Skip to main content

Managing Carbon

  • Chapter
  • First Online:
Climate Change and United States Forests

Abstract

In the United States, net carbon (C) has increased in forests and harvested wood product stocks since the 1950s. Annual C storage currently accounts for 13 % of U.S. fossil fuel C emissions, and increased C storage is attributed to reforestation, regrowth of harvested forests, and use of forest products. In a warmer climate, U.S. forests could become a net C emitter of tens to hundreds of Tg C year−1 within a few decades. Carbon mitigation through forest management focuses on (1) increasing afforestation, avoiding deforestation, or both, (2) C management in existing forests, and (3) use of wood as biomass energy or in wood products. The mitigation potential of these strategies differs in timing and magnitude. Longer harvest intervals extend the time that C is stored in biomass, whereas increased growth rates accelerate uptake of C per unit time. Carbon can be stored in wood products for a variable length of time, oxidized to produce heat or electrical energy, or converted to liquid transportation fuels and chemicals that would otherwise come from fossil fuels. Wood products can also be used to substitute for other products that emit more greenhouse gases in manufacturing (e.g., concrete and steel). Life cycle assessment is used to evaluate C management strategies by focusing on the change in C storage or emissions over time. Public lands contain 37 % of the land area of the United States (76 % of which are managed by federal agencies), representing an important component of long-term C storage, although managing these lands for C benefits involves multiple jurisdictions, social objectives, and political factors. Management of C on private lands, and to some extent public lands, is affected by markets, regulations, taxes, and incentives that have only recently evolved to address climate change and C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackom, E. K., Mabee, W. E., & Saddler, J. N. (2010). Industrial sustainability of competing wood energy options in Canada. Applied Biochemistry and Biotechnology, 162, 2259–2272.

    CAS  Google Scholar 

  • Ager, A. A., Finney, M. A., McMahan, A., & Cathcart, J. (2010). Measuring the effect of fuel treatments on forest carbon using landscape risk analysis. Natural Hazards and Earth System Sciences, 10, 2515–2526.

    Google Scholar 

  • Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution, 116, S119–S1260.

    CAS  Google Scholar 

  • Albaugh, T. J., Allen, H. L., Dougherty, P. M., et al. (1998). Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 44, 317–328.

    Google Scholar 

  • Albaugh, T. J., Allen, H. L., Zutter, B. R., & Quicke, H. E. (2003). Vegetation control and fertilization in midrotation Pinus taeda stands in the southeastern United States. Annals of Forest Science, 60, 619–624.

    Google Scholar 

  • Albaugh, T. J., Allen, H. L., Dougherty, P. M., & Johnsen, K. H. (2004). Long term growth responses of loblolly pine to optimal nutrient and water resource availability. Forest Ecology and Management, 192, 3–19.

    Google Scholar 

  • Albaugh, T. J., Allen, H. L., & Fox, T. R. (2007). Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. Southern Journal of Applied Forestry, 31, 129–137.

    Google Scholar 

  • Alig, R. J., Plantinga, A. J., Ahn, S., & Kline, J. D. (2003). Land use changes involving forestry in the United States: 1952 to 1997, with projections to 2050 (General Technical Report PNW-GTR-587, 92 p). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Allen, H. L. (2008). Silvicultural treatments to enhance productivity. In J. Evans (Ed.), The forests handbook: Vol. 2, Applying forest science for sustainable management (pp. 129–139). Oxford/Malden: Blackwell Science Ltd.

    Google Scholar 

  • Amishev, D. Y., & Fox, T. R. (2006). The effect of weed control and fertilization on survival and growth of four pine species in the Virginia Piedmont. Forest Ecology and Management, 236, 93–101.

    Google Scholar 

  • Aukland, L., Costa, P. M., & Brown, S. (2003). A conceptual framework and its application for addressing leakage: The case of avoided deforestation. Climate Policy, 3, 123–136.

    Google Scholar 

  • Balboa-Murias, M. A., Rodriguez-Soalleíro, R., Merino, A., & Álvarez-González, J. G. (2006). Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 237, 29–38.

    Google Scholar 

  • Balshi, M. S., McGuire, A. D., Duffy, P., et al. (2009). Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biology, 15, 1491–1510.

    Google Scholar 

  • Baral, A., & Guha, G. S. (2004). Trees for carbon sequestration or fossil fuel substitution: The issue of cost vs. carbon benefit. Biomass and Bioenergy, 27, 41–55.

    CAS  Google Scholar 

  • Barlaz, M. A. (1998). Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Global Biogeochemical Cycles, 12, 373–380.

    CAS  Google Scholar 

  • Battaglia, M. A., Rocca, M. E., Rhoades, C. C., & Ryan, M. G. (2010). Surface fuel loadings within mulching treatments in Colorado coniferous forests. Forest Ecology and Management, 260, 1557–1566.

    Google Scholar 

  • Bessou, C., Ferchaud, F., Gabrielle, B., & Mary, B. (2011). Biofuels, greenhouse gases and climate change. A review. Agronomy for Sustainable Development, 31, 1–79.

    CAS  Google Scholar 

  • Birdsey, R. A., Plantinga, A. J., & Health, L. S. (1993). Past and prospective carbon storage in United States forests. Forest Ecology and Management, 58, 33–40.

    Google Scholar 

  • Birdsey, R., Pregitzer, K., & Lucier, A. (2006). Forest carbon management in the United States: 1600–2100. Journal of Environmental Quality, 35, 1461–1469.

    CAS  Google Scholar 

  • Boman, U. R., & Turnbull, J. H. (1997). Integrated biomass energy systems and emissions of carbon dioxide. Biomass and Bioenergy, 13, 333–343.

    CAS  Google Scholar 

  • Borders, B. E., Will, R. E., Markewitz, D., et al. (2004). Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia. Forest Ecology and Management, 192, 21–37.

    Google Scholar 

  • Bracmort, K. (2011). Is biopower carbon neutral? (7-5700, 14 p). Washington, DC: Congressional Research Service.

    Google Scholar 

  • Cardellichio, P., & Walker, T. (2010). Why the Manomet study got the biomass carbon accounting right. The Forestry Source, 15, 4.

    Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Google Scholar 

  • Carter, M. C., & Foster, C. D. (2006). Milestones and millstones: A retrospective on 50 years of research to improve productivity in loblolly pine plantations. Forest Ecology and Management, 227, 137–144.

    Google Scholar 

  • Chen, J., Colombo, S. J., Ter-Mikaelian, M. T., & Heath, L. S. (2008). Future carbon storage in harvested wood products from Ontario’s Crown forests. Canadian Journal of Forest Research, 38, 1947–1958.

    CAS  Google Scholar 

  • Cherubini, F., Bird, N. D., Cowie, A., et al. (2009). Energy- and green-house gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resource Conservation and Recycling, 53, 434–447.

    Google Scholar 

  • Cherubini, F., Guest, G., & Stømman, A. H. (2012). Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy. doi:10.1111/j.1757-1707.2011.01156.x.

    Google Scholar 

  • Churkina, G., Brown, D. G., & Keoleian, G. (2010). Carbon stored in human settlements: the conterminous United States. Global Change Biology, 16, 135–143.

    Google Scholar 

  • Claassen, R., Cattaneo, A., & Johansson, R. (2008). Cost-effective design of agri-environmental payment program: U.S. experience in theory and practice. Ecological Economics, 65, 737–752.

    Google Scholar 

  • Coleman, M., Page-Dumroese, D., Archuleta, J., et al. (2010). Can portable pyrolysis units make biomass utilization affordable while using bio-char to enhance soil productivity and sequester carbon. In T. B Jain, R. T Graham, & J. Sandquist, Tech. (Eds.), Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate. Proceedings RMRS-P-61 (pp. 159–168). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31, 171–192.

    CAS  Google Scholar 

  • Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18.

    CAS  Google Scholar 

  • Depro, B. M., Murray, B. C., Align, R. J., & Shanks, A. (2008). Public land, timber harvests, and climate mitigation: quantifying carbon sequestration potential on U.S. public timberlands. Forest Ecology and Management, 255, 1122–1134.

    Google Scholar 

  • Diaz, S., Hector, A., & Wardle, D. A. (2009). Biodiversity in forest carbon sequestration initiatives: Not just a side benefit. Current Opinion in Environmental Sustainability, 1, 55–60.

    Google Scholar 

  • Donato, D. C., Fontaine, J. B., Campbell, J. L., et al. (2009). Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath-Siskiyou Mountains. Canadian Journal of Forest Research, 39, 823–838.

    Google Scholar 

  • Dore, S., Kolb, T. E., Montes-Helu, M., et al. (2010). Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological Applications, 20, 663–683.

    CAS  Google Scholar 

  • Drummond, M. A., & Loveland, T. R. (2010). Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience, 60, 286–298.

    Google Scholar 

  • Exec. Order No. 13,514, 74 Fed. Reg. 194, 52117 (2009, October 8). Federal leadership in environmental, energy, and economic performance. http://www.whitehouse.gov/administration/eop/ceq/sustainability. 28 Dec 2011.

  • Fantozzi, F., & Buratti, C. (2010). Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant. Biomass and Bioenergy, 34, 1796–1804.

    CAS  Google Scholar 

  • Fargione, J., Hill, J., Tilman, D., et al. (2008). Land clearing and the biofuel carbon debt. Science, 319, 1235–1238.

    CAS  Google Scholar 

  • Farley, K. A., Jobbágy, E. G., & Jackson, R. B. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11, 1565–1576.

    Google Scholar 

  • Farley, K. A., Piñeiro, G., Palmer, S. M., et al. (2008). Stream acidification and base cation losses with grassland afforestation. Water Resources Research, 44, W00A03.

    Google Scholar 

  • Finkral, A. J., & Evans, A. M. (2008). Effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecology and Management, 255, 2743–2750.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations [FAO]. (2007). State of the world's forests 2007 (144 p). Rome: Food and Agriculture Organization of the United Nations, Communications Division, Electronic Publishing Policy and Support Branch. http://www.fao.org/docrep/009/a0773e/a0773e00.htm. November 2011.

  • Fox, T. R., Allen, H. L., Albaugh, T. J., et al. (2007). Tree nutrition and forest fertilization of pine plantations in the southern United States. Southern Journal of Applied Forestry, 31, 5–11.

    CAS  Google Scholar 

  • Fox, T. R., Jokela, E. J., & Allen, H. L. (2007). The development of pine plantation silviculture in the southern United States. Journal of Forestry, 105, 337–347.

    Google Scholar 

  • Gan, J. (2007). Supply of biomass, bioenergy, and carbon mitigation: Method and application. Energy Policy, 35, 6003–6009.

    Google Scholar 

  • Gan, J., & McCarl, B. A. (2007). Measuring transnational leakage of forest conservation. Ecological Economics, 64, 423–432.

    Google Scholar 

  • Gan, J. B., & Smith, C. T. (2006a). A comparative analysis of woody biomass and coal for electricity generation under various CO2 emission reductions and taxes. Biomass and Bioenergy, 30, 296–303.

    Google Scholar 

  • Gan, J., & Smith, C. T. (2006b). Availability of logging residues and potential for electricity production and carbon displacement in the USA. Biomass and Bioenergy, 30, 1011–1020.

    Google Scholar 

  • Hajny, G. J. (1981). Biological utilization of wood production for production of chemicals and foodstuffs (Research Paper FPL-RP-385, 65 p). Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Hamilton, K., Sjardin, M., Peters-Stanley, M., & Marcello, T. (2010). Building bridges: State of the voluntary carbon markets 2010: A report by Ecosystem Marketplace and Bloomberg New Energy Finance (108 p). New York/Washington, DC: Bloomberg New Energy Finance/Ecosystem Marketplace.

    Google Scholar 

  • Harden, J. W., Trumbore, S. E., Stocks, B. J., et al. (2000). The role of fire in the boreal carbon budget. Global Change Biology, 6, 174–184.

    Google Scholar 

  • Harmon, M. (2001). Carbon sequestration in forests—Addressing the scale question. Journal of Forestry, 99, 24–29.

    Google Scholar 

  • Harmon, M. E., & Marks, B. (2002). Effects of silvicultural practices on carbon stores in Douglas-fir–Western hemlock forests in the Pacific Northwest, U.S.A.: Results from a simulation model. Canadian Journal of Forest Research, 877, 863–877.

    Google Scholar 

  • Harmon, M. E., Harmon, J. M., Ferrell, W. K., & Brooks, D. (1996). Modeling carbon stores in Oregon and Washington forest products: 1900–1992. Climatic Change, 33, 521–550.

    CAS  Google Scholar 

  • Harmon, M. E., Moreno, A., & Domingo, J. B. (2009). Effects of partial harvest on the carbon stores in Douglas-fir/western hemlock forests: A simulation study. Ecosystems, 12, 777–791.

    CAS  Google Scholar 

  • Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945–958.

    Google Scholar 

  • Hurteau, M. D., Koch, G. W., & Hungate, B. A. (2008). Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Frontiers in Ecology and the Environment, 6, 493–498.

    Google Scholar 

  • Ingerson, A. (2007). U.S. forest carbon and climate change: Controversies and win-win policy approaches (18 p). Washington, DC: The Wilderness Society.

    Google Scholar 

  • Intergovernmental Panel on Climate Change [IPCC]. (2001). Climate change 2001: Mitigation. Third assessment report of the Intergovernmental Panel on Climate Change, Working Group III (753 p). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, R. B., & Schlesinger, W. H. (2004). Curbing the U.S. carbon deficit. Proceedings of the National Academy of Sciences, USA, 101, 15827–15829.

    CAS  Google Scholar 

  • Jackson, R. B., Jobbágy, E. G., Avissar, R., et al. (2005). Trading water for carbon with biological carbon sequestration. Science, 310, 1944–1947.

    CAS  Google Scholar 

  • Jackson, R. B., Randerson, J. T., Canadell, J. G., et al. (2008). Protecting climate with forests. Environmental Research Letters, 3, 044006.

    Google Scholar 

  • Jiang, H., Apps, M. J., Peng, C., et al. (2002). Modeling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecology and Management, 169, 65–82.

    Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2004). Groundwater use and salinization with grassland afforestation. Global Change Biology, 10, 1299–1312.

    Google Scholar 

  • Johnson, E. (2009). Good-bye to carbon neutral: Getting biomass footprints right. Environmental Impact Assessment Review, 29, 165–168.

    Google Scholar 

  • Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: Meta analysis. Forest Ecology and Management, 140, 227–238.

    Google Scholar 

  • Jones, G., Loeffler, D., Butler, E., et al. (2010). Emissions, energy return and economics from utilizing forest residues for thermal energy compared to onsite pile burning. In T. B. Jain, R. T. Graham, & J. Sandquist, Tech. (Eds.), Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate, Proceedings RMRS-P-61 (pp.145–158). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Kaipainen, T., Liski, J., Pussinen, A., & Karjalainen, T. (2004). Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7, 205–219.

    CAS  Google Scholar 

  • Keyser, T. L., Lentile, L. B., Smith, F. W., & Shepperd, W. D. (2008). Changes in forest structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA. Forest Science, 54, 328–338.

    Google Scholar 

  • Kollmuss, A., Lee, C., & Lazaru, M. (2010). How offset programs assess and approve projects and credits. Carbon Management, 1, 119–134.

    Google Scholar 

  • Lippke, B., & Edmonds, L. (2006). Environmental performance improvement in residential construction: The impact of products, biofuels, and processes. Forest Products Journal, 56, 58–63.

    Google Scholar 

  • Lippke, B., Oneil, E., Harrison, R., et al. (2011). Life cycle impacts of forest management and wood utilization on carbon mitigation: Knowns and unknowns. Carbon Management, 2, 303–333.

    Google Scholar 

  • Liski, J., Pussinen, A., Pingoud, K., et al. (2001). Which rotation length is favourable to carbon sequestration? Canadian Journal of Forest Research, 31, 2004–2013.

    Google Scholar 

  • Magnani, F., Dewar, R. C., & Borghetti, M. (2009). Leakage and spillover effects of forest management on carbon storage: Theoretical insights from a simple model. Tellus Series B: Chemical and Physical Meteorology, 61, 385–393.

    Google Scholar 

  • Mälkki, H., & Virtanen, Y. (2003). Selected emissions and efficiencies of energy systems based on logging and sawmill residues. Biomass and Bioenergy, 24, 321–327.

    Google Scholar 

  • Malmsheimer, R. W., Heffernan, P., Brink, S., et al. (2008). Forest management solutions for mitigating climate change in the United States. Journal of Forestry, 106, 115–173.

    Google Scholar 

  • Malmsheimer, R. W., Bower, J. L., Fried, J. S., et al. (2011). Managing forest because carbon matters: Integrating energy, products, and land management policy. Journal of Forestry, 109, S7–S50.

    Google Scholar 

  • Mann, M. K., & Spath, P. L. (2001). A life-cycle assessment of biomass cofiring in a coal-fired power plant. Clean Products and Processes, 3, 81–91.

    Google Scholar 

  • Manomet Center for Conservation Sciences. (2010). Massachusetts biomass sustainability and carbon policy study: Report to the Commonwealth of Massachusetts Department of Energy Resources (Report NCI-201003, 182 p). Brunswick: Manomet Center for Conservation Sciences.

    Google Scholar 

  • Marland, G., & Marland, S. (1992). Should we store carbon in trees? Water, Air, and Soil Pollution, 64, 181–195.

    CAS  Google Scholar 

  • Marland, G., Schlamadinger, B., & Leiby, P. (1997). Forest/biomass based mitigation strategies: Does the timing of carbon reductions matter? Critical Reviews in Environmental Science and Technology, 27, S213–S226.

    CAS  Google Scholar 

  • Mathews, J. A., & Tan, H. (2009). Biofuels and indirect land use change effects: The debate continues. Biofuels, Bioproducts and Biorefining, 3, 305–317.

    CAS  Google Scholar 

  • McKeand, S. E., Jokela, E. J., Huber, D. A., et al. (2006). Performance of improved genotypes of loblolly pine across different soils, climates, and silvicultural inputs. Forest Ecology and Management, 227, 178–184.

    Google Scholar 

  • McKechnie, J., Colombo, S., Chen, J., et al. (2011). Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environmental Science and Technology, 45, 789–795.

    CAS  Google Scholar 

  • McKeever, D. B., Adair, C., & O’Connor, J. (2006). Wood products used in the construction of low-rise nonresidential buildings in the United States, 2003 (68 p). Tacoma: Wood Products Council.

    Google Scholar 

  • McKenzie, D., Peterson, D. L., & Littell, J. (2009). Global warming and stress complexes in forests of western North America. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Wildland fires and air pollution (pp. 317–337). The Hague: Elsevier Publishers.

    Google Scholar 

  • McKinley, D. C., & Blair, J. M. (2008). Woody plant encroachment by Juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems, 11, 454–468.

    CAS  Google Scholar 

  • McKinley, D. C., Ryan, M. G., Birdsey, R. A., et al. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21, 1902–1924.

    Google Scholar 

  • Melamu, R., & von Blottnitz, H. (2011). 2nd generation biofuels a sure bet? A life cycle assessment of how things could go wrong. Journal of Cleaner Production, 19, 138–144.

    Google Scholar 

  • Melillo, J. M., Reilly, J. M., Kicklighter, D. W., et al. (2009). Indirect emissions from biofuels: How important? Science, 326, 1397–1399.

    CAS  Google Scholar 

  • Meyfroidt, P., Rudel, T. K., & Lambin, E. F. (2010). Forest transitions, trade, and the global displacement of land use. Proceedings of the National Academy of Sciences, USA, 107, 20917–20922.

    CAS  Google Scholar 

  • Mitchell, S. R., Harmon, M. E., & O’Connell, K. E. B. (2009). Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems. Ecological Applications, 19, 643–655.

    Google Scholar 

  • Murray, B. C., McCarl, B. A., & Lee, H.-C. (2004). Estimating leakage from forest carbon sequestration programs. Land Economics, 80, 109–124.

    Google Scholar 

  • Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259, 857–866.

    Google Scholar 

  • Nilsson, U., & Allen, H. L. (2003). Short- and long-term effects of site preparation, fertilization and vegetation control on growth and stand development of planted loblolly pine. Forest Ecology and Management, 175, 367–377.

    Google Scholar 

  • Nilsson, D., Bernesson, S., & Hansson, P. A. (2011). Pellet production from agricultural raw materials—A systems study. Biomass and Bioenergy, 35, 679–689.

    Google Scholar 

  • Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116, 381–389.

    CAS  Google Scholar 

  • Nowak, D. J., Kuroda, M., & Crane, D. E. (2004). Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban Forestry and Urban Greening, 2, 139–147.

    Google Scholar 

  • Nunnery, J. S., & Keeton, W. S. (2010). Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. Ecological Applications, 259, 1363–1375.

    Google Scholar 

  • Pacala, S. W., Hurtt, G. C., Baker, D., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316–2320.

    CAS  Google Scholar 

  • Pachauri, R. D., & Reisinger, A. (Eds). (2007). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change (104 p). Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Pataki, D. E., Alig, R. J., Fung, A. S., et al. (2006). Urban ecosystems and the North American carbon cycle. Global Change Biology, 12, 2092–2102.

    Google Scholar 

  • Patzek, T. W., & Pimentel, D. (2005). Thermodynamics of energy production from biomass. Critical Reviews in Plant Sciences, 24, 327–364.

    CAS  Google Scholar 

  • Peng, J. H., Bi, H. T., Sokhansanj, S., et al. (2010). An economical and market analysis of Canadian wood pellets. International Journal of Green Energy, 7, 128–142.

    Google Scholar 

  • Perlack, R. D., Wright, L. L., Turhollow, A. F., et al. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply (60 p). Oak Ridge: U.S. Department of Energy, Oak Ridge National Laboratory.

    Google Scholar 

  • Peterson, D. L., Johnson, M. C., Agee, J. K., et al. (2005). Forest structure and fire hazard in dry forests of the western United States (General Technical Report PNW-GTR-628, 30 p). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Peters-Stanley, M., Hamilton, K., Marcello, T., & Sjardin, M. (2011). Back to the future: State of the voluntary carbon markets 2011 (78 p). Washington, DC: Ecosystem Marketplace.

    Google Scholar 

  • Pimentel, D., Marklein, A., Toth, M. A., et al. (2008). Biofuel impacts on world food supply: Use of fossil fuel, land and water resources. Energies, 1, 41–78.

    Google Scholar 

  • Pinchot Institute for Conservation. (2011). The Pinchot letter, 16(1). Available at http://www.pinchot.org/pubs/c34

  • Reich, P. B., Grigal, D. F., Aber, J. D., & Gower, S. T. (1997). Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 78, 335–347.

    Google Scholar 

  • Reinhardt, E. D., Keane, R. E., Calkin, D. E., & Cohen, J. D. (2008). Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology and Management, 256, 1997–2006.

    Google Scholar 

  • Reinhardt, E. D., Holsinger, L., & Keane, R. (2010). Effects of biomass removal treatments on stand-level fire characteristics in major forest types of the Northern Rocky Mountains. Western Journal of Applied Forestry, 25, 34–41.

    Google Scholar 

  • Repo, A., Tuomi, M., & Liski, J. (2011). Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy, 3, 107–115.

    CAS  Google Scholar 

  • Restaino, J. C., & Peterson, D. L. (2013). Wildfire and fuel treatment effects on forest carbon dynamic in the western United States. Forest Ecology and Management, 303, 46–60.

    Google Scholar 

  • Saracoglu, N., & Gunduz, G. (2009). Wood pellets—Tomorrow’s fuel for Europe. Energy Sources: Part A: Recovery Utilization and Environmental Effects, 31, 1708–1718.

    CAS  Google Scholar 

  • Sathre, R., & O’Connor, J. (2008). A synthesis of research on wood products and greenhouse gas impacts (Technical Report TR-19). Vancouver: FPInnovations, Forintek Division.

    Google Scholar 

  • Schlamadinger, B., & Marland, G. (1996). The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Bioenergy, 10, 275–300.

    CAS  Google Scholar 

  • Schlamadinger, B., Spitzer, J., Kohlmaier, G. H., & Lüdeke, M. (1995). Carbon balance of bioenergy from logging residues. Biomass and Bioenergy, 8, 221–234.

    Google Scholar 

  • Schönau, A. P. G., & Coetzee, J. (1989). Initial spacing, stand density and thinning in eucalypt plantations. Forest Ecology and Management, 29, 245–266.

    Google Scholar 

  • Schwarze, R., Niles, J. O., & Olander, J. (2002). Understanding and managing leakage in forest-based greenhouse-gas-mitigation projects. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360, 1685–1703.

    CAS  Google Scholar 

  • Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior (Research Paper RMRS-RP-29, 59 p). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R. A., et al. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 1238–1240.

    CAS  Google Scholar 

  • Searchinger, T. D., Hamburg, S. P., Melillo, J., et al. (2009). Fixing a critical climate accounting error. Science, 326, 527–528.

    CAS  Google Scholar 

  • Seely, B., Welham, C., & Kimmins, H. (2002). Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, FORECAST. Forest Ecology and Management, 169, 123–135.

    Google Scholar 

  • Skog, K. E. (2008). Sequestration of carbon in harvested wood products for the United States. Forest Products Journal, 58, 56–72.

    CAS  Google Scholar 

  • Smeets, E. M. W., & Faaij, A. P. C. (2007). Bioenergy potentials from forestry in 2050: An assessment of the drivers that determine the potentials. Climatic Change, 81, 353–390.

    CAS  Google Scholar 

  • Smithwick, E. A. H., Harmon, M. E., Remillard, S. M., et al. (2002). Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecological Applications, 12, 1303–1317.

    Google Scholar 

  • Sohngen, B., & Brown, S. (2008). Extending timber rotations: Carbon and cost implications. Climate Policy, 8, 435–451.

    Google Scholar 

  • Sohngen, B., Mendelsohn, R., & Sedjo, R. (1999). Forest management, conservation, and global timber markets. American Journal of Agricultural Economics, 81, 1–13.

    Google Scholar 

  • Sohngen, B., Beach, R. H., & Andrasko, K. (2008). Avoided deforestation as a greenhouse gas mitigation tool: Economic issues. Journal of Environmental Quality, 37, 1368–1375.

    CAS  Google Scholar 

  • Solomon, B. D., Barnes, J. R., & Halvorsen, K. E. (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416–425.

    Google Scholar 

  • Spath, P. L., & Mann, M. K. (2000). Life cycle assessment of a natural gas combined-cycle power generation system (NREL/TP-570-27715, 55 p). Golden: National Renewable Energy Laboratory.

    Google Scholar 

  • Stephens, S. L., Moghaddas, J. J., Hartsough, B. R., et al. (2009). Fuel treatment effects on stand-level carbon pools, treatment-related emissions, and fire risk in a Sierra Nevada mixed-conifer forest. Canadian Journal of Forest Research, 39, 1538–1547.

    CAS  Google Scholar 

  • Sutley, N. H. (2010). Draft NEPA guidance on consideration of the effects of climate change and greenhouse gas emissions (12 p). Washington, DC: Council on Environmental Quality. http://ceq.hss.doe.gov/nepa/regs/Consideration_of_Effects_of_GHG_Draft_NEPA_Guidance_FINAL_02182010.pdf

  • Thornley, J. H. M., & Cannell, M. G. R. (2000). Managing forests for wood yield and carbon storage: A theoretical study. Tree Physiology, 20, 477–484.

    Google Scholar 

  • Tumuluru, J. S., Sokhansanj, S., Lim, C. J., et al. (2010). Quality of wood pellets produced in British Columbia for export. Applied Engineering in Agriculture, 26, 1013–1020.

    Google Scholar 

  • Tuskan, G. A. (1998). Short-rotation woody crop supply systems in the United States: What do we know and what do we need to know? Biomass and Bioenergy, 14, 307–315.

    CAS  Google Scholar 

  • U.S. Climate Change Science Program. (2007). The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle: A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research (242 p). Asheville: National Oceanic and Atmospheric Administration, National Climatic Data Center.

    Google Scholar 

  • U.S. Department of Agriculture, Farm Service Agency. (2010). Conservation reserve program: Annual summary and enrollment statistics. https://www.fsa.usda.gov/Internet/FSA_File/annual2010summary.pdf

  • U.S. Department of Agriculture, Forest Service [USDA FS]. (2012a). Future of America’s forest and rangelands: Forest Service 2010 Resources Planning Act assessment (General Technical Report WO-87, 198 p). Washington, DC: USDA FS.

    Google Scholar 

  • U.S. Department of Agriculture, Forest Service. [USDA FS]. (2012b). Southern forest futures project. http://www.srs.fs.usda.gov/futures. 20 June 2012.

  • U.S. Department of Energy [USDOE]. (2009). Annual energy review 2008 (407 p). Washington, DC: Energy Information Administration.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. (2005). Greenhouse gas mitigation potential in U.S. forestry and agriculture (EPA 430-R-05-006, 157 p). Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. (2008). Inventory of U.S. greenhouse gas emissions and sinks: 1990–2006 (430-R-08-005). Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. (2009a). Land use, land use change and forestry. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2007. Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. (2009b). Waste. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2007. Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. 2010. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008 (EPA 430-R-09-006). Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs.

    Google Scholar 

  • U.S. Environmental Protection Agency [USEPA]. (2011). Draft inventory of U.S. greenhouse gas emissions and sinks: 1990–2009 (EPA 430-R-11-005). Washington, DC: U.S. Environmental Protection Agency, Office of Atmospheric Programs. http://epa.gov/climatechange/emissions/usinventoryreport.html. 12 Mar 2011.

  • United Nations. (1992). United Nations framework convention on climate change. FCCC/INFORMAL/84, GE.05-62220 (E) 200705. http://unfccc.int/resource/docs/convkp/conveng.pdf. 20 Sept 2012.

  • Upton, B., Miner, R., Spinney, M., & Heath, L. S. (2008). The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass and Bioenergy, 32, 1–10.

    CAS  Google Scholar 

  • Van Auken, O. W. (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197–215.

    Google Scholar 

  • Woodall, C. W., D’Amato, A. W., Bradford, J. B., & Finley, A. O. (2011). Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. Forest Science, 57, 365–378.

    Google Scholar 

  • Zanchi, G., Pena, N., & Bird, N. (2010). The upfront carbon debt of bioenergy. Graz: Joanneum Research. http://www.birdlife.org/eu/pdfs/Bioenergy_Joanneum_Research.pdf. 23 Nov 2011.

  • Zerbe, J. I. (2006). Thermal energy, electricity, and transportation fuels from wood. Forest Products Journal, 56, 6–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Skog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Skog, K.E. et al. (2014). Managing Carbon. In: Peterson, D., Vose, J., Patel-Weynand, T. (eds) Climate Change and United States Forests. Advances in Global Change Research, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7515-2_7

Download citation

Publish with us

Policies and ethics