ersten grades. Mathematische Annalen, 87, 246–269.Google Scholar
  11. 11.
    Hertz, P. (1923b). Über das Denken. Berlin: Springer.Google Scholar
  12. 12.
    Hertz, P. (1928). Reichen die üblichen syllogistischen Regeln fúr das Schlie\(\beta \)en in der positiven Logik elementarer Sätze aus? Annalen der Philosophie, 7, 272–277.Google Scholar
  13. 13.
    Hertz, P. (1929a). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101, 457–514.CrossRefGoogle Scholar
  14. 14.
    Hertz, P. (1929b). Über Axiomensysteme beliebiger Satzsysteme. Annalen der Philosophie, 8, 178–204.Google Scholar
  15. 15.
    Hertz, P. (1935). Über das Wesen der Logik und der logischen Urteilsformen. Abhandlungen der Fries’schen Schule. Neue Folge, 6, 227–272.Google Scholar
  16. 16.
    Hilbert, D. (1992). Natur und mathematisches Erkennen. Vorlesungen, gehalten 1919–1920 in Göttingen. In: David E. Rowe (ed.). Nach einer Ausarbeitung von Paul Bernays. Basel: Birkhauser.Google Scholar
  17. 17.
    Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik (Vol. I). Berlin: Springer.Google Scholar
  18. 18.
    Prior Analytics trans. by R. Smith (1989) Aristotle, Hackett: Indianapolis.Google Scholar
  19. 19.
    Schroeder-Heister, P. (2002). Resolution and the origins of structural reasoning: Early proof-theoretic ideas of Hertz and Gentzen. Bulletin of Symbolic Logic, 8(2), 246–265Google Scholar
  20. 20.
    Tarski, A. (1930). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften I. Monatshefte für Mathematik und Physik 37, pp. 361–404. (A. Tarski & J. H. Woodger, Trans. Logic, Semantics, Metamathematics) (2nd ed.) Hackett: Indianapolis. (1983).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.IIEP-BAIRESCONICET and University of Buenos AiresBuenos AiresArgentina

Personalised recommendations