Skip to main content

Recovery of Lipids from Algae

  • Chapter
  • First Online:
Book cover Algal Biorefineries

Abstract

One of the crucial steps in generating biofuel from algae is the separation and recovery of lipids from algal biomass. These lipids are eventually converted into liquid biofuel after processing and refining. This chapter presents an overview of extraction techniques and some of the challenges in applying these techniques to industrial-scale algal biofuel production. Lipids are well-encased inside algal cell walls. The aqueous environment of the cells makes it even more difficult to extract the lipids. Hexane extraction is presently the most economical method. Cell-disrupting methods have been attempted as complementary techniques to hexane extraction. Other methods such as super-critical fluid extraction and microwave extraction that may prove better in future are still in developmental stages. The need to dry the algal biomass is a key challenge in hexane extraction. The development of on-site smaller-capacity technologies can be another vital step to enhance industrial-scale biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

References

  • Akintayo ET (2004) Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour Technol 92:307–310

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol 102:3396–3403

    Article  PubMed  CAS  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  PubMed  CAS  Google Scholar 

  • Bell S (2009) Supercritical CO2: a green solvent. Process economics program report No. 269, SRI Consulting, August 2009

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep & Purific Rev 38:291–325

    Article  CAS  Google Scholar 

  • Cravotto G, Cintas P (2007) Extraction of flavourings from natural sources. In: Taylor A, Hort J (Eds). Modifying flavour in food. Woodhead Publishing Ltd., Cambridge, pp. 41–63

    Chapter  Google Scholar 

  • Cravotto G, Binello A, Merizzi G, Avogadro M (2004) Improving solvent-free extraction of policosanol from rice bran by high-intensity ultrasound treatment. Eur J Lipid Sci Technol 106:147–151

    Article  CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high- intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  PubMed  CAS  Google Scholar 

  • Doucha J, Livansky K (2008) Influence of processing parameters on disintegration of chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  PubMed  CAS  Google Scholar 

  • Dunford NT, Temelli F (1997) Extraction conditions and moisture content of canola flakes as related to lipid composition of supercritical CO2 extracts. J Food Sci 62:155–159

    Article  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:9–14

    Article  Google Scholar 

  • Folch J, Lees M, Sloane, Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2011) Life-cycle analysis of algal lipid fuels with the GREET model. Argonne National Laboratory, US Department of Energy, ANL/ESD/11–5, US

    Google Scholar 

  • Gifford M, Biancani E, Kearsley W, Maluchnik W, Farrell S, Savelski MJ, Hesketh RP (2001) Economic feasibility study on the supercritical fluid extraction of edible oils. AP-105, Client Applications, Technical Resources, Supercritical Fluid Technologies, Inc., USA

    Google Scholar 

  • Gimenez Gimenez A, Ibanez MJ, Robles A, Molina E, Garcia S, Esteban L (1998) Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids (20:4n-6) from the microalga Porphyridium cruentum. Bioseparation 7:89–99

    Article  Google Scholar 

  • Guderjan M, Elez-Martinez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovations Food Sci Emerg 8:55–62

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2010) Oil extraction from microalgae for biodiesel production. Bioresource Technol 102:178–185

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  PubMed  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Hebner RE, Davey K, Werst MD, Connelly R (2011) Electromechanical lysing of algal cells. United States Patent Application number: 13/186,282, Publication number: US 2012/0021481 A1, Filing date: Jul 19, 2011

    Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    Article  PubMed  CAS  Google Scholar 

  • Horst I, Parker BM, Dennis JS, Howe CJ, Scott SA, Smith AG (2012) Treatment of phaeodactylum tricornutum cells with papain facilitates lipid extraction. J Biotechnol 162:40–49

    Google Scholar 

  • Institute for Applied Environmental Economics, Netherlands (1995) Aqueous enzymatic extraction of oil from rapeseeds. http://infohouse.p2ric.org/ref/10/09365.htm Sep 9, 2012

  • Kates M (1986) Lipid extraction procedures. In: Kates M (ed.) Techniques of lipidology: isolation, analysis, and identification of lipids. Elsevier, Amsterdam, pp. 100–111

    Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid producing microheterotrophs. J Microbiol Method 43:107–116

    Article  CAS  Google Scholar 

  • Lim GB, Lee SY, Lee EK, Haam SJ, Kim WS (2002) Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J 11:181–187

    Article  CAS  Google Scholar 

  • Lucchesi ME, Chemat F, Smadja J (2004) An original solvent free microwave extraction of essential oils from spices. J Chromatogr A1043:323–327

    Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, California (www.ascension-publishing.com/BIZ/Algae-EBI.pdf)

    Google Scholar 

  • Martek Biosciences Corporation correspondence to Food and Drug Administration (2003) Re: GRAS exemption claim for dha algal oil derived from Schizochytrium sp. as a source of dha for use in foods. Sam Zeller (http://www.accessdata.fda.gov/scripts/fcn/gras_notices/706545a.pdf) Sep 9 2012

  • Medina AR, Grima EM, Gimenez AG, Ibanez MJ (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580

    Article  Google Scholar 

  • Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of g-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chem 99:57–63

    Article  CAS  Google Scholar 

  • Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibañez E, Señoráns FJ (2007a) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367

    Article  CAS  Google Scholar 

  • Mendiola, JA, Herrero M, Cifuentes A, Ibañez E (2007b) Use of compressed fluids for sample preparation: food applications. J Chromatography A 1152:234–246

    Article  CAS  Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Europ J Lipid Sci Technol 113:539–547

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Mojaat M, Foucault A, Pruvost J, Legrand J (2008) Optimal selection of organic solvents for biocompatible extraction of β-carotene from Dunaliella salina. J Biotechnol 133:433–441

    Article  PubMed  CAS  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acien Fernandez FG, Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  PubMed  CAS  Google Scholar 

  • Nagle N, Lemke P (1989) Microalgal fuel production processes: Analysis of lipid extraction and conversion methods. In: Bollmeier WS, Sprague S (eds). Aquatic species program annual report. Solar Energy Research Institute, Colorado, SERI/SP-231–3579, pp. 157–164

    Google Scholar 

  • Nurdin R (2007) Microwave extraction of essential oils from ‘Penaga Lilin’ (Mesua Ferrea L.) Leaves.” Masters thesis. Universiti Putra Malaysia

    Google Scholar 

  • Paré JRJ, Matni G, Bélanger JMR, Li K, Rule C, Thibert B (1997) Use of the microwave-assisted process in extraction of fat from meat, dairy, and egg products under atmospheric pressure conditions. J AOAC Int 80:928–933

    PubMed  Google Scholar 

  • Pempiyawat S, Vatanatham T, Limtrakul S (2011) Economic and energy analysis of a supercritical carbon dioxide extraction process. Proc 49th Kasetsart University National Conf, Bangkok

    Google Scholar 

  • Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis—review. J Chromatography A 1163:2–24

    Article  CAS  Google Scholar 

  • Pramanik K (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28:239–248

    Article  CAS  Google Scholar 

  • Robles Medina A, Gimenez Gimenez A, Garcıa Camacho F, Sanchez Perez JA, Molina Grima E, Contreras Gómez A (1995) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J AOCS 72:575–583

    CAS  Google Scholar 

  • Ruecker CM, Adu-peasah SP, Engelhardt BS, Veeder III GT (2010) Solventless extraction process. United States Patent 7,781,193 B2 (2010)

    Google Scholar 

  • Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction—a review. J Food Eng 95:240–253

    Article  CAS  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2004) Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind Crop Prod 20:275–279

    Article  CAS  Google Scholar 

  • Sheehan J (1998) A look back at the U.S. department of energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, USA

    Book  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  • Soto C, Chamy R, Zuniga ME (2007) Enzymatic hydrolysis and pressing conditions effect on borage oil extraction by cold pressing. Food Chem 102:834–840

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy and Fuels 24:4062–4077

    Article  CAS  Google Scholar 

  • Stewart G (2003) Dry cleaning with liquid carbon dioxide. In: DeSimone JM, Tumas W (eds). Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, United States, pp. 215–217

    Google Scholar 

  • Tanaka Y, Sakaki I, Ohkubo T (2004) Extractions of phospholipids from Salmon Roe with supercritical carbon dioxide and an entrainer. J Oleo Sci 53:417–424

    Article  CAS  Google Scholar 

  • Joshi U, Ware L, Upadhye M (2010) Microwave assisted extraction of crude drugs. Int J Pharma Bio Sci 1:330–332

    Google Scholar 

  • Vandana V, Karuna MSL, VijayaLakshmi P, Prasad RBN (2001) A simple method to enrich phospholipid content in commercial soybean lecithin. J AOCS 778:555–556.

    Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Wolf FR, Nonomura AM, Bassham JA (1985) Growth and branched hydrocarbon production in a strain of Botryococcus braunii (chlorophyta). J Phycology 21:388–396

    Article  CAS  Google Scholar 

  • Zheng J, Hu A-J (2007) Various factors in ultrasonic extraction of DHA and EPA from algae and effect of ultrasound enhancement. Technical Acoustics 26:75–79

    Google Scholar 

Download references

Acknowledgements

The authors thank Chinmaya Kulkarni for his assistance in literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeban Chakravarthi Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kannan, D., Pattarkine, V. (2014). Recovery of Lipids from Algae. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_12

Download citation

Publish with us

Policies and ethics