Skip to main content

Low Cost Nutrients for Algae Cultivation

  • Chapter
  • First Online:
Algal Biorefineries

Abstract

Microalgae are aquatic microorganisms growing phototrophically using sunlight and inorganic nutrients viz. carbon, nitrogen, phosphorus and other micronutrients. Sustainable production of microalgae biomass as feedstock for renewable biofuels is facing important bottlenecks in nutrient and water requirements that may hinder commercial scale development of algal systems. Fertilizer nutrients and fresh water contribute up to 50 % of the total biomass production cost that eventually impact the economical feasibility of algal fuels. In the algae-biofuels industry, nutrients must be found in lower-value sources like wastewaters and other waste streams and for sustainable production, those nutrients be recycled within the system. Integration of algal wastewater treatment with biofuel production has been strongly promoted recently. Utilizing nutrient rich wastewaters and animal wastes like poultry litter can greatly reduce the water and fertilizer demands for alga culture. Additionally, producing algal feedstock from low-cost waste based nutrient media has multiple benefits including improved water quality, N and P recycling from animal waste, reduced environmental footprints, and economic efficiency. This approach appears very attractive, since the impacts of releasing N and P and greenhouse gases into the environment could be mitigated, while conserving nutrients and simultaneously producing a material that can replace crude oil as a fuel feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Anaerobic Digestion

ADE:

Anaerobic Digestion effluent

C:

Carbon

CC:

Carbonation Column

CI:

Carpet Industry

GHG:

Green house gases

N:

Nitrogen

P:

Phosphorus

PL:

Poultry Litter

PLE:

Poultry litter extract

R&D:

Research and Development

VTR:

Vertical Tank Reactor

References

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manage 50:1824–1840

    Article  Google Scholar 

  • Becker EW (1994) Microalgae biotechnology and microbiology. Cambridge University Press, London

    Google Scholar 

  • Benemann JR (2009) Microalgae biofuels: a brief introduction. http://www.adelaide.edu.au/biogas/renewable/biofuels_introduction.pdf. Accessed 16 Nov 2012, 1–8

  • Bhatnagar A, Chinnasamy S, Singh M et al (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Borchardt JA, Azad HS (1968) Biological extraction of nutrients. J Water Pollut Control Fed 40:1739–1754

    CAS  Google Scholar 

  • BP (2012) BP Statistical Review of world Energy June 2012. http://www.bp.com/statisticalreview. Accessed 16 Nov 2012

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Campbell JE, Lobell DB, Field CB (2009) Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324:1055–1057

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–506

    PubMed  CAS  Google Scholar 

  • Chen F, John MR (1995) A strategy for high cell density culture of heterotrophic microalgae with inhibitary substrates. J Appl Phycol 7:43–46

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R et al (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Biores Technol 101:6751–6760

    Article  CAS  Google Scholar 

  • Clarens A, Resurreccion E, White M et al (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 444:1813–1819

    Article  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305

    Article  Google Scholar 

  • Costa JAV, Santana FB, Andrade MR et al (2008) Microalga biomass and biomethane production in the south of Brazil. J Biotechnol 136S:S402–S403

    Google Scholar 

  • Das KC, Singh M, Garcia-Perez M et al (2010) Biorefinary technologies-an overview. In: Selvamurugan N, Ali SM, Devi MP (eds) Proceedings of international conference on bioengineering, SRM University, India, 29–31July 2010 p 176

    Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG et al (2010) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463

    Article  Google Scholar 

  • EIA (2012) Short-Term energy outlook. http://www.eia.gov/forecasts/steo/tables/?tableNumber=8#startcode=2012&endcode=201112&periodtype=m. Accessed 14 Nov 2012

  • Goldman JC, Dennett MR, Riley CB (1981) Inorganic carbon sources and biomass regulation in intensive microalgal cultures. Biotechnol Bioeng 23:995–1014

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition-mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, UK p 97–115

    Google Scholar 

  • Harmelen TV, Oonk H (2006) Microalgae biofixation processes: applications and potential contribution to green house gas mitigation options. A report prepared for International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae operated under the International Energy Agency Greenhouse Gas R & D Programme

    Google Scholar 

  • Harun R, Singh M, Forde GM et al (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sus Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Huo Y-X, Wernick DG, Liao JC (2011) Toward nitrogen neutral biofuel production. Cur Opin Biotechnol 23:1–8

    Google Scholar 

  • IWMI (2008) Water implications of biofuel crops: Understanding tradeoffs and identifying options. Water Policy Brief. http://www.iwmi.cgiar.org/publications/Water_Policy_Briefs/PDF/WPB30.pdf. Accessed 16 Nov 2012

  • IWMI (2009) Implications of biofuels on water resources. http://www.cbd.int/doc/biofuel/Bioversity%20IWMI-Report-Biofuels.pdf. Accessed 6 Dec 2012

  • Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation:economic impact of different process options. Energy Conv Mgmt 38:S505–S510

    Google Scholar 

  • Knud-Hansen CF (2006) Managing algal productivity. In: Mcelwee K, Baker J, Clair D (eds) Pond fertilization: ecological approach and practical application. Oregon State University, Oregon

    Google Scholar 

  • Lory JA, Fulhage C (1999) Sampling poultry litter for nutrient testing. Agricultural publication G9340, University of Missouri, Columbia

    Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868

    Article  PubMed  CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Engg Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    Article  PubMed  CAS  Google Scholar 

  • Powell N, Shilton AN, Pratt S et al (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    Article  PubMed  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  PubMed  CAS  Google Scholar 

  • Putt R, Singh M, Chinnasamy S et al (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Biores Technol 102:3240–3245

    Article  CAS  Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37

    Article  Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation-a general outline. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, pp 245–263

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Rösch C, Skarka J, Wegerer N (2012) Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Biores Technol 107:191–199

    Article  Google Scholar 

  • Roy SB, Ricci PF, Summers KV et al (2005) Evaluation of the sustainability of water withdrawals in the United States, 1995–2005. J Am Water Resour Assoc 41:1091–1108

    Article  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E et al (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J et al (1998) A look back at the U.S. department of energy’s aquatic species program-Biodiesel from algae. National Renewable Energy Laboratory report No. TP-580–24190

    Google Scholar 

  • Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sus Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Singh M, Reynolds DL, Das KC (2011) Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Biores Technol 102:10841–10848

    Article  CAS  Google Scholar 

  • Sivakumar G, Vail D, Xu J et al (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Engg Life Sci 10:8–18

    Article  CAS  Google Scholar 

  • Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production. The MIT Press, Cambridge

    Google Scholar 

  • Stepan DJ, Shockey RE, Moe TA et al (2002) Carbon dioxide sequestering using microalgae systems. U.S. Department of Energy, Pittsburgh

    Book  Google Scholar 

  • Sun N, Wang Y, Li Y-T et al (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Wigmosta MS, Coleman AM, Skaggs RJ et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04

    Google Scholar 

  • Wiley PE, Campbell JE, Mckuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X et al (2011) Life-cycle ansalysis on biodiesel production from microalgae: Water footprint and nutrients balance. Biores Technol 102:159–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, M., Das, K. (2014). Low Cost Nutrients for Algae Cultivation. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_3

Download citation

Publish with us

Policies and ethics