Skip to main content

Disturbance Regimes and Stressors

  • Chapter
  • First Online:

Part of the book series: Advances in Global Change Research ((AGLO,volume 57))

Abstract

The effects of climate change on insect outbreaks, wildfire, invasive species, and pathogens in forest ecosystems will greatly exceed the effects of warmer temperature on gradual changes in forest processes. Increased frequency and extent of these disturbances will lead to rapid changes in vegetation age and structure, plant species composition, productivity, carbon storage, and water yield. Insect outbreaks are the most pervasive forest disturbance in the United States, and rapid spread of bark beetles in the western United States has been attributed to a recent increase in temperature. Wildfire area burned has increased in recent decades, although frequency and severity have not changed, and is expected to greatly increase by 2050 (at least twice as much area burned annually in the West). More frequent occurrence of fire and insects will create landscapes in which regeneration of vegetation will occur in a warmer environment, possibly with new species assemblages, younger age classes, and altered forest structure. Increased fire and insects may in turn cause more erosion and landslides. Invasive plant species are already a component of all forest ecosystems, and a warmer climate will likely facilitate the spread of current and new invasives, particularly annuals that compete effectively in an environment with higher temperature and frequent disturbance. The interaction of multiple disturbances and stressors, or stress complexes, has the potential to alter the structure and function of forest ecosystems, especially when considered in the context of human land-use change. Occurring across large landscapes over time, these stress complexes will have mostly negative effects on ecosystem services, requiring costly responses to mitigate them and active management of forest ecosystems to enhance resilience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, H. D., Macalady, A. K., Breshears, D. D., et al. (2010). Climate-induced tree mortality: Earth system consequences. EOS, Transactions of the American Geophysical Union, 91, 153.

    Article  Google Scholar 

  • Adams, H. D., Luce, C. H., Breshears, D. D., et al. (2012). Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145–149.

    Google Scholar 

  • Allen, C. D., & Breshears, D. D. (1998). Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences, USA, 95, 14839–14842.

    Article  CAS  Google Scholar 

  • Allen, C. D., Savage, M., Falk, D. A., et al. (2002). Ecological restoration of Southwestern ponderosa pine ecosystems: A broad perspective. Ecological Applications, 12, 1418–1433.

    Article  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  • Alpert, P., Bone, E., & Holzapfel, C. (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 52–66.

    Article  Google Scholar 

  • Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263–286.

    Article  CAS  Google Scholar 

  • Bachelet, D., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2001). Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems, 4, 164–185.

    Article  CAS  Google Scholar 

  • Bailey, J. D., Mayrohn, C., Doescher, P. S., et al. (1998). Understory vegetation in old and young Douglas-fir forests of western Oregon. Forest Ecology and Management, 112, 289–302.

    Article  Google Scholar 

  • Band, L. E., Hwang, T., Hales, T. C., et al. (2011). Ecosystem processes at the watershed scale: Mapping and modeling ecohydrological controls of landslides. Geomorphology, 137, 159–167.

    Article  Google Scholar 

  • Barnett, T. P., & Pierce, D. W. (2008). When will Lake Mead go dry? Water Resources Research, 44, W03201.

    Article  Google Scholar 

  • Bentz, B., Logan, J., MacMahon, J., et al. (2009). Bark beetle outbreaks in western North America: Causes and consequences (44pp). Salt Lake City: University of Utah Press.

    Google Scholar 

  • Bentz, B. J., Régnière, J., Fettig, C. J., et al. (2010). Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience, 60, 602–613.

    Article  Google Scholar 

  • Berg, E. E., Henry, J. D., Fastie, C. L., et al. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve. Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219–232.

    Article  Google Scholar 

  • Berggren, A., Böjrkman, C., Bylund, H., & Ayres, M. P. (2009). The distribution and abundance of animal populations in a climate of uncertainty. Oikos, 118, 1121–1126.

    Article  Google Scholar 

  • Bigler, C., Kulakowski, D., & Veblen, T. T. (2005). Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology, 86, 3018–3029.

    Article  Google Scholar 

  • Bond, W. J., & Midgley, G. F. (2000). A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology, 6, 865–869.

    Article  Google Scholar 

  • Boon, S. (2012). Snow accumulation following forest disturbance. Ecohydrology, 5, 279–285.

    Article  Google Scholar 

  • Brace, S., & Peterson, D. L. (1998). Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, U.S.A. Atmospheric Environment, 32, 3629–3637.

    Article  CAS  Google Scholar 

  • Bradley, B. A., Oppenheimer, M., & Wilcove, D. S. (2009). Climate change and plant invasions: Restoration opportunities ahead? Global Change Biology, 15, 1511–1521.

    Article  Google Scholar 

  • Breshears, D. D., Cobb, N. S., Rich, P. M., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, USA, 102, 15144–15148.

    Article  CAS  Google Scholar 

  • Briffa, K. R. (2000). Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19, 87–105.

    Article  Google Scholar 

  • Brooks, P. D., Troch, P. A., Durcik, M., et al. (2011). Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resources Research, 47, W00J08.

    Article  Google Scholar 

  • Brown, A. E., Zhang, L., McMahon, T. A., et al. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28–61.

    Article  Google Scholar 

  • Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model©. Journal of Hydrometeorology, 7, 1113–1125.

    Article  Google Scholar 

  • Busby, P. E., Motzkin, G., & Foster, D. R. (2008). Multiple and interacting disturbances lead to Fagus grandifolia dominance in coastal New England. Journal of the Torrey Botanical Society, 135, 346–359.

    Article  Google Scholar 

  • Campbell, R., Smith, D. J., & Arsenault, A. (2006). Multicentury history of western spruce budworm outbreaks in interior Douglas-fir forests near Kamloops, British Columbia. Canadian Journal of Forest Research, 36, 1758–1769.

    Article  Google Scholar 

  • Candau, J.-N., & Fleming, R. A. (2005). Landscape-scale spatial distribution of spruce budworm defoliation in relation to bioclimatic conditions. Canadian Journal of Forest Research, 35, 2218–2232.

    Article  Google Scholar 

  • Cannon, S. H., Gartner, J. E., Rupert, M. G., et al. (2010). Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Geological Society of America Bulletin, 122, 127–144.

    Article  Google Scholar 

  • Chambers, J. C., Roundy, B. A., Blank, R. R., et al. (2007). What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs, 77, 117–145.

    Article  Google Scholar 

  • Chan-McLeod, A. C. A. (2006). A review and synthesis of the effects of unsalvaged mountain-pine-beetle-attacked stands on wildlife and implications for forest management. BC Journal of Ecosystems and Management, 7, 119–132.

    Google Scholar 

  • Cohn, J. P. (2005). Tiff over tamarisk: Can a nuisance be nice, too? Bioscience, 55, 648–654.

    Article  Google Scholar 

  • Colautti, R. I., Grigorovich, I. A., & MacIsaac, H. J. (2006). Propagule pressure: A null model for biological invasions. Biological Invasions, 8, 1023–1037.

    Article  Google Scholar 

  • Collins, D. B. G., & Bras, R. L. (2008). Climate control of sediment yield in dry lands following climate and land cover change. Water Resources Research, 44, W10405.

    Article  Google Scholar 

  • Collins, B. M., Omi, P. N., & Chapman, P. L. (2006). Regional relationships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36, 699–709.

    Article  Google Scholar 

  • Collins, B. J., Rhoades, C. C., Hubbard, R. M., & Battaglia, M. A. (2011). Tree regeneration and future stand development after bark beetle infestation and harvesting in Colorado lodgepole pine stands. Forest Ecology and Management, 261, 2168–2175.

    Article  Google Scholar 

  • Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., et al. (2011). Changes in climate water balance drive downhill shifts in plant species optimum elevations. Science, 331, 324–327.

    Article  CAS  Google Scholar 

  • Cudmore, T. J., Bjorkland, N., Carroll, A. L., & Lindgren, B. S. (2010). Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology, 47, 1036–1043.

    Article  Google Scholar 

  • D’Antonio, C. M. (2000). Chapter 4: Fire, plant invasions, and global changes. In H. A. Mooney & R. J. Hobbs (Eds.), Invasive species in a changing world (pp. 65–94). Washington, DC: Island Press.

    Google Scholar 

  • D’Antonio, C., Levine, J., & Thomsen, M. (2001). Ecosystem resistance to invasion and the role of propagule supply: A California perspective. Journal of Mediterranean Ecology, 2, 233–245.

    Google Scholar 

  • Dale, V. H., Joyce, L. A., McNulty, S., et al. (2001). Climate change and forest disturbances. BioScience, 51, 723–734.

    Article  Google Scholar 

  • Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528–534.

    Article  Google Scholar 

  • Dettinger, M. (2011). Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. Journal of the American Water Resources Association, 47, 514–523.

    Article  Google Scholar 

  • Drever, M. C., Goheen, J. R., & Martin, K. (2009). Species-energy theory, pulsed resources, and regulation of avian richness during a mountain pine beetle outbreak. Ecology, 90, 1095–1105.

    Article  Google Scholar 

  • Duffy, P. A., Walsh, J. E., Graham, J. M., et al. (2005). Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecological Applications, 15, 1317–1330.

    Article  Google Scholar 

  • Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135–139.

    Article  Google Scholar 

  • Dukes, J. S., Pontius, J., Orwig, D., et al. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Canadian Journal of Forest Research, 39, 231–248.

    Article  Google Scholar 

  • Dukes, J. S., Chiariello, N. R., Loarie, S. R., & Field, C. B. (2011). Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecological Applications, 21, 1887–1894.

    Article  Google Scholar 

  • Duncan, C. A., Jachetta, J. J., Brown, M. L., et al. (2004). Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technology, 18, 1411–1416.

    Article  Google Scholar 

  • Dwyer, G., Dushoff, J., & Yee, S. H. (2004). The combined effects of pathogens and predators on insect outbreaks. Nature, 430, 341–345.

    Article  CAS  Google Scholar 

  • Eamus, D. (1991). The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell & Environment, 14, 843–852.

    Article  Google Scholar 

  • Easterling, D. R., Evans, J. L., Groisman, P. Y., et al. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81, 417–425.

    Article  Google Scholar 

  • Eschtruth, A. K., & Battles, J. J. (2009). Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecological Monographs, 79, 265–280.

    Article  Google Scholar 

  • Esque, T. C., Schwalbe, C. R., Lissow, J. A., et al. (2007). Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Science, 24, 33–37.

    Google Scholar 

  • Evangelista, P. H., Kumer, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262, 307–316.

    Article  Google Scholar 

  • Evans, L. M., Hofstetter, R. W., Ayres, M. P., & Klepzig, K. D. (2011). Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community. Environmental Entomology, 40, 824–834.

    Article  CAS  Google Scholar 

  • Fauria, M. M., & Johnson, E. A. (2006). Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. Journal of Geophysical Research, 111, G04008.

    Google Scholar 

  • Ferrell, G. T. (1996). Chapter 45: The influence of insect pests and pathogens on Sierra forests. In Sierra Nevada Ecosystem Project: Final report to Congress, Vol. II, Assessments and scientific basis for management options (pp. 1177–1192). Davis: University of California, Centers for Water and Wildland Resources.

    Google Scholar 

  • Fischer, R. A., Reese, K. P., & Connelly, J. W. (1996). An investigation on fire effects within xeric sage grouse brood habitat. Journal of Range Management, 49, 194–198.

    Article  Google Scholar 

  • Ford, C. R., Laseter, S. H., Swank, W. T., & Vose, J. M. (2011). Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecological Applications, 21, 2049–2067.

    Article  Google Scholar 

  • Foster, D. R., Clayden, S., Orwig, D. A., et al. (2002). Oak, chestnut and fire: Climatic and cultural controls of long-term forest dynamics in New England, USA. Journal of Biogeography, 29, 1359–1379.

    Article  Google Scholar 

  • Friedenberg, N. A., Powell, J. A., & Ayres, M. P. (2007). Synchrony’s double edge: Transient dynamics and the Allee effect in stage structured populations. Ecology Letters, 10, 564–573.

    Article  Google Scholar 

  • Furniss, M. M., Holsten, E. H., Foote, M. J., & Bertram, M. (2001). Biology of a willow leafblotch miner, Micrurapteryx salicifoliella, (Lepidoptera: Gracillariidae) in Alaska. Environmental Entomology, 30, 736–741.

    Article  Google Scholar 

  • Ganey, J. L., & Vojta, S. C. (2011). Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. Forest Ecology and Management, 261, 162–168.

    Article  Google Scholar 

  • Garnas, J. R., Ayres, M. P., Liebhold, A. M., & Evans, C. (2011a). Subcontinental impacts of an invasive tree disease on forest structure and dynamics. Journal of Ecology, 99, 532–541.

    Google Scholar 

  • Garnas, J. R., Houston, D. R., Ayres, M. P., & Evans, C. (2011b). Disease ontogeny overshadows effects of climate and species interactions on population dynamics in a nonnative forest disease complex. Ecography, 35, 412–421.

    Article  Google Scholar 

  • Gaylord, M. L., Kolb, T. E., Wallin, K. F., & Wagner, M. R. (2007). Seasonal dynamics of tree growth, physiology, and resin defenses in a northern Arizona ponderosa pine forest. Canadian Journal of Forest Research, 37, 1173–1183.

    Article  CAS  Google Scholar 

  • Gillooly, J. F., Charnov, E. L., West, G. B., et al. (2002). Effects of size and temperature on developmental time. Nature, 417, 70–73.

    Article  CAS  Google Scholar 

  • Goode, J. R., Luce, C. H., & Buffington, J. M. (2011). Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains. Geomorphology, 139/140, 1–15.

    Article  Google Scholar 

  • Greenwood, D. L., & Weisberg, P. J. (2008). Density-dependent tree mortality in pinyon-juniper woodlands. Forest Ecology and Management, 255, 2129–2137.

    Article  Google Scholar 

  • Grissino-Mayer, H. D., & Swetnam, T. W. (2000). Century-scale climate forcing of fire regimes in the American Southwest. The Holocene, 10, 213–220.

    Article  Google Scholar 

  • Groffman, P. M., Baron, J. S., Blett, T., et al. (2006). Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1–13.

    Article  Google Scholar 

  • Grulke, N. E. (2011). The nexus of host and pathogen phenology: Understanding the disease triangle with climate change. New Phytologist, 189, 8–11.

    Article  Google Scholar 

  • Hales, T. C., Ford, C. R., Hwang, T., et al. (2009). Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research, 114, F03013.

    Google Scholar 

  • Halpern, C. B. (1989). Early successional patterns of forest species: Interactions of life history traits and disturbance. Ecology, 70, 704–720.

    Article  Google Scholar 

  • Hamlet, A. F., & Lettenmaier, D. P. (2007). Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resources Research, 43, W06427.

    Article  Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Special section. Conservation Biology, 22, 534–543.

    Article  Google Scholar 

  • Hessl, A. E., McKenzie, D., & Schellhaas, R. (2004). Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications, 14, 425–442.

    Article  Google Scholar 

  • Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2002). Annual and decadal climate forcing of historical regimes in the interior Pacific Northwest, USA. The Holocene, 12, 597–604.

    Article  Google Scholar 

  • Heyerdahl, E. K., McKenzie, D., Daniels, L. D., et al. (2008a). Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900). International Journal of Wildland Fire, 17, 40–49.

    Article  Google Scholar 

  • Heyerdahl, E. K., Morgan, P., & Riser, J. P. (2008b). Multi-season climate synchronized historical fires in dry forests (1650–1900), Northern Rockies, U.S.A. Ecology, 89, 705–716.

    Article  Google Scholar 

  • Hicke, J. A., Logan, J. A., Powell, J., & Ojima, D. S. (2006). Changes in temperature influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the Western United States. Journal of Geophysical Research, 11, G02019.

    Google Scholar 

  • Hicke, J. A., Allen, C. D., Desai, A. R., et al. (2012a). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18, 7–34.

    Article  Google Scholar 

  • Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012b). Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, 271, 81–90.

    Article  Google Scholar 

  • Hofstetter, R. W., Dempsey, T. D., Klepzig, K. D., & Ayres, M. P. (2007). Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecology, 8, 47–56.

    Article  Google Scholar 

  • Holden, Z. A., Abatzoglou, J. T., Luce, C. H., & Baggett, L. S. (2011a). Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agricultural and Forest Meteorology, 151, 1066–1073.

    Article  Google Scholar 

  • Holden, Z. A., Luce, C. H., Crimmins, M. A., & Morgan, P. (2011b). Wildfire extent and severity correlated with annual streamflow distribution and timing in the Pacific Northwest, USA (1984–2005). Ecohydrology. doi:10.1002/eco.257.

    Google Scholar 

  • Holmes, T. P., Liebhold, A. M., Kovacs, K. F., & Von Holle, B. (2010). A spatial-dynamic value transfer model of economic losses from a biological invasion. Ecological Economics, 70, 86–95.

    Article  Google Scholar 

  • Hutchinson, T. F., Long, R. P., Ford, R. D., & Sutherland, E. K. (2008). Fire history and the establishment of oaks and maples in second-growth forests. Canadian Journal of Forest Research, 38, 1184–1198.

    Article  Google Scholar 

  • Hwang, T., Band, L., & Hales, T. C. (2009). Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment. Water Resources Research, 45, W11425.

    Article  Google Scholar 

  • Istanbulluoglu, E., & Bras, R. L. (2006). On the dynamics of soil moisture, vegetation, and erosion: Implications of climate variability and change. Water Resources Research, 42, W06418.

    Article  Google Scholar 

  • Jenkins, M. J., Hebertson, E., Page, W., & Jorgensen, C. A. (2008). Bark beetles, fuels, fires and implications for forest management in the Intermountain West. Forest Ecology and Management, 254, 16–34.

    Article  Google Scholar 

  • Jepsen, J. U., Kapari, L., & Hagen, S. B. (2011). Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Global Change Biology, 17, 2071–2083.

    Article  Google Scholar 

  • Jorgenson, M. T., Racine, C. H., Walters, J. C., & Osterkamp, T. E. (2001). Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48, 551–571.

    Article  CAS  Google Scholar 

  • Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79, 231–241.

    Article  Google Scholar 

  • Keeley, J. E., & McGinnis, T. W. (2007). Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest. International Journal of Wildland Fire, 16, 96–106.

    Article  Google Scholar 

  • Keeley, J. E., Lubin, D., & Fotheringham, C. J. (2003). Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecological Applications, 13, 1355–1374.

    Article  Google Scholar 

  • Kemp, W. P., Everson, D. O., & Wellington, W. G. (1985). Regional climatic patterns and western spruce budworm outbreaks (Tech. Bull. 1693, 31pp). Washington, DC: U.S. Department of Agriculture, Forest Service, Canada/United States Spruce Budworms Program.

    Google Scholar 

  • Kerns, B. K., Thies, W. G., & Niwa, C. G. (2006). Season and severity of prescribed burn in ponderosa pine forests: Implications for understory native and exotic plants. Ecoscience, 13, 44–55.

    Article  Google Scholar 

  • Kerns, B. K., Naylor, B. J., Buonopane, M., et al. (2009). Modeling tamarisk (Tamarix spp.) habitat and climate change effects in the Northwestern United States. Invasive Plant Science and Management, 2, 200–215.

    Article  Google Scholar 

  • Kitzberger, T., Brown, P. M., Heyerdahl, E. K., et al. (2007). Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proceedings of the National Academy of Sciences, USA, 104, 543–548.

    Article  CAS  Google Scholar 

  • Klapwijk, M. J., Ayres, M. P., Battisti, A., & Larsson, S. (2012). Assessing the impact of climate change on outbreak potential. In P. Barbosa, D. L. Letourneau, & A. A. Agrawal (Eds.), Insect outbreaks revisited (pp. 429–450). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Klein, E., Berg, E. E., & Dial, R. (2005). Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Canadian Journal of Forest Research, 35, 1931–1941.

    Article  Google Scholar 

  • Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., et al. (2009). Approaches to predicting potential impacts of climate change on forest disease: An example with Amillaria root disease (Res. Pap. RMRS-RP-76, 10pp). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Kovacs, K. F., Haight, R. G., McCollough, D. G., et al. (2010). Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics, 69, 569–578.

    Article  Google Scholar 

  • Kovacs, K. F., Mercader, R. J., Haight, R. G., et al. (2011). The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–2020. Journal of Environmental Management, 92, 2170–2181.

    Article  Google Scholar 

  • Levine, J. M. (2000). Species diversity and biological invasions: Relating local process to community pattern. Science, 288, 852–854.

    Article  CAS  Google Scholar 

  • Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Review. Ecology Letters, 7, 975–989.

    Article  Google Scholar 

  • Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 2–21.

    Article  CAS  Google Scholar 

  • Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications, 19, 1003–1021.

    Article  Google Scholar 

  • Littell, J. S., Oneil, E. E., McKenzie, D., et al. (2010). Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102, 129–158.

    Article  Google Scholar 

  • Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259, 685–697.

    Article  Google Scholar 

  • Lodge, D. M., Williams, L., MacIsaac, H. J., et al. (2006). Biological invasions: Recommendations for U.S. policy and management. Ecological Applications, 16, 2035–2054.

    Article  Google Scholar 

  • Logan, J. A., & Powell, J. A. (2001). Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160–173.

    Google Scholar 

  • Lombardero, M. J., & Ayres, M. P. (2011). Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Environmental Entomology, 40, 1007–1018.

    Article  Google Scholar 

  • Lombardero, M. J., Ayres, M. P., Ayres, B. D., & Reeve, J. D. (2000). Cold tolerance of four species of bark beetle (Coleoptera: Scolytidae) in North America. Environmental Entomology, 29, 421–432.

    Article  Google Scholar 

  • Lonsdale, W. M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80, 1522–1536.

    Article  Google Scholar 

  • Lovett, G. M., Canham, C. D., Arthur, M. A., et al. (2006). Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience, 56, 395–405.

    Article  Google Scholar 

  • Luce, C. H. (2005). Land use and land cover effects on runoff processes: Fire. In M. G. Anderson (Ed.), Encyclopedia of hydrological sciences (pp. 1831–1838). Hoboken: Wiley.

    Google Scholar 

  • Luce, C. H., & Holden, Z. A. (2009). Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophysical Research Letters, 36, L16401.

    Article  Google Scholar 

  • Marlon, J., Bartlein, P. J., & Whitlock, C. (2006). Fire-fuel-climate linkages in the northwestern USA during the Holocene. The Holocene, 16, 1059–1071.

    Article  Google Scholar 

  • Marlon, J. R., Bartlein, P. J., Carcaillet, C., et al. (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, 1, 697–702.

    Article  CAS  Google Scholar 

  • McKenzie, D., Gedalof, Z., Peterson, D. L., & Mote, P. (2004). Climatic change, wildfire and conservation. Conservation Biology, 18, 890–902.

    Article  Google Scholar 

  • McKenzie, D., Peterson, D. L., & Littell, J. J. (2009). Global warming and stress complexes in forests of western North America. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Wildland fires and air pollution (pp. 319–337). Amsterdam/London: Elsevier. Developments in Environmental Science 8. Chapter 15.

    Google Scholar 

  • McNulty, S. G., Lorio, P. L., Ayres, M. P., & Reeve, J. D. (1997). Predictions of southern pine beetle populations under historic and projected climate using a forest ecosystem model. In R. A. Mickler & S. Fox (Eds.), The productivity and sustainability of southern forest ecosystems in a changing environment (pp. 617–634). New York: Springer.

    Google Scholar 

  • Melillo, J. M., Janetos, A. C., & Karl, T. R. (2001). Climate change impacts on the United States: The potential consequences of climate variability and change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Meyer, G. A., & Pierce, J. L. (2003). Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective. Forest Ecology and Management, 178, 89–104.

    Article  Google Scholar 

  • Miller, J. H. (1990). Ailanthus altissima (Mill.) Swingle ailanthus. In R. M. Burns, & B. H. Honkala (Tech. Coords.), Silvics of North America: Vol. 2. Hardwoods. Agriculture handbook 654 (pp. 101–104). Washington, DC: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  • Miller, R. F., & Wigand, P. E. (1994). Holocene changes in semiarid pinyon-juniper woodlands. Bioscience, 44, 465–474.

    Article  Google Scholar 

  • Miller, R. F., Bates, J. D., Svejcar, T. J., et al. (2005). Biology, ecology, and management of western juniper (Juniperus occidentalis) (Tech. Bull. 152, 82pp). Corvallis: Oregon State University, Agricultural Experiment Station.

    Google Scholar 

  • Mitchell, R. J., Hiers, J. K., O’Brien, J. J., et al. (2006). Silviculture that sustains: The nexus between silviculture, frequent prescribed fire, and conservation of biodiversity in longleaf pine forests of the southeastern United States. Canadian Journal of Forest Research, 36, 2724–2736.

    Article  Google Scholar 

  • Moody, J. A., & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the Western United States. International Journal of Wildland Fire, 18, 96–115.

    Article  Google Scholar 

  • Morgan, P., Heyerdahl, E. K., & Gibson, C. E. (2008). Multi-season climate synchronized widespread forest fires throughout the 20th century, Northern Rockies, USA. Ecology, 89, 717–728.

    Article  Google Scholar 

  • Moser, J. C., Fitzgibbon, B. A., & Klepzig, K. D. (2005). The Mexican pine beetle, Dendroctonus mexicanus: First record in the United States and co-occurrence with the southern pine beetle— Dendroctonus frontalis (Coleoptera: Scolytidae or Curculionidae: Scolytidae). Entomological News, 116, 235–243.

    Google Scholar 

  • Myers, J. H., Simberloff, D., Kuris, A. M., & Carey, J. R. (2000). Eradication revisited: Dealing with exotic species. Trends in Ecology & Evolution, 15, 316–320.

    Article  Google Scholar 

  • National Interagency Coordination Center. (2011). GACC predictive services intelligence. http://www.predictiveservices.nifc.gov/intelligence/intelligence.htm. Accessed 25 Jan 2012.

  • National Invasive Species Council. (2001). Meeting the invasive species challenge: National invasive species management plan (p. 80). Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Nelson, C. R., Halpern, C. B., & Agee, J. K. (2008). Thinning and burning results in low-level invasion by nonnative plants but neutral effects on natives. Ecological Applications, 18, 762–770.

    Article  Google Scholar 

  • Nowacki, G. J., & Abrams, M. D. (2008). The demise of fire and “mesophication” of forests in the eastern United States. Bioscience, 58, 112–128.

    Article  Google Scholar 

  • O’Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, USA, 106, 14773–14777.

    Article  Google Scholar 

  • Orwig, D. A., Foster, D. R., & Mausel, D. L. (2002). Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. Journal of Biogeography, 29, 1475–1487.

    Article  Google Scholar 

  • Pagano, T., & Garen, D. (2005). A recent increase in Western U.S. streamflow variability and persistence. Journal of Hydrometeorology, 6, 173–179.

    Article  Google Scholar 

  • Paradis, A., Elkinton, J., Hayhoe, K., & Buonaccorsi, J. (2008). Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change, 13, 541–554.

    Article  Google Scholar 

  • Parker, T. J., Clancy, K. M., & Mathiasen, R. L. (2006). Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agricultural and Forest Entomology, 8, 167–189.

    Article  Google Scholar 

  • Parks, C. G., Radosevich, S. R., Endress, B. A., et al. (2005). Natural and land-use history of the Northwest mountain ecoregions (USA) in relation to patterns of plant invasions. Perspectives in Plant Ecology, Evolution and Systematics, 7, 137–158.

    Article  Google Scholar 

  • Pattison, R. R., & Mack, R. N. (2008). Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: Evaluating CLIMEX predictions with field trials. Global Change Biology, 14, 813–826.

    Article  Google Scholar 

  • Pauchard, A., Kueffer, C., Dietz, H., et al. (2009). Ain’t no mountain high enough: Plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 7, 479–486.

    Article  Google Scholar 

  • Peterson, D. L., Arbaugh, M. J., & Robinson, L. J. (1991). Growth trends of ozone-stressed ponderosa pine (Pinus ponderosa) in the Sierra Nevada of California, USA. The Holocene, 1, 50–61.

    Article  Google Scholar 

  • Peterson, D. L., Allen, C. D., Baron, J. S., et al. (2012). Response of Western mountain ecosystems to climatic variability and change: A collaborative research approach. In J. Bellant & E. Beever (Eds.), Ecological consequences of climate change: Mechanisms, conservation, and management (pp. 163–190). New York: Taylor & Francis.

    Google Scholar 

  • Pfeifer, E. M., Hicke, J. A., & Meddens, A. J. H. (2011). Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the Western United States. Global Change Biology, 17, 339–350.

    Article  Google Scholar 

  • Pierce, J. L., Meyer, G. A., & Jull, A. J. T. (2004). Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature, 432, 87–90.

    Article  CAS  Google Scholar 

  • Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.

    Article  Google Scholar 

  • Platt, W. J., Beckage, B., Doren, R. F., & Slater, H. H. (2002). Interactions of large-scale disturbances: Prior fire regimes and hurricane mortality of savanna pines. Ecology, 83, 1566–1572.

    Article  Google Scholar 

  • Powell, J. A., Jenkins, J. L., Logan, J. A., & Bentz, B. J. (2000). Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology, 62, 977–998.

    Article  CAS  Google Scholar 

  • Powell, K. I., Chase, J. M., & Knight, T. M. (2011). Synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98, 539–548.

    Article  Google Scholar 

  • Power, M. J., Marlon, J., Ortiz, N., et al. (2008). Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 30, 887–907.

    Article  Google Scholar 

  • Price, J. I., McCollum, D. W., & Berrens, R. P. (2010). Insect infestation and residential property values: A hedonic analysis of the mountain pine beetle epidemic. Forest Policy and Economics, 12, 415–422.

    Article  Google Scholar 

  • Raffa, K. F., Aukema, B. H., Bentz, B. J., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501–517.

    Article  Google Scholar 

  • Rajagopalan, B., Nowak, K., Prairie, J., et al. (2009). Water supply risk on the Colorado River: Can management mitigate? Water Resources Research, 45, W08201.

    Article  Google Scholar 

  • Ralph, F. M., Neiman, P. J., Wick, G. A., et al. (2006). Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33, L13801.

    Article  Google Scholar 

  • Reynolds, L. V., Ayres, M. P., Siccama, T. G., & Holmes, R. T. (2007). Climatic effects on caterpillar fluctuations in northern hardwood forests. Canadian Journal of Forest Research, 37, 481–491.

    Article  Google Scholar 

  • Rodenhouse, N. L., Christenson, L. M., Parry, D., & Green, L. E. (2009). Climate change effects on native fauna of northeastern forests. Canadian Journal of Forest Research, 39, 249–263.

    Article  Google Scholar 

  • Rohrs-Richey, J. K., Mulder, C. P. H., Winton, L. M., & Stanosz, G. (2011). Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. New Phytologist, 189, 295–307.

    Article  Google Scholar 

  • Ross, M. S., Obrien, J. J., Ford, R. G., et al. (2009). Disturbance and the rising tide: The challenge of biodiversity management on low-island ecosystems. Frontiers in Ecology and the Environment, 7, 471–478.

    Article  Google Scholar 

  • Safranyik, L., Carroll, A. L., Régnière, D. W., et al. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist, 142, 415–442.

    Article  Google Scholar 

  • Sage, R. F., Coiner, H. A., Way, D. A., et al. (2009). Kudzu [Pueraria montana (Lour.) Merr. var lobata]: A new source of carbohydrate for bioethanol production. Biomass and Bioenergy, 33, 57–61.

    Article  CAS  Google Scholar 

  • Salinas-Moreno, Y., Ager, A., Vargas, C. F., et al. (2010). Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecology and Management, 260, 52–61.

    Article  Google Scholar 

  • Sasek, T. W., & Strain, B. R. (1990). Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the U.S.A. Climatic Change, 16, 31–51.

    Article  Google Scholar 

  • Scheffer, M., Bascompte, J., Brock, W. A., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59.

    Article  CAS  Google Scholar 

  • Seabloom, E. W., Harpole, W. S., Reichman, O. J., & Tilman, D. (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences, USA, 100, 13384–13389.

    Article  CAS  Google Scholar 

  • Seppälä, R., Buck, A., Katila, P. (Eds.). (2009). Adaptation of forests and people to climate change: A global assessment report (224pp). Helsinki: International Union of Forest Research Organizations.

    Google Scholar 

  • Sexton, J. P., McKay, J. K., & Sala, A. (2002). Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications, 12, 1652–1660.

    Article  Google Scholar 

  • Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307.

    Article  Google Scholar 

  • Sheppard, S., & Picard, P. (2006). Visual-quality impacts of forest pest activity at the landscape level: A synthesis of published knowledge and research needs. Landscape and Urban Planning, 77, 321–342.

    Article  Google Scholar 

  • Sherriff, R. L., Berg, E. E., & Miller, A. E. (2011). Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska. Ecology, 92, 1459–1470.

    Article  Google Scholar 

  • Siegert, N. W., McCullough, D. G., Venette, R. C., et al. (2009). Assessing the climatic potential for epizootics of the gypsy moth fungal pathogen Entomophaga maimaiga in the north central United States. Canadian Journal of Forest Research, 39, 1958–1970.

    Article  Google Scholar 

  • Silander, J. A., Jr., & Klepeis, D. M. (1999). The invasion ecology of Japanese barberry (Berberis thunbergii) in the New England landscape. Biological Invasions, 1, 189–201.

    Article  Google Scholar 

  • Silveri, A., Dunwiddie, P. W., & Michaels, H. J. (2001). Logging and edaphic factors in the invasion of an Asian woody vine in a mesic North American forest. Biological Invasions, 3, 379–389.

    Article  Google Scholar 

  • Simard, M., Romme, W. H., Griffin, J. M., & Turner, M. G. (2011). Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecological Monographs, 81, 3–24.

    Article  Google Scholar 

  • Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81–102.

    Article  Google Scholar 

  • Six, D. L., & Bentz, B. J. (2007). Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microbial Ecology, 54, 112–118.

    Article  CAS  Google Scholar 

  • Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, USA, 106, 1704–1709.

    Article  CAS  Google Scholar 

  • Spracklen, D. V., Mickley, L. J., Logan, J. A., et al. (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the Western United States. Journal of Geophysical Research, 114, D20301.

    Article  CAS  Google Scholar 

  • Standards and Trade Development Facility. (2009). Climate change and agriculture trade: Risks and responses. http://www.standardsfacility.org/Climate_change.htm. Accessed 24 Jan 2012.

  • Stein, B. A., & Flack, S. R. (Eds.). (1996). America’s least wanted: Alien species invasions of U.S. ecosystems (31pp). Arlington: The Nature Conservancy.

    Google Scholar 

  • Stone, J. K., Coop, L. B., & Manter, D. K. (2008). Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Canadian Journal of Plant Pathology, 30, 169–176.

    Article  Google Scholar 

  • Sturrock, R. N., Frankel, S. J., Brown, A. V., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149.

    Article  Google Scholar 

  • Swetnam, T. W., & Betancourt, J. L. (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate, 11, 3128–3147.

    Article  Google Scholar 

  • Tchakerian, M. D., & Couslon, R. N. (2011). Ecological impacts of southern pine beetle. In R. N. Coulson, & K. D. Klepzig (Eds.), Southern pine beetle II (Gen. Tech. Rep. SRS-140, pp. 223–234). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Thomson, A. J., & Benton, R. (2007). A 90-year sea warming trend explains outbreak patterns of western spruce budworm on Vancouver Island. The Forestry Chronicle, 83, 867–869.

    Google Scholar 

  • Thomson, A. J., Shepherd, R. F., Harris, J. W. E., & Silversides, R. H. (1984). Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist, 116, 375–381.

    Article  Google Scholar 

  • Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78, 81–92.

    Article  Google Scholar 

  • Tkacz, B., Brown, H., Daniels, A., et al. (2010). National roadmap for responding to climate change (FS-957b). Washington, DC: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  • Trân, J. K., Ylioja, T., Billings, R. F., et al. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications, 17, 882–899.

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society, 90, 311–323.

    Article  Google Scholar 

  • Troendle, C. A., MacDonald, L. H., Luce, C. H., & Larsen, I. J. (2010). Fuel management and water yield. In W. J. Elliot, I. S Miller, & L. Audin (Eds.), Cumulative watershed effects of fuel management in the Western United States (Gen. Tech. Rep. RMRS-GTR-231, pp. 124–148). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Chapter 7.

    Google Scholar 

  • U.S. Department of Agriculture, Forest Service (USDA FS). (2010). Major forest insect and disease conditions in the United States: 2009 update (FS-952, 28pp). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., et al. (2009). Widespread increase of tree mortality rates in the Western United States. Science, 323, 521–524.

    Article  CAS  Google Scholar 

  • Veblen, T. T., Hadley, K. S., Reid, M. S., & Rebertus, A. J. (1991). The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology, 72, 213–231.

    Article  Google Scholar 

  • Wagner, D. L., Defoliart, L., Doak, P., & Schneiderheinze, J. (2008). Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen. Oecologia, 157, 259–267.

    Article  Google Scholar 

  • Wenger, S. J., Isaak, D. J., Luce, C. H., et al. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, USA, 108, 14175–14180.

    Article  CAS  Google Scholar 

  • Werner, R. A., Holsten, E. H., Matsouka, S. M., & Burnside, R. E. (2006). Spruce beetles and forest ecosystems in south-central Alaska: A review of 30 years of research. Forest Ecology and Management, 227, 195–206.

    Article  Google Scholar 

  • Westerling, A. L., Gershunov, A., Brown, T. J., et al. (2003). Climate and wildfire in the Western United States. Bulletin of the American Meteorological Society, 84, 595–604.

    Article  Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.

    Article  CAS  Google Scholar 

  • Westerling, A. L., Turner, M. G., Smithwick, E. A. H., et al. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences, USA, 108, 13165–13170.

    Article  CAS  Google Scholar 

  • Whitlock, C., Shafer, S. L., & Marlon, J. (2003). The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. Forest Ecology and Management, 178, 5–21.

    Article  Google Scholar 

  • Williams, D. W., & Liebhold, A. M. (1995a). Forest defoliators and climatic change: Potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 24, 1–9.

    Google Scholar 

  • Williams, D. W., & Liebhold, A. M. (1995b). Herbivorous insects and global change: Potential changes in the spatial distribution of forest defoliator outbreaks. Journal of Biogeography, 22, 665–671.

    Article  Google Scholar 

  • Willis, C. G., Ruhfel, B. R., Promack, R. B., et al. (2010). Favorable climate change response explains non-native species’ success in Thoreau’s woods. PLoS One, 5, e8878.

    Article  CAS  Google Scholar 

  • Woods, A. J., Heppner, D., Kope, H. H., et al. (2010). Forest health and climate change: A British Columbia perspective. The Forestry Chronicle, 86, 412–422.

    Google Scholar 

  • Worrall, J. J., Egeland, L., & Eager, T. (2008). Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255, 686–696.

    Article  Google Scholar 

  • Ylioja, T., Slone, D. H., & Ayres, M. P. (2005). Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species. Forest Science, 51, 522–531.

    Google Scholar 

  • Zavaleta, E. S., Hobbs, R. J., & Mooney, H. A. (2001). Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution, 16, 454–459.

    Article  Google Scholar 

  • Ziska, L. H., & Dukes, J. S. (2011). Weed biology and climate change (248pp). Ames: Wiley-Blackwell.

    Google Scholar 

  • Ziska, L. H., & George, K. (2004). Rising carbon dioxide and invasive, noxious plants: Potential threats and consequences. World Resource Review, 16, 427–447.

    Google Scholar 

  • Ziska, L. H., & Teasdale, J. R. (2000). Sustained growth and increased tolerance to glyphospsate observed in a C3 perennial weed quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology, 27, 159–166.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Ayres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Ayres, M.P. et al. (2014). Disturbance Regimes and Stressors. In: Peterson, D., Vose, J., Patel-Weynand, T. (eds) Climate Change and United States Forests. Advances in Global Change Research, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7515-2_4

Download citation

Publish with us

Policies and ethics