Skip to main content

Interactions in Water Across Interfaces: From Nano to Macro-Scale Perspective

  • Conference paper
  • First Online:
Transport and Reactivity of Solutions in Confined Hydrosystems

Abstract

In this work we first revisit the surface forces between two (model) mineral surfaces, mica, across an aqueous solution (KNO3) over a broad range of concentrations. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydrated-ion structures. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (layering), and are responsible for hydration forces, in contrast to the traditional interpretation invoking water layering. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The estimated hydration number of the ions in the confined electrolyte is significantly below that of the bulk. A confined 1–3 nm thick ionic layer condensates at concentrations >100 mM, i.e. below bulk saturation. This study leads to new insights into crystal growth in nano-confinement that differs from the classical theory of crystallization. Finally, the impact of the properties of confined water or solution and in-pore crystallization on the macro-scale description of soil water distribution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcantar N, Israelachvili J, Boles J (2003) Forces and ionic transport between mica surfaces: implications for pressure solution. Geochimica et Cosmochimica Acta 67(7):1289–1304

    Article  CAS  Google Scholar 

  2. Boström M, Ninham BW (2004) Dispersion self-free energies and interaction free energies of finite-sized ions in salt solutions. Langmuir 20(18):7569–7574. doi:10.1021/la049446+

    Article  Google Scholar 

  3. Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals–I. The case of the isotropic surface. Acta Metall 28(10):1333–1338. doi:10.1016/0001-6160(80)90002-4

    Article  CAS  Google Scholar 

  4. Chan DYC (2002) A simple algorithm for calculating electrical double layer interactions in asymmetric electrolytes–Poisson-Boltzmann theory. J Colloid Interface Sci 245(2):307–310. doi:10.1006/jcis.2001.7942

    Article  CAS  Google Scholar 

  5. Chodankar S, Perret E, Nygard K, Bunk O, Satapathy DK, Marzal RME, Balmer TE, Heuberger M, van der Veen JF (2012) Density profile of water in nanoslit. EPL (Europhys Lett) 99(2):26001

    Article  Google Scholar 

  6. Claesson P, Horn RG, Pashley RM (1984) Measurement of surface forces between mica sheets immersed in aqueous quaternary ammonium ion solutions. J Colloid Interface Sci 100(1):250–263. doi:10.1016/0021-9797(84)90433-8

    Article  CAS  Google Scholar 

  7. Clementi E, Barsotti R (1978) Study of the structure of molecular complexes. Coordination numbers for Li+, Na+, K+, F- and Cl- in water. Chem Phys Lett 59(1):21–25. doi:10.1016/0009-2614(78)85605-x

    Article  CAS  Google Scholar 

  8. Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271

    Article  Google Scholar 

  9. Derjaguin BV (1934) Untersuchungen über die Reibung und Adhäsion, IV. Kolloid Zeitschrift 69(2):155–164. doi:10.1007/BF01433225

    Article  Google Scholar 

  10. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URSS 14:633–662

    Google Scholar 

  11. Espinosa-Marzal RM, Drobek T, Balmer T, Heuberger MP (2012) Hydrated-ion ordering in electrical double layers. Phys Chem Chem Phys 14(17):6085–6093. doi:10.1039/C2cp40255f

    Article  CAS  Google Scholar 

  12. Espinosa-Marzal RM, Fontani G, Reusch F, Spencer ND, Crockett R (2013) Sugars communicate through water: oriented glycans induce long-range water structuring. Biophys J 104(12):2686–2694

    Article  CAS  Google Scholar 

  13. Espinosa-Marzal RM, Scherer GW (2009) Crystallization pressure exerted by in-pore confined crystals. In: Poro-mechanics IV: proceedings of the fourth biot conference on promechanics, New York, pp 1013–1018

    Google Scholar 

  14. Espinosa-Marzal RM, Scherer GW (2010) Advances in understanding damage by salt crystallization. Acc Chem Res 43(6):897–905. doi:10.1021/Ar9002224

    Article  CAS  Google Scholar 

  15. Espinosa-Marzal RM, Scherer GW (2012) Impact of in-pore salt crystallization on transport properties. Environ Earth Sci. doi:10.1007/s12665-012-2087-z

    Google Scholar 

  16. Flatt R, Steiger M, Scherer G (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52(2):187–203. doi:10.1007/s00254-006-0509-5

    Article  CAS  Google Scholar 

  17. Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322(5909):1819–1822. doi:10.1126/science.1164271

    Article  CAS  Google Scholar 

  18. Heuberger M (2001) The extended surface forces apparatus. Part I. Fast spectral correlation interferometry. Rev Sci Instrum 72(3):1700–1707. doi:10.1063/1.1347978

    Article  CAS  Google Scholar 

  19. Heuberger M, Vanicek J, Zach M (2001) The extended surface forces apparatus. II. Precision temperature control. Rev Sci Instrum 72(9):3556–3560

    Article  CAS  Google Scholar 

  20. Ho TA, Argyris D, Cole DR, Striolo A (2011) Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir 28(2):1256–1266. doi:10.1021/la2036086

    Article  Google Scholar 

  21. Horn RG, Israelachvili JN (1980) Direct measurement of forces due to solvent structure. Chem Phys Lett 71(2):192–194. doi:10.1016/0009-2614(80)80144-8

    Article  CAS  Google Scholar 

  22. Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162(4–5):404–408. doi:10.1016/0009-2614(89)87066-6

    Article  CAS  Google Scholar 

  23. Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562):219–225

    Article  CAS  Google Scholar 

  24. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Elsevier, New York

    Google Scholar 

  25. Israelachvili JN, Adams GE (1978) Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 Nm. J Chem Soc Faraday Trans 1 74:975–1001

    Article  CAS  Google Scholar 

  26. Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940):249–250

    Article  CAS  Google Scholar 

  27. Israelachvili JN, Tabor D (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc R Soc Lond A Math Phys Sci 331(1584):19–38. doi:10.1098/rspa.1972.0162

    Article  CAS  Google Scholar 

  28. Kjellander R, Marcelja S (1984) Correlation and image charge effects in electric double layers. Chem Phys Lett 112(1):49–53. doi:10.1016/0009-2614(84)87039-6

    Article  CAS  Google Scholar 

  29. Kjellander R, Marcelja S (1985) Inhomogeneous Coulomb fluids with image interactions between planar surfaces. I. J Chem Phys 82(4):2122–2135. doi:10.1063/1.448350

    Article  CAS  Google Scholar 

  30. Kjellander R, Marcelja S (1986) Double-layer interaction in the primitive model and the corresponding Poisson-Boltzmann description. J Phys Chem 90(7):1230–1232. doi:10.1021/j100398a006

    Article  CAS  Google Scholar 

  31. Kjellander R, Marcelja S (1986) Interaction of charged surfaces in electrolyte solutions. Chem Phys Lett 127(4):402–407. doi:10.1016/0009-2614(86)80304-9

    Article  CAS  Google Scholar 

  32. Kjellander R, Marcelja S, Quirk JP (1988) Attractive double-layer interactions between calcium clay particles. J Colloid Interface Sci 126(1):194–211. doi:10.1016/0021-9797(88)90113-0

    Article  CAS  Google Scholar 

  33. Lee SS, Fenter P, Park C, Sturchio NC, Nagy KL (2010) Hydrated cation speciation at the muscovite (001) water interface. Langmuir 26(22):16647–16651. doi:10.1021/la1032866

    Article  CAS  Google Scholar 

  34. Malani A, Ayappa KG, Murad S (2006) Effect of confinement on the hydration and solubility of NaCl in water. Chem Phys Lett 431(1–3):88–93. doi:10.1016/j.cplett.2006.09.071

    Article  CAS  Google Scholar 

  35. Miklavic SJ, Ninham BW (1990) Competition for adsorption sites by hydrated ions. J Colloid Interface Sci 134(2):305–311. doi:10.1016/0021-9797(90)90140-j

    Article  CAS  Google Scholar 

  36. Ninham BW (2002) Physical chemistry: the loss of certainty. In: Nylander T, Lindman B (eds) Lipid and polymer-lipid systems, vol 120, Progress in colloid and polymer science. Springer, Berlin/Heidelberg, pp 1–12. doi:10.1007/s02882002

    Chapter  Google Scholar 

  37. Ninham BW, Yaminsky V (1997) Ion binding and Ion specificity: the hofmeister effect and onsager and lifshitz theories. Langmuir 13(7):2097–2108. doi:10.1021/la960974y

    Article  CAS  Google Scholar 

  38. Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs + electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83(2):531–546. doi:10.1016/0021-9797(81)90348-9

    Article  CAS  Google Scholar 

  39. Pashley RM, Israelachvili JN (1984) Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. J Colloid Interface Sci 101(2):511–523. doi:10.1016/0021-9797(84)90063-8

    Article  CAS  Google Scholar 

  40. Perkin S, Goldberg R, Chai L, Kampf N, Klein J (2009) Dynamic properties of confined hydration layers. Faraday Discuss 141:399–413

    Article  CAS  Google Scholar 

  41. Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2009) X-ray reflectivity reveals equilibrium density profile of molecular liquid under nanometre confinement. EPL Europhys Lett 88(3):36004–36010. doi:Artn 36004, doi:10.1209/0295-5075/88/36004

    Google Scholar 

  42. Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2010) X-ray reflectivity theory for determining the density profile of a liquid under nanometre confinement. J Synchrotron Radiat 17(4):465–472. doi:10.1107/S0909049510014858

    Article  CAS  Google Scholar 

  43. Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2010) Molecular liquid under nanometre confinement: density profiles underlying oscillatory forces. J Phys Condens Matter 22(23):235102

    Article  Google Scholar 

  44. Shubin VE, Kekicheff P (1993) Electrical double layer structure revisited via a surface force apparatus: mica interfaces in lithium nitrate solutions. J Colloid Interface Sci 155(1):108–123. doi:10.1006/jcis.1993.1016

    Article  CAS  Google Scholar 

  45. Singh T, Kumar A (2008) Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach. J Phys Chem B 112(41):12968–12972. doi:10.1021/jp8059618

    Article  CAS  Google Scholar 

  46. Steiger M (2005) Crystal growth in porous materials – I: the crystallization pressure of large crystals. J Cryst Growth 282(3–4):455–469. doi:10.1016/J.Jcrysgro.2005.05.007

    Article  CAS  Google Scholar 

  47. Steiger M (2005) Crystal growth in porous materials – II: influence of crystal size on the crystallization pressure. J Cryst Growth 282(3–4):470–481. doi:10.1016/J.Jcrysgro.2005.05.008

    Article  CAS  Google Scholar 

  48. Tabor D, Winterton RHS (1969) The direct measurement of normal and retarded van der Waals forces. Proc R Soc Lond Ser A Math Phys Sci 312(1511):435–450

    Article  CAS  Google Scholar 

  49. Verwey EJ, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Dover Publications, Amsterdam

    Google Scholar 

  50. Xu L, Salmeron M (1998) Effects of surface ions on the friction and adhesion properties of mica. Langmuir 14(8):2187–2190. doi:10.1021/la9713659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge M. Heuberger, N.D. Spencer, J.F. van der Veen, and S. Chodankar for scientific discussions. Technical support for the eSFA was provided by J. Vanicek, M. Elsener and G. Cossu. This work was supported by the Swiss National Science Foundation. Selected figures from [11] reproduced by permission of the PCCP Owner Societies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Espinosa-Marzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Espinosa-Marzal, R.M. (2014). Interactions in Water Across Interfaces: From Nano to Macro-Scale Perspective. In: Mercury, L., Tas, N., Zilberbrand, M. (eds) Transport and Reactivity of Solutions in Confined Hydrosystems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7534-3_1

Download citation

Publish with us

Policies and ethics