Skip to main content

Algal Reactor Design Based on Comprehensive Modeling of Light and Mixing

  • Chapter
  • First Online:
Algal Biorefineries

Abstract

The prospect of autotrophic (or light-driven) algal biomass production as a sustainable substitute for fossil feedstocks has yet to fulfill its potential. As a likely cause, the inability to robustly account for algal biomass production rates has prevented the derivation of satisfactory mass balances for the simple parameterization of bioreactors. The methodology presented here aims at resolving this shortcoming. Treating photons as a substrate continuously fed to algae provides the grounds to define an autotrophic yield ФDW, in grams of dry weight per mole of photons absorbed, as an operating parameter. Under low irradiances, the rate of algal biomass synthesis is the product of the yield ФDW and the flux of photons absorbed by the culture, modeled using a scatter-corrected polychromatic Beer-Lambert law. This work addresses the broad misconception that Photosynthesis-Irradiance curves, or the equivalent use of specific growth rate expressions independent of the biomass concentration, can be extended to adequately model biomass production under light-limitation. Since low photon fluxes per cell maximize ФDW, the photosynthetic units mechanistic model was adapted to determine a corresponding maximum residence time under high light. Such high speeds in the photic zone, which call for fundamental changes in bioreactor design, enable the use of ФDW to describe biomass productivity under otherwise inhibitory irradiances. Nitrogen limitation-induced lipid accumulation corresponds to a photon flux excess with respect to the rate of nitrogen uptake, such that continuous lipid production can be achieved using the ФDW and nitrogen quotient parameters. Additionally, energy to photon-counts conversion factors are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Air-mass

AU:

Absorbance unit

CARPT:

Computer-automated radioactive particle tracking

Chl a :

Chlorophyll a

DW:

Dry weight

ELT:

Exponential-to-linear

LHS:

Left hand side

NPQ:

Non-photochemical quenching

NREL:

National Renewable Energy Laboratory

PAR:

Photosynthetically active radiation (400-700 nm)

PI:

Photosynthesis-irradiance

PPFD:

Photosynthesis photon flux density

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

PSU:

Photosynthetic unit

REC:

Reduced carrier

QA :

Quinone A

SC:

Scatter-corrected

a [molPSII]:

Number of open of PSII centers (or oxidized)

a* [molPSII]:

Number of closed of PSII centers (or reduced)

a 0 [molPSII]:

Total number of PSII centers

Abs RAW(λ) [AU]:

Raw algal absorption at wavelength λ

Abs SC(λ) [AU]:

Scatter-corrected algal absorption at wavelength λ

Abs SCATTER(λ) [AU]:

Scatter contribution to algal absorption at wavelength λ

A c [m2]:

Area of the culture perpendicular to the light source

C [gDW m−3]:

Algal culture biomass concentration in the bioreactor

c [m s−1]:

Celerity of light

C 0 [gDW m−3]:

Algal culture biomass concentration at inoculation time t 0

C E, [gDW m−3]:

Culture biomass concentration during spectrum acquisition

c EJ [E J−1]:

Einstein-to-Joules conversion factor

C PI [gDW m−3]:

Algal biomass concentration in the PI chamber

d [m]:

Depth of the photic zone, where light is > 99 % I 0

E P(λ) [W m−2 nm−1]:

Photon energy reported for each wavelength increment dλ

EF(x) µE gDW −1 h−1 :

Specific energy flux at depth x

EF T µE gDW −1 h−1 :

Threshold specific energy flux at onset of light limitation

E LIGHT(λ) [counts nm−1]:

Light source emission spectrum at λ

F CHEM [m3 h−1]:

Chemostat volumetric flow rate (bioreactor)

F [molPSII gDW −1]:

Weight fraction of PSII

F IN [m3 h−1]:

Inlet stream volumetric flow rate (bioreactor)

F OUT [m3 h−1]:

Outlet stream volumetric flow rate (bioreactor)

F PAR [-]:

Fraction of energy in the PAR region

h [SI Units]:

Planck’s constant

I(x) [µE m−2 h−1]:

Local PPFD at a given depth x

I 0 [µE m−2 h−1] or [µE m−2 s−1]:

Incident photosynthesis photon flux density (PPFD)

I ABS [µE m−2 h−1]:

Absorbed PPFD by the algal culture

I H [µE m−2 s−1]:

Highest possible direct normal solar irradiance

I OUT [µE m−2 h−1]:

PPFD transmitted through the algal culture

I T [µE m−2 s−1]:

Threshold irradiance at which NPQ becomes significant

k 1 [s−1]:

Rate of PSII excitation

k 2 [s−1]:

Rate of PSII relaxation

L [m]:

Depth of the culture

L E [m]:

Pathlength of the light through the spectrophotometer

L PI [m]:

Depth of the PI chamber

m P [µE gDW −1 h−1]:

Maintenance parameter

\(\dot n(\lambda )\) [E s−1 m−2 nm−1]:

Photon flux reported for each wavelength increment at λ

Na [mol−1]:

Avogadro’s constant

OD [AU]:

Algae culture absorbance at 680 nm

P [gDW m−2 h−1]:

Algal biomass area productivity

P(λ) [cps]:

Spectrometer reading (in counts per second)

P BIOREACTOR [gDW m−3 h−1]:

Bioreactor productivity

P i [gDW h−1]:

Zone i contribution to the algal biomass productivity

\(P_i^V\) [gDW m−3 h−1]:

Local volumetric biomass production rate in zone i

P LIGHT(λ) [nm−1]:

Normalized light-source photon fraction at λ

P LIPIDS [gLIPIDS h−1]:

Lipid productivity

P MAX [gDW m−2 h−1]:

Maximum algal biomass area productivity (light-limited)

P SUN(λ) [nm−1]:

Normalized solar spectrum photon fraction at λ

qL [-]:

Fraction of open PSII centers

qN [-]:

Fraction of closed PSII centers

Q N [gN gDW −1]:

Nitrogen weight fraction (or nitrogen quotient)

S [gS m−3]:

Substrate S concentration in the bioreactor

S 0 [gS m−3]:

Inlet stream substrate S concentration

t [h]:

Time in the light phase, truncated for duration in the dark

t [s]:

Time scale for the PSU model

t 0 [h]:

Reference inoculation time

u [-]:

PSU model integrating factor (L or S subscript indicates linear or sinusoidal trajectory submodel respectively)

V C [m3]:

Culture volume in bioreactor

v T [m s−1]:

Target velocity in the photic zone for near maximum ФPSII (additional L or S subscript indicates linear or sinusoidal trajectory submodel respectively)

x [m]:

Distance from the light incidence surface

x T [m]:

Threshold depth (onset of light limitation in poorly-mixed reactor)

Y C/S [gDW gS −1]:

Biomass yield on the substrate S

Y C/N [gDW gN −1]:

Biomass yield on nitrogen substrate

β [-]:

Proportionality constant between the spectrometer count reading and the incident photon flux

λ [nm]:

Wavelength

µ [h−1]:

Specific growth rate

µ MAX [h−1]:

Maximum specific growth rate

σ [m2 gDW−1]:

Monochromatic absorption cross section

σDW [m2 gDW −1]:

Scatter-corrected algae-specific light source-dependent absorption cross section

τ [s]:

Time for the incident light to excite half the threshold PSII fraction

ψ(λ) [m2 gDW m−2]:

Hyperbolic model parameter

ω(λ) [m2 gDW −1]:

Hyperbolic model parameter

ФAPP [molCO2 E−1]:

Apparent efficiency parameter in mole CO2 fixed per mole incident photons

ФCO2 [molCO2 E−1]:

Quantum yield

ΦDW [gDW µE−1]:

Autotrophic yield

ФC2 [molOZ E−1]:

Quantum yield

ФPSII [-]:

Photon fraction used to excite the QA pool, or PSII operating efficiency

References

  • Aiba S (1982) Growth kinetics of photosynthetic microorganisms. Microbial Reactions. Springer, Berlin

    Google Scholar 

  • Anon (2009) Malaysian Palm Oil Industry Performance 2008. Global oils & fats business magazine. [online] Available at: http://theoilpalm.org/magazine/ . Accessed 15 Sept 2012

  • ASTM (2003) Reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface, ASTM G173-03. [online] Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/G173-03E1.htm. Accessed 15 Oct 2012

  • Bailey Green F, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33:207–217

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Barbosa MJ, Hoogakker J, Wijffels RH (2003a) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20:115–123

    Article  CAS  Google Scholar 

  • Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003b) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179

    Article  CAS  Google Scholar 

  • Barbosa MJ, Hadiyanto, Wijffels RH (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85

    Article  PubMed  CAS  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  PubMed  CAS  Google Scholar 

  • Bernard O, Gouzé J-L (1999) Non-linear qualitative signal processing for biological systems: application to the algal growth in bioreactors. Math Biosci 157:357–372

    Article  PubMed  CAS  Google Scholar 

  • Blanch HW, Clark DS (1997) Biochemical engineering. CRC Press, USA

    Google Scholar 

  • Camacho Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  PubMed  CAS  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Microbiol Rev 62:667–683

    CAS  Google Scholar 

  • Capo TR, Jaramillo JC, Boyd AE, Lapointe BE, Serafy JE (1999) Sustained high yields of Gracilaria (Rhodophyta) grown in intensive large-scale culture. J Appl Phycol 11:143

    Article  Google Scholar 

  • Cleveland JS, Perry MJ, Kiefer DA, Talbot MC (1989) Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea. J Mar Res 47:869–886

    Article  CAS  Google Scholar 

  • Cunningham FXJ, Dennenberg RJ, Jursinic PA, Gantt E (1990) Growth under Red Light Enhances Photosystem II Relative to Photosystem I and Phycobilisomes in the Red Alga Porphyridium cruentum. Plant Physiol 93:888–895

    Article  PubMed  CAS  Google Scholar 

  • De Wijn R, Van Gorkom HJ (2002) The rate of charge recombination in Photosystem II. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1553:302–308

    Article  CAS  Google Scholar 

  • Divakaran R, Sivasankara Pillai VN (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrients limitation in algae. Journal of Phycology 9:264–272

    CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:1335–1349

    CAS  Google Scholar 

  • Falkowski PG, Owens TG, Ley AC, Mauzerall DC (1981) Effects of Growth Irradiance Levels on the Ratio of Reaction Centers in Two Species of Marine Phytoplankton. Plant Physiol 68:969–973

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth RK, Thompson ES. (1982) Mean monthly, seasonal, and annual pan evaporation for the United States. NOAA technical Report NWS 34. US Department of Commerce. [pdf] Available at: www.nws.noaa.gov/oh/hdsc/PMP_related_studies/TR34.pdf Accessed 15 Oct 2012

  • Ferrari GM, Tassan S (1999) A method using chemical oxidation to remove light absorption by phytoplankton pigments. J Phycol 35:1090–1098

    Article  CAS  Google Scholar 

  • Finazzi G, Rappaport F (1998) In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on the cytochrome b6f complex. BioChemistry 37:9999–10005

    Article  PubMed  CAS  Google Scholar 

  • Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640

    Article  PubMed  CAS  Google Scholar 

  • Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)—General Subjects 990:87–92

    Article  CAS  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY, Van Der Meer TH. (2009) The water footprint of bioenergy. Proc Natl Acad Sci 106:10219–10223

    Article  PubMed  CAS  Google Scholar 

  • Gluz MD, Merchuk JC (1996) Modified airlift reactors: The helical flow promoters. Chem Eng Sci 51:2915–2920

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Environ Microbiol 7:219–227

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of Algae. Appl Microbiol 5:47–55

    PubMed  CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU. (2006) Photosynthetic response and acclimation of microalgae to light fluctuations. In: Rao DVS (ed) Algal cultures analogues of blooms and applications. Science Publishers, Enfield

    Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algae cultivation. J Appl Phycol 8:335–343

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72

    Article  CAS  Google Scholar 

  • Hall DO, Acién Fernández FG, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73

    Article  PubMed  CAS  Google Scholar 

  • Holland AD, Wheeler DR (2011) Intrinsic autotrophic biomass yield and productivity in algae: Modeling spectral and mixing-rate dependence. Biotechnol J 6:584–599

    Article  PubMed  CAS  Google Scholar 

  • Holland AD, Dragavon JM, Sigee DC (2011) Intrinsic autotrophic biomass yield and productivity in algae: Experimental methods for strain selection. Biotechnol J 6:572–583

    Article  PubMed  CAS  Google Scholar 

  • Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO3 /NO2 under transient conditions. Plant Physiol 91:331–337

    Article  PubMed  CAS  Google Scholar 

  • Hu D, Li M, Zhou R, Sun Y (2012) Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation. Bioresour Technol 104:608–615

    Article  PubMed  CAS  Google Scholar 

  • Huesemann M, Hausmann T, Bartha R, Aksoy M, Weissman J, Benemann J (2009) Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 157:507–526

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B (2013) A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnol Bioeng. doi: 10.1002/bit.24814.

    Google Scholar 

  • Kania S, Giacomelli G (2001) Solar radiation availability for plant growth in Arizona controlled environment agriculture systems. University of Arizona. [pdf] Available at: http://ag.arizona.edu/ceac/sites/ag.arizona.edu.ceac/files/ASP%20Steve%20Solar%20Radiation%20paper%20v.2011.pdf . Accessed 15 Oct 2012

  • Kilham SS, Kreeger DA, Goulden CE, Lynn SG (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshw Biol 38:591–596

    Article  CAS  Google Scholar 

  • Koizumi J-I, Aiba S (1980) Significance of the estimation light-absorption rate in the analysis of growth of Rhodopseudomonas spheroides. Appl Microbiol Biotechnol 10:113–123

    Article  Google Scholar 

  • Kramer D, Johnson G, Kiirats O, Edwards G (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kroon BMA, Thoms S (2006) From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady-state growth rates. J Phycol 42:593–609

    Article  CAS  Google Scholar 

  • Kurane R, Takeda K, Suzuki T (1986) Screening for and characteristics of microbial flocculants. Agric Biol Chem 50:2301–2307

    Article  CAS  Google Scholar 

  • Lal A, Edwards GE (1995) Maximum quantum yields of O2 evolution in C4 plants under high CO2. Plant Cell Physiol 36:1311–1317

    CAS  Google Scholar 

  • Lansche J, Müller J (2009) Life cycle assessment of energy generation of biogas fed combined heat and power plants: environmental impact of different agricultural substrates. Eng Life Sci 12:313–320.

    Google Scholar 

  • Lazar D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J theor biol 220:469–503

    Article  PubMed  CAS  Google Scholar 

  • Lazar D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  CAS  Google Scholar 

  • Lazar D, Pospisil P (1999) Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3†²,4†²-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. Eur Biophys J 28:468–477

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute. [pdf] Available at: http://www.ascension-publishing.com/BIZ/Algae-EBI.pdf. Accessed 15 Oct 2012

  • Luo H-P, Al-Dahhan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85:382–393

    Article  PubMed  CAS  Google Scholar 

  • Luo H-P, Al-Dahhan MH (2011) Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem Eng Sci 66:907–923

    Article  CAS  Google Scholar 

  • Luo H-P, Kemoun A, Al-Dahhan MH, Sevilla JMF, Sanchez JLG, Camacho FG, Molina Grima E (2003) Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT. Chem Eng Sci 58:2519–2527

    Article  CAS  Google Scholar 

  • Macedo MF, Ferreira JG, Duarte P (1998) Dynamic behaviour of photosynthesis-irradiance curves determined from oxygen production during variable incubation periods. Mar Ecol Prog Ser 165:31–42

    Article  Google Scholar 

  • Mailleret L, Gouzé J, Bernard O (2005) Nonlinear control for algae growth models in the chemostat. Bioprocess Biosyst Eng 27:319–327

    Article  PubMed  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. an overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Mecherikunnel AT, Gatlin JA, Richmond JC (1983) Data on total and spectral solar irradiance. Appl Optics 22:1354–1359

    Article  CAS  Google Scholar 

  • Merchuk JC, Garcia-Camacho F, Molina-Grima E (2007) Photobioreactor Design and Fluid Dynamics. Chem Biochem Eng Q 21:345–355

    CAS  Google Scholar 

  • Molina-Grima E, Fernandez J, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  Google Scholar 

  • Möller K, Müller T 2012 Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257

    Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  PubMed  CAS  Google Scholar 

  • Nasir IM, Mohd Ghazi TI, Omar R 2012 Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci 12:258–269

    Google Scholar 

  • Nedbal L, Tichy V, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. Journal of Applied Phycology 8:325–333

    Article  CAS  Google Scholar 

  • Nedbal L, Trtilek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of Photosystem II. J Photochem Photobiol B: Biol 48:154–157

    Article  CAS  Google Scholar 

  • Oberhuber W, Edwards GE (1993) Temperature dependence of the linkage of quantum yield of Photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol 101:507–512

    PubMed  CAS  Google Scholar 

  • Oh H-M, Lee SJ, Park M-H, Kim H-S, Kim H-C, Yoon J-H, Kwon G-S, Yoon B-D (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234

    Article  CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Mal D, Singh RP (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59:417–423

    Article  CAS  Google Scholar 

  • Ragonese FP, Williams JA (1968) A mathematical model for the batch reactor kinetics of algae growth. Biotechnol Bioeng 10:83–88

    Article  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Perez A, Garcia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    Article  PubMed  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Rusch KA, Malone RF (1998) Microalgal production using a hydraulically integrated serial turbidostat algal reactor (HISTAR): a conceptual model. Aquac Eng 18:251–264

    Article  Google Scholar 

  • Sakshaug E, Johnsen G (2006) Absorption, fluorescence, excitation and photoacclimation. In: Rao DVS (ed) Algal cultures analogues of blooms and applications. Science Publishers, Enfield

    Google Scholar 

  • Sánchez Mirón A, Molina Grima E, Fernández Sevilla JM, Chisti Y, García Camacho F (2000) Assessment of the photosynthetically active incident radiation on outdoor photobioreactors using oxalic acid/uranyl sulfate chemical actinometer. Journal of Applied Phycology 12:385–394

    Article  Google Scholar 

  • Sanders R (2005) Chemical engineer John Prausnitz awarded National Medal of Science. UC Berkeley News. [online] Available at: http://berkeley.edu/news/media/releases/2005/02/16_NMS.shtml . Accessed 16 Oct 2012

  • Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou G (ed) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. department of energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory. [pdf] Available at: www.nrel.gov/docs/legosti/fy98/24190.pdf. Accessed 15 Oct 2012

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Surisetty K (2009) Non-linear reparameterization of complex models with applications to a microalgal heterotrophic fed-batch bioreactor. Department of Chemical and Materials Engineering. University of Alberta. [pdf] Available at: http://en.scientificcommons.org/56516812 . Accessed 15 Oct 2012

  • Takache H, Christophe G, Cornet J-F, Pruvost J (2009) Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26:431–440

    Google Scholar 

  • Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77

    Article  Google Scholar 

  • Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon PC, Mandel H (2003) The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Solar Physics 214:1–22

    Article  Google Scholar 

  • Tornabene TG (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzym Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchuk JC (2005) Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies. Ind Eng Chem Res 44:6154–6163

    Article  CAS  Google Scholar 

  • Welschmeyer NA, Lorenzen CJ (1981) Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensities. J Phycol 17:283–293

    Article  CAS  Google Scholar 

  • Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol and Biotechnol 92:909–919

    Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  PubMed  CAS  Google Scholar 

  • Wong WW, Tran LM, Liao JC (2009) A hidden square-root boundary between growth rate and biomass yield. Biotechnol Bioeng 102:73–80

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Merchuk JC (2001) A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem Eng Sci 56:3527–3538

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499

    Article  PubMed  CAS  Google Scholar 

  • Yamanè T, Shimizu S (1984) Fed-batch techniques in microbial processes. Bioprocess Parameter Control 30:147–194

    Article  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2010) Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  PubMed  Google Scholar 

  • Yun Y-S, Park JM (2003) Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol Bioeng 83:303–311

    Article  PubMed  CAS  Google Scholar 

  • Yun YS, Park JM (2001) Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Appl Microbiol Biotechnol 55:765–770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Agnieszka Kawska at IlluScientia.com for help in creating the Figs. 2, 3, 13 and 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra D. Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holland, A., Dragavon, J. (2014). Algal Reactor Design Based on Comprehensive Modeling of Light and Mixing. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_2

Download citation

Publish with us

Policies and ethics