Skip to main content

Regional Highlights of Climate Change

  • Chapter
  • First Online:
Climate Change and United States Forests

Abstract

Climatic extremes, ecological disturbance, and their interactions are expected to have major effects on ecosystems and social systems in most regions of the United States in the coming decades. In Alaska, where the largest temperature increases have occurred, permafrost is melting, carbon is being released, and fire regimes are changing, leading to a transition from conifers to hardwoods in some forests. In Hawaii and the U.S.-affiliated Pacific islands, an altered climate and sea level rise are changing hydrology and fire regimes, affecting both forest ecosystems and human communities. In the Northwest, insect outbreaks (already prominent) and increased area burned, in combination with declining snowpack, are expected to have a major effect on dry, interior forests. In the Southwest, recent large wildfires and forest dieback in pinyon pine exemplify the kinds of changes that may occur in arid and semi-arid forests if droughts become more common in the future. In the Great Plains, where trees currently occupy only a small portion of the landscape, warmer temperature and non-native insects could reduce the amount of forested area and alter species distribution. In the Midwest, warmer temperature is expected to affect the distribution and abundance of many tree species, associated habitat, and human use of forests in a region where private lands are mixed with public lands. In the Northeast, warmer temperature is expected to affect the distribution and abundance of many tree species, although the productivity of hardwood species may increase significantly. In the Southeast, biodiversity and productivity may be affected by a combination of warmer climate, altered fire regimes, and invasive plants and insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, M. D. (1992). Fire and the development of oak forests. BioScience, 42, 346–353.

    Google Scholar 

  • Allen, C. D. (2007). Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems, 10, 797–808.

    Google Scholar 

  • Allen, C. D., & Breshears, D. D. (1998). Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences, USA, 95, 14839–14842.

    CAS  Google Scholar 

  • Andreu, A., & Hermansen-Baez, L. A. (2008). Fire in the South 2: The Southern wildfire risk assessment (32pp). A report by the Southern Group of State Foresters. http://www.southernwildfirerisk.com/reports/FireInTheSouth2.pdf

  • Asner, G. P., Elmore, A. J., Hughes, R. F., et al. (2005). Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy. Remote Sensing of Environment, 96, 497–508.

    Google Scholar 

  • Asner, G. P., Hughes, R. F., Vitousek, P. M., et al. (2008). Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences, USA, 105, 4519–4523.

    CAS  Google Scholar 

  • Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263–286.

    CAS  Google Scholar 

  • Bachelet, D., Lenihan, J., Drapek, R., & Neilson, R. P. (2008). VEMAP vs VINCERA: A DGVM sensitivity to differences in climate scenarios. Global and Planetary Change, 64, 38–48.

    Google Scholar 

  • Bailey, R. G. (1995). Description of the ecoregions of the United States (108pp). Washington, DC: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  • Barnett, J. (2001). Adapting to climate change in Pacific island countries: The problem of uncertainty. World Development, 29, 977–993.

    Google Scholar 

  • Barnett, J., & Adger, W. (2003). Climate dangers and atoll countries. Climatic Change, 61, 321–337.

    Google Scholar 

  • Barron, E. (2006). State of the Texas forest 2005 (37pp). College Station: Texas Forest Service.

    Google Scholar 

  • Bartlein, P., Whitlock, C., & Shafer, S. (1997). Future climate in the Yellowstone National Park region and its potential impact on vegetation. Conservation Biology, 11, 782–792.

    Google Scholar 

  • Beier, C. M., Sink, S. E., Hennon, P. E., et al. (2008). Twentieth-century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska. Canadian Journal of Forest Research, 38, 1319–1334.

    Google Scholar 

  • Bengston, D. N., Asah, S. T., & Butler, B. J. (2011). The diverse values and motivations of family forest owners in the United States: An analysis of an openended question in the National Woodland Owner Survey. Small-Scale Forestry, 10, 339–355.

    Google Scholar 

  • Benning, T. L., LaPointe, D., Atkinson, C. T., & Vitousek, P. M. (2002). Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proceedings of the National Academy of Sciences, USA, 99, 14246–14249.

    CAS  Google Scholar 

  • Bentz, B. J., Régnière, J., Fettig, C. J., et al. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60, 602–613.

    Google Scholar 

  • Berg, E. E., Henry, J. D., Fastie, C. L., et al. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve. Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219–232.

    Google Scholar 

  • Berg, E. E., Hillman, K. M., Dial, R., & DeRuwe, A. (2009). Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska:A major regime shift after 18,000 years of wet Sphagnum-sedge peat recruitment. Canadian Journal of Forest Research, 39, 2033–2046.

    Google Scholar 

  • Bernhardt, E. L., Hollingsworth, T. N., & Chapin, F. S. (2011). Fire mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska. Journal of Vegetation Science, 22, 32–44.

    Google Scholar 

  • Boddy, L. (1983). Carbon dioxide release from decomposing wood: Effect of water content and temperature. Soil Biology and Biochemistry, 15, 501–510.

    Google Scholar 

  • Bostwick, P., Menakis, J., & Sexton, T. (2011). How fuel treatments saved homes from the 2011 Wallow fire. http://www.fs.fed.us/fire/management/fuel_treatments.pdf. 19 Dec 2011.

  • Bradley, B. A., Wilcove, D. S., & Oppenheimer, M. (2010). Climate change increases risk of plant invasion in the eastern United States. Biological Invasions, 12, 1855–1872.

    Google Scholar 

  • Breshears, D. D., Cobb, N. S., Rich, P. M., et al. (2005). Regional vegetation die-off in response to global-change type drought. Proceedings of the National Academy of Sciences, USA, 102, 15144–15148.

    CAS  Google Scholar 

  • Brockway, D. G., & Lewis, C. E. (1997). Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. Forest Ecology and Management, 97, 167–183.

    Google Scholar 

  • Butler, B. J. (2008). Family forest owners of the United States, 2006 (General Technical Report NRS-27, 72pp). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Campbell, J. L., Rustad, L. E., Boyer, E. B., et al. (2009). Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Canadian Journal of Forest Research, 39, 264–284.

    CAS  Google Scholar 

  • Case, M. J., & Peterson, D. L. (2005). Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington. Canadian Journal of Forest Research, 35, 2743–2755.

    Google Scholar 

  • Cavaleri, M. A., & Sack, L. (2010). Comparative water use of native and invasive plants at multiple scales: A global meta-analysis. Ecology, 91, 2705–2715.

    Google Scholar 

  • Cayan, D. R., Das, T., & Pierce, T. P. (2010). Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences, USA, 107, 21271–21276.

    CAS  Google Scholar 

  • Chapin, F. S., McGuire, A. D., Randerson, J., et al. (2000). Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 6, 211–223.

    Google Scholar 

  • Chapin, F. S., III, Trainor, S. F., Huntington, O., et al. (2008). Increasing wildfire in Alaska’s boreal forest: Pathways to the potential solutions of a wicked problem. BioScience, 58, 531–540.

    Google Scholar 

  • Chen, P.-Y., Welsh, C., & Hamann, A. (2010). Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change. Global Change Biology, 16, 3374–3385.

    Google Scholar 

  • Chu, P.-S., & Chen, H. (2005). Interannual and interdecadal rainfall variations in the Hawaiian Islands. Journal of Climate, 18, 4796–4813.

    Google Scholar 

  • Chu, P.-S., Chen, Y. R., & Schroeder, T. A. (2010). Changes in precipitation extremes in the Hawaiian Islands in a warming climate. Journal of Climate, 23, 4881–4900.

    Google Scholar 

  • Coops, N. C., & Waring, R. H. (2010). A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change. Climatic Change, 105, 313–328.

    Google Scholar 

  • Coops, N. C., & Waring, R. H. (2011). Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecological Modelling, 222, 2119–2129.

    Google Scholar 

  • Cortés-Burns, H., Lapina, I., Klein, S. C. et al. (2008). Invasive plant species monitoring and control-areas impacted by 2004 and 2005 fires in interior Alaska: A survey of Alaska BLM lands along the Dalton, Steese, and Taylor highways (BLM-BAER Final Report, 162pp). Anchorage: Bureau of Land Management, Alaska State Office.

    Google Scholar 

  • Dale, V. H., Joyce, L. A., McNulty, S. G., et al. (2001). Climate change and forest disturbances. BioScience, 59, 723–734.

    Google Scholar 

  • D'Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63–87.

    Google Scholar 

  • DeCoster, L. A. (1998). The boom in forest owners—A bust for forestry? Journal of Forestry, 96, 25–28. doi: http://dx.doi.org/10.1890/ES11-00288.1

    Google Scholar 

  • Dukes, J. S., Pontius, J., & Orwig, D. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Canadian Journal of Forest Research, 39, 231–248.

    Google Scholar 

  • Elliott, K. J., & Vose, J. M. (2011). The contribution of the Coweeta Hydrologic Laboratory to developing an understanding of long-term (1934–2008) changes in managed and unmanaged forests. Forest Ecology and Management, 261, 900–910.

    Google Scholar 

  • Flebbe, P. A., Roghair, L. D., & Bruggink, J. L. (2006). Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society, 135, 1371–1382.

    Google Scholar 

  • Flickinger, A. (2010). In E. Miller (Ed.). Iowa’s forests today: An assessment of the issues and strategies for conserving and maintaining Iowa’s forests. Des Moines: Iowa Department of Natural Resources. http://www.iowadnr.gov/Environment/Forestry/ForestryLinksPublications/IowaForestActionPlan.aspx

  • Flint, C. G. (2006). Community perspectives on spruce beetle impacts on the Kenai Peninsula, Alaska. Forest Ecology and Management, 227, 207–218.

    Google Scholar 

  • Floyd, M. L., Clifford, M., Cobb, N. S., et al. (2009). Relationship of stand characteristics to drought-induced mortality in three southwestern piñion-juniper woodlands. Ecological Applications, 19, 1223–1230.

    Google Scholar 

  • Giambelluca, T., Delay, J., Asner, G. et al. (2008a). Stand structural controls on evapotranspiration in native and invaded tropical montane cloud forest in Hawai’i. [Abstract]. http://adsabs.harvard.edu/abs/2008AGUFM.B43A0422G. 11 Dec 2011.

  • Giambelluca, T. W., Diaz, H. F., & Luke, S. A. (2008b). Secular temperature changes in Hawai‘i. Geophysical Research Letters, 35, L12702. doi:10.1029/2008GL034377.

    Google Scholar 

  • Gibson, K., Skov, K., Kegley, S. et al. (2008). Mountain pine beetle impacts in high-elevation five-needle pines: current trends and challenges (R1-08-020, 32pp). Missoula: U.S. Department of Agriculture, Forest Service, Forest Health Protection.

    Google Scholar 

  • Goldblum, D. (2010). The geography of white oak’s (Quercus alba L.) response to climatic variables in North America and speculation on its sensitivity to climate change across its range. Dendrochronologia, 28, 73–83.

    Google Scholar 

  • Guo, Q., Brandle, J., Schoeneberger, M., & Buettner, D. (2004). Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates. Canadian Journal of Forest Research, 34, 2564–2572.

    Google Scholar 

  • Harris, S. A., French, H. M., Heginbottom, J. A., et al. (1988). Glossary of permafrost and related ground-ice terms (Technical Memo No. 142, 156pp). Ottawa: National Research of Council Canada, Associate Committee on Geotechnical Research, Permafrost Subcommittee.

    Google Scholar 

  • Haugen, D. E., Kangas, M., Crocker, S. J., et al. (2009). North Dakota’s forests 2005 (Resource Bulletin NRS-31, 82pp). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Hennon, P. E., Shaw, C. G., & Hansen, E. M. (1990). Dating decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Forest Science, 36, 502–515.

    Google Scholar 

  • Hennon, P. E., D’Amore, D., Wittwer, D., et al. (2006). Climate warming, reduced snow, and freezing injury could explain the demise of yellow-cedar in southeast Alaska, USA. World Resource Review, 18, 427–450.

    Google Scholar 

  • Holman, M. L., & Peterson, D. L. (2006). Spatial and temporal variability in forest growth in the Olympic Mountains, Washington: Sensitivity to climatic variability. Canadian Journal of Forest Research, 36, 92–104.

    Google Scholar 

  • Huntington, T. G., Richardson, A. D., McGuire, K. J., & Hayhoe, K. (2009). Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems. Canadian Journal of Forest Research, 39, 199–212.

    Google Scholar 

  • Hurteau, M. D., Koch, G. W., & Hungate, B. A. (2008). Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Frontiers in Ecology and the Environment, 6, 493–498.

    Google Scholar 

  • Incident Information System. (2011). Wallow. http://www.inciweb.org/incident/2262. 19 Dec 2011.

  • Iverson, L. R., Prasad, A. M., & Matthews, S. (2008a). Modeling potential climate change impacts on the trees of the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13, 517–540.

    Google Scholar 

  • Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008b). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.

    Google Scholar 

  • Johnsen, K. H., Butnor, J. R., Kush, J. S., et al. (2009). Hurricane Katrina winds damaged longleaf pine less than loblolly pine. Southern Journal of Applied Forestry, 3, 178–181.

    Google Scholar 

  • Johnson, M. G., & Kern, J. S. (2003). Quantifying the organic carbon held in forested sols of the United States and Puerto Rico. In J. M. Kimble, L. S. Heath, R. A. Birdsey, R. Lal, J. M. Kimble, L. S. Heath, R. A. Birdsey, & R. Lal (Eds.), The potential of U.S. forest soils to sequester carbon and mitigate the greehouse effect (pp. 47–72). New York: CRC Press.

    Google Scholar 

  • Johnson, E., Geissler, G., & Murray, D. (2010). The Oklahoma forest resource assessment, 2010: A comprehensive analysis of forest-related conditions, trends, threats and opportunities (163pp). Oklahoma City: Oklahoma Department of Agriculture, Food, and Forestry.

    Google Scholar 

  • Johnstone, J. F., & Chapin, F. S. (2006). Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems, 9, 14–31.

    Google Scholar 

  • Johnstone, J. F., & Kasischke, E. S. (2005). Stand-level effects of soil burn severity on post-fire regeneration in a recently-burned black spruce forest. Canadian Journal of Forest Research, 35, 2151–2163.

    Google Scholar 

  • Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., et al. (2010a). Fire, climate change, and forest resilience in interior Alaska. Canadian Journal of Forest Research, 40, 1302–1312.

    Google Scholar 

  • Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S., & Mack, M. C. (2010b). Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology, 16, 1281–1295.

    Google Scholar 

  • Karl, T. R., Knight, R. W., & Plummer, N. (1995). Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217–220.

    CAS  Google Scholar 

  • Kasischke, E. S., & Johnstone, J. F. (2005). Variation in ground-layer surface fuel consumption and its effects on site characteristics in a Picea mariana forest complex in Interior Alaska. Canadian Journal of Forest Research, 35, 2164–2177.

    Google Scholar 

  • Kasischke, E. S., Verbyla, D. L., Rupp, T. S., et al. (2010). Alaska’s changing fire regime— Implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40, 1313–1324.

    Google Scholar 

  • Kittredge, D. B. (2004). Extension/outreach implications for America’s family forest owners. Journal of Forestry, 102, 15–18.

    Google Scholar 

  • Klein, E., Berg, E. E., & Dial, R. (2005). Wetland drying and succession across the Kenai Peninsula lowlands, south-central Alaska. Canadian Journal of Forest Research, 35, 1931–1941.

    Google Scholar 

  • Koteen, L. (2002). Climate change, whitebark pine, and grizzly bears in the Greater Yellowstone Ecosystem. In S. Schneider & T. Root (Eds.), Wildlife response to climate change: North American case studies (pp. 343–414). Washington, DC: Island Press.

    Google Scholar 

  • Lapina, I., & Carlson, M. L. (2004). Non-native plant species of Susitna, Matanuska, and Copper River basins: Summary of survey findings and recommendations for control actions (Final Report, 64pp). Anchorage: U.S. Department of Agriculture, Forest Service, State and Private Forestry.

    Google Scholar 

  • Larsen, C. F., Motyka, R. J., Freymueller, J. T., et al. (2005). Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237, 548–560.

    CAS  Google Scholar 

  • Lenihan, J. M., Drapek, R., Bachelet, D., & Neilson, R. P. (2003). Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications, 13, 1667–1681.

    Google Scholar 

  • Lenihan, J., Bachelet, D., Neilson, R., & Drapek, R. (2008). Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Global and Planetary Change, 64, 16–25.

    Google Scholar 

  • Li, C., Barclay, H. J., Hawkes, B. C., & Taylor, S. W. (2005). Lodgepole pine forest age class dynamics and susceptibility to mountain pine beetle attack. Ecological Complexity, 2, 232–239.

    Google Scholar 

  • Littell, J. S. (n.d). Relationships between area burned and climate in the Western United States: Vegetation-specific historical and future fire. Manuscript in preparation. On file with: U.S. Geological Survey, Alaska Climate Science Center, 4210 University Drive, Anchorage, AK 99508.

    Google Scholar 

  • Littell, J. S., Peterson, D. L., & Tjoelker, M. (2008). Douglas-fir growth in mountain ecosystems: Water limits tree growth from stand to region. Ecological Monographs, 78, 349–368.

    Google Scholar 

  • Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications, 19, 1003–1021.

    Google Scholar 

  • Littell, J. S., Oneil, E. E., McKenzie, D., et al. (2010). Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102, 129–158.

    Google Scholar 

  • Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259, 685–697.

    Google Scholar 

  • Lockaby, B. G, Nagy, C., Vose, J. M., et al. (2011). Water and forests. In Southern forest futures technical report. Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station. Chapter 13. http://www.srs.fs.usda.gov/futures/reports/draft/pdf/Chapter%2013.pdf

  • McKenney, D. W., Pedlar, J. H., Lawrence, K., et al. (2007). Potential impacts of climate change on the distribution of North American trees. BioScience, 57, 939–948.

    Google Scholar 

  • McKenney, D. W., Pedlar, J. H., Rood, R. B., & Price, D. (2011). Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 17(8), 2720–2730.

    Google Scholar 

  • McKenzie, D., Peterson, D. W., Peterson, D. L., & Thornton, P. E. (2003). Climatic and biophysical controls on conifer species distributions in mountain forests of Washington State, USA. Journal of Biogeography, 30, 1093–1108.

    Google Scholar 

  • McKenzie, D., Gedalof, Z., Peterson, D. L., & Mote, P. (2004). Climatic change, wildfire, and conservation. Conservation Biology, 18, 890–902.

    Google Scholar 

  • McNulty, S. G. (2002). Hurricane impacts on U.S. forest carbon sequestration. Environmental Pollution, 116, s17–s24.

    CAS  Google Scholar 

  • McNulty, S. G., & Boggs, J. L. (2010). A conceptual framework: Redefining forest soil’s critical acid loads under a changing climate. Environmental Pollution, 158, 2053–2058.

    CAS  Google Scholar 

  • McNulty, S. G., Lorio, P. L., Ayres, M. P., & Reeve, J. D. (1998a). Predictions of southern pine beetle populations using a forest ecosystem model. In R. A. Mickler & S. A. Fox (Eds.), The productivity and sustainability of Southern forest ecosystems in a changing environment (pp.617–634). New York: Springer.

    Google Scholar 

  • McNulty, S. G., Vose, J. M., & Swank, W. T. (1998b). Predictions and projections of pine productivity and hydrology in response to climate change across the southern United States. In R. A. Mickler & S. A. Fox (Eds.), The productivity and sustainability of Southern forest ecosystems in a changing environment (pp. 391–406). New York: Springer.

    Google Scholar 

  • Mehmood, S. R., & Zhang, D. (2001). Forest parcelization in the United States: A study of contributing factors. Journal of Forestry, 99, 30–34.

    Google Scholar 

  • Meneguzzo, D. M., Butler, B. J., Crocker, S. J. et al. (2008). Nebraska’s forests, 2005 (Resource Bulletin NRS-27, 94pp). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Millsaps, W., & Groothuis, P. A. (2003). The economic impact of North Carolina ski areas on the economy of North Carolina: 2002–2003 season. North Carolina Ski Areas Association. http://www.goskinc.com.

  • Mimura, N. (1999). Vulnerability of island countries in the South Pacific to sea level rise and climate change. Climate Research, 12, 137–143.

    Google Scholar 

  • Mimura, N., Nurse, L., & McLean, R. F. (2007). Small islands. In M. L. Parry, O. F. Canziani, & J. P. Palutikof (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 687–716). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mladenoff, D. J., & Pastor, J. (1993). Sustainable forest ecosystems in the northern hardwood and conifer region: concepts and management. In G. H. Aplet, J. T. Olsen, N. Johnson, & V. A. Sample (Eds.), Defining sustainable forestry (pp. 145–180). Washington, DC: Island Press.

    Google Scholar 

  • Mohan, J. E., Cox, R. M., & Iverson, L. R. (2009). Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Canadian Journal of Forest Research, 39, 213–230.

    CAS  Google Scholar 

  • Montana Department of Natural Resources and Conservation. (2010). Montana’s state assessment of forest resources: Base findings and GIS methodology (29pp). Missoula: Montana Department of Natural Resources and Conservation.

    Google Scholar 

  • Morgan, J. A., Follett, R. F., Allen, L. H., et al. (2010). Carbon sequestration in agricultural lands in the United States. Journal of Soil and Water Conservation, 65, 6A–13A.

    Google Scholar 

  • Moser, W. K., Hansen, M. H., Atchison, R. L., et al. (2008). Kansas forests, 2005 (Resource Bulletin NRS-26, 125pp). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Mote, P. W., & Salathé, E. P. (2010). Future climate in the Pacific Northwest. Climatic Change, 102, 29–50.

    Google Scholar 

  • Motyka, R. J., O’Neel, S., Conner, C. L., & Echelmeyer, K. A. (2002). Twentieth century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off. Global and Planetary Change, 35, 93–112.

    Google Scholar 

  • National Interagency Fire Center. (2011). Statistics: National year-to-date report on fires and acres burned by state. http://www.nifc.gov/fireInfo/fireInfo_stats_YTD2011.html. 19 Dec 2011.

  • National Land Cover Database. (2001). Multi-resolution land characteristics consortium: National land cover database. http://www.mrlc.gov/nlcd01_data.php. 23 Dec 2011.

  • National Synthesis Assessment Team. (2003). U.S. national assessment of the potential consequences of climate variability and change: educational resources: Regional paper, Alaska. http://www.usgcrp.gov/usgcrp/nacc/education/alaska/default.htm. 3 Sept 2010.

  • Nelson, M. D., Liknes, G. C., & Butler, B. J. (2010). Map of forest ownership in the conterminous United States [Scale 1:7,500,000] (Research Map NRS-2). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Norby, R., DeLucia, E., Gielen, B., et al. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA, 102, 18052–18056.

    CAS  Google Scholar 

  • Norton, C. W., Chu, P. S., & Schroeder, T. A. (2011). Projecting changes in future heavy rainfall events for Oahu, Hawaii: A statistical downscaling approach [Abstract]. Journal of Geophysical Research, 116, D17110.

    Google Scholar 

  • Nowacki, G. J., & Abrams, M. D. (2008). The demise of fire and “mesophication” of forests in the eastern United States. BioScience, 58, 123–138.

    Google Scholar 

  • Oki, D. S. (2004). Trends in streamflow characteristics at long-term gaging stations, Hawaii. (Scientific Investigations Report 2004–5080, 120pp). Denver: U.S. Geological Survey.

    Google Scholar 

  • Ollinger, S. V., Goodale, C. L., Hayhoe, K., & Jenkins, J. P. (2008). Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests. Mitigating Adaptation Strategies for Global Change, 13, 467–485.

    Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., et al. (2011). A large and persistent carbon sink in the world’s forests, 1990–2007. Science, 333, 988–993.

    CAS  Google Scholar 

  • Parson, E. A., Carter, L., Anderson, P., et al. (2001). Potential consequences of climate variability and change for Alaska. In N. A. S. Team (Ed.), Climate change impacts on the United States–Foundation report (pp. 283–312). Cambridge: Cambridge University Press.

    Google Scholar 

  • Perry, L. G., Andersen, D. C., Reynolds, L. V., et al. (2012). Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18, 821–842.

    Google Scholar 

  • Peterson, D. W., & Peterson, D. L. (2001). Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology, 82, 3330–3345.

    Google Scholar 

  • Peterson, D. L., Halofsky, J. L., & Johnson, M. C. (2011). Managing and adapting to changing fire regimes in a warmer climate. In D. McKenzie, C. Miller, & D. Falk (Eds.), The landscape ecology of fires (pp. 249–267). New York: Springer.

    Google Scholar 

  • Pojar, J., & MacKinnon, A. (1994). Plants of the Pacific Northwest coast: Washington, Oregon, British Columbia, and Alaska (p. 528). Redmond: Lone Pine Publishing.

    Google Scholar 

  • Powell, J., & Logan, J. (2005). Insect seasonality: Circle map analysis of temperature-driven life cycles. Theoretical Population Biology, 67, 161–179.

    Google Scholar 

  • Prasad, A. M., Iverson, L. R., Matthews, S., & Peters, M. (2007-ongoing). A climate change atlas for 134 forest tree species of the eastern United States. Delaware: U.S. Department of Agriculture, Forest Service, Northern Research Station. Database at http://www.nrs.fs.fed.us/atlas/tree.

  • Pye, J. M., Holmes, T. P., Prestemon, J. P., & Wear, D. N. (2011). Economic impacts of the southern pine beetle. In R. N. Coulson, & K. D. Klepzig (Eds.), Southern pine beetle II (General Technical Report SRS-140, pp. 213–222). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Randerson, J. T., Liu, H., Flanner, M. G., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314, 1130–1132.

    CAS  Google Scholar 

  • Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006). Empirical analyses of plant-climate relationships for the western United States. International Journal of Plant Sciences, 167, 1123–1150.

    Google Scholar 

  • Rehfeldt, G. E., Ferguson, D. E., & Crookston, N. L. (2008). Quantifying the abundance of co-occurring conifers along Inland Northwest (USA) climate gradients. Ecology, 89, 2127–2139.

    Google Scholar 

  • Rehfeldt, G. E., Ferguson, D. E., & Crookston, N. L. (2009). Aspen, climate, and sudden decline in western USA. Forest Ecology and Management, 258, 2353–2364.

    Google Scholar 

  • Reid, W. V., Mooney, H. A., Cropper, A., et al. (2005). Ecosystems and human well-being: Synthesis (155pp). Washington, DC: Island Press.

    Google Scholar 

  • Richardson, A. D., Bailey, A. S., Denny, E. G., et al. (2006). Phenology of a northern hardwood forest canopy. Global Change Biology, 12, 1174–1188.

    Google Scholar 

  • Robertson, G., & Brooks, D. (2001). Assessment of the competitive position of the forest products sector in southeast Alaska, 1985–94 (General Technical Report PNW-GTR-504, 29pp). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Rodenhouse, N. L., Matthews, S. N., McFarland, K. P., et al. (2008). Potential effects of climate change on birds of the Northeast. Mitigation and Adaption Strategies for Global Change, 13, 517–540.

    Google Scholar 

  • Rodenhouse, N. L., Christenson, L. M., Parry, D., & Green, L. E. (2009). Climate change effects on native fauna of northeastern forests. Canadian Journal of Forest Research, 39, 249–263.

    Google Scholar 

  • Rogers, B. M., Neilson, R. P., Drapek, R., et al. (2011). Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. Journal of Geophysical Research, 116, 1–13.

    Google Scholar 

  • Rustad, L. E., Melillo, J. M., & Mitchell, M. J. (2000). Effects of soil warming on carbon and nitrogen cycling. In R. Mickler, R. Birdsey, & J. Hom (Eds.), Responses of northern U.S. forests to environmental change (pp. 357–381). New York: Springer.

    Google Scholar 

  • Rustad, L. E., Campbell, J. L., Cox, R. M., et al. (2009). NE forests 2100: A synthesis of climate change impacts on forests of the northeastern US and eastern Canada 2009. Canadian Journal of Forest Research, 39, iii–iv.

    Google Scholar 

  • Safeeq, M., & Fares, A. (2011). Hydrologic response of a Hawaiian watershed to future climate change scenarios. Hydrological Processes. doi:10.1002/hyp.8328.

    Google Scholar 

  • Schroeder, R. F., & Kookesh, M. (1990). Subsistence harvest and use of fish and wildlife resources and the effects of forest management in Hoonah, Alaska (Technical Paper 142, 326pp). Juneau: Alaska Department of Fish and Game, Division of Subsistence.

    Google Scholar 

  • Schuur, E. A. G., Crummer, K. G., Vogel, J. G., & Mack, M. C. (2007). Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems, 10, 280–292.

    Google Scholar 

  • Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al. (2008). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701–714.

    Google Scholar 

  • Shafer, S. L., Harmon, M. E., Neilson, R. P., et al. (2010). The potential effects of climate change on Oregon’s vegetation. In K. D. Dello & P. W. Mote (Eds.), Oregon climate assessment report (pp. 175–210). Corvallis: Oregon State University, College of Oceanic and Atmospheric Sciences, Oregon Climate Change Research Institute.

    Google Scholar 

  • Skinner, M., Parker, B. L., Gouli, S., & Ashikaga, T. (2003). Regional responses of hemlock woolly adelgid (Homoptera: Adelgidae) to low temperatures. Environmental Entomology, 32, 523–528.

    Google Scholar 

  • Smith, L. C., Sheng, Y., MacDonald, G. M., & Hinzman, L. D. (2005). Disappearing arctic lakes. Science, 308, 1429–1429.

    CAS  Google Scholar 

  • Smith, W. B., tech. coord.: Miles, P. D., data coord.: Perry, C. H., Map Coord., Pugh, S. A., data CD coord. (2009). Forest resources of the United States, 2007 (GeneralTechnical ReportGTR-WO-78, 336pp). Washington, DC: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  • Sohngen, B., Mendelsohn, R., & Sedjo, R. (2001). A global model of climate change impacts on timber markets. Journal of Agricultural and Resource Economics, 26, 326–343.

    Google Scholar 

  • South Dakota Resource Conservation and Forestry Division. (2007). South Dakota forest stewardship plan, 2007 revision (35pp). Pierre: South Dakota Department of Agriculture, Resource Conservation and Forestry Division.

    Google Scholar 

  • Sun, G., McNulty, S. G., Moore Myers, J. A., & Cohen, E. C. (2008). Impacts of stresses on water demand and supply across the southeastern United States. Journal of the American Water Resources Association, 44, 1441–145.

    Google Scholar 

  • Swanston, C. W., Janowiak, M., Iverson, L., et al. (2011). Ecosystem vulnerability assessment and synthesis: A report from the Climate Change Response Framework Project in northern Wisconsin, Version 1 (General Technical Report NRS-82, 142pp). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Tan, Z., Tieszen, L. L., Zhu, Z., et al. (2007). An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin. Carbon Balance and Management, 2, 12. doi:10.1186/1750-0680-2-12.

    Google Scholar 

  • Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest resilience, biodiversity, and climate change (Technical Series no. 43, 67pp). Montreal: Secretariat of the Convention on Biological Diversity.

    Google Scholar 

  • Trimble, S. W. (2008). Man-induced soil erosion on the Southern Piedmont: 1700–1970 (2nd ed., 80pp, p. 80). Ankeny: Soil and Water Conservation Society.

    Google Scholar 

  • U.S. Department of Agriculture, Forest Service. (2011). Rocky Mountain bark beetle. http://www.fs.usda.gov/main/barkbeetle/home. 19 Dec 2011.

  • Vogel, J., Schuur, E. A. G., Trucco, C., & Lee, H. (2009). Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. Journal of Geophysical Research, 114, G04018. doi:10.1029/2008JG000901.

    Google Scholar 

  • Walker, K. V., Davis, M. B., & Sugita, S. (2002). Climate change and shifts in potential tree species range limits in the Great Lakes region. Journal of Great Lakes Research., 28, 555–567.

    Google Scholar 

  • Wang, C., Lu, Z., & Haithcoat, T. L. (2007). Using Landsat images to detect oak decline in the Mark Twain National Forest, Ozark Highlands. Forest Ecology and Management, 24, 70–78.

    Google Scholar 

  • Weiss, J. L., Castro, C. L., & Overpeck, J. T. (2009). Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures. Journal of Climate, 22, 5918–5932.

    Google Scholar 

  • Werner, R. A., Holsten, E. H., Matsuoka, S. M., & Burnside, R. E. (2006). Spruce beetles and forest ecosystems in south-central Alaska: A review of 30 years of research. Forest Ecology and Management, 227, 195–206.

    Google Scholar 

  • Wertin, T. M., McGuire, M. A., & Teskey, R. O. (2010). The influence of elevated temperature, elevated atmospheric CO2 concentration and water stress on net photosynthesis of loblolly pine (Pinus taeda L.) at northern, central and southern sites in its native range. Global Change Biology, 16, 2089–2103.

    Google Scholar 

  • Westerling, A. L., Turner, M. G., Smithwick, E. A. H., et al. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences, USA, 108, 13165–13170.

    CAS  Google Scholar 

  • Whitlock, C., Shafer, S., Marlon, J., et al. (2003). The role of climate and vegetation change in shaping past and future fire regimes in the northwestern U.S. and the implication for ecosystem management. Forest Ecology and Management, 178, 5–21.

    Google Scholar 

  • Whitlow, T. H., & Harris, R. W. (1979). Flood tolerance in plants: A state-of-the-art review (pp. 1–161). Washington, DC: U.S. Department of Commerce, National Technical Information Service.

    Google Scholar 

  • Wiedinmyer, C., & Hurteau, M. D. (2010). Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environmental Science and Technology, 44, 1926–1932.

    CAS  Google Scholar 

  • Williams, A. P., Allen, C. D., Millar, C. I., et al. (2010). Forest responses to increasing aridity and warmth in southwestern North America. Proceedings of the National Academy of Sciences, USA, 107, 21289–21294.

    CAS  Google Scholar 

  • Wolken, J. M., Hollingsworth, T. N., Rupp, T. S., et al. (2011). Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere, 2(11), art124.

    Google Scholar 

  • Wyckoff, P. H., & Bowers, R. (2010). Response of the prairie–forest border to climate change: Impacts of increasing drought may be mitigated by increasing CO2. Journal of Ecology, 98, 197–208.

    Google Scholar 

  • Wyoming State Forestry Division. (2009). Wyoming statewide assessment (74pp). Cheyenne: Wyoming State Forestry.

    Google Scholar 

  • Xu, W. (2002). Economic impact of the Texas forest sector (Texas Agricultural Extension Publication 161, 19pp). College Station: Texas AgriLife Extension Service.

    Google Scholar 

  • Xu, C., Gertner, G., & Scheller, R. (2012). Importance of colonization and competition in forest landscape response to global climatic change. Climatic Change, 110, 53–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David L. Peterson , Jane M. Wolken , Christian P. Giardina , Jeremy S. Littell , David L. Peterson , Linda A. Joyce , Christopher W. Swanston , Lindsey E. Rustad or Steven G. McNulty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Peterson, D.L. et al. (2014). Regional Highlights of Climate Change. In: Peterson, D., Vose, J., Patel-Weynand, T. (eds) Climate Change and United States Forests. Advances in Global Change Research, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7515-2_6

Download citation

Publish with us

Policies and ethics